can set attn_implemention (#8)
Browse files- can set attn_implementation (9e6c3226b877a6be05e385279d56fcf26a0f9fab)
- add sdpa back (7718375747c38ef6a6e957a615edd4b3df495282)
- add blank (d869dc5ea79e62a0697c986a0fdeab12860c65bf)
- configuration_kimi_vl.py +33 -21
- modeling_kimi_vl.py +33 -1
    	
        configuration_kimi_vl.py
    CHANGED
    
    | @@ -6,6 +6,7 @@ logger = logging.get_logger(__name__) | |
| 6 |  | 
| 7 | 
             
            DEEPSEEK_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
         | 
| 8 |  | 
|  | |
| 9 | 
             
            class DeepseekV3Config(PretrainedConfig):
         | 
| 10 | 
             
                r"""
         | 
| 11 | 
             
                This is the configuration class to store the configuration of a [`DeepseekV3Model`]. It is used to instantiate an DeepSeek
         | 
| @@ -122,30 +123,30 @@ class DeepseekV3Config(PretrainedConfig): | |
| 122 | 
             
                    vocab_size=129280,
         | 
| 123 | 
             
                    hidden_size=7168,
         | 
| 124 | 
             
                    intermediate_size=18432,
         | 
| 125 | 
            -
                    moe_intermediate_size | 
| 126 | 
             
                    num_hidden_layers=61,
         | 
| 127 | 
             
                    num_nextn_predict_layers=1,
         | 
| 128 | 
             
                    num_attention_heads=128,
         | 
| 129 | 
             
                    num_key_value_heads=128,
         | 
| 130 | 
            -
                    n_shared_experts | 
| 131 | 
            -
                    n_routed_experts | 
| 132 | 
            -
                    ep_size | 
| 133 | 
            -
                    routed_scaling_factor | 
| 134 | 
            -
                    kv_lora_rank | 
| 135 | 
            -
                    q_lora_rank | 
| 136 | 
            -
                    qk_rope_head_dim | 
| 137 | 
            -
                    v_head_dim | 
| 138 | 
            -
                    qk_nope_head_dim | 
| 139 | 
            -
                    topk_method | 
| 140 | 
            -
                    n_group | 
| 141 | 
            -
                    topk_group | 
| 142 | 
            -
                    num_experts_per_tok | 
| 143 | 
            -
                    moe_layer_freq | 
| 144 | 
            -
                    first_k_dense_replace | 
| 145 | 
            -
                    norm_topk_prob | 
| 146 | 
            -
                    scoring_func | 
| 147 | 
            -
                    aux_loss_alpha | 
| 148 | 
            -
                    seq_aux | 
| 149 | 
             
                    hidden_act="silu",
         | 
| 150 | 
             
                    max_position_embeddings=4096,
         | 
| 151 | 
             
                    initializer_range=0.02,
         | 
| @@ -252,7 +253,7 @@ class KimiVLConfig(PretrainedConfig): | |
| 252 | 
             
                    ignore_index: int = -100,
         | 
| 253 | 
             
                    media_placeholder_token_id: int = 163605,
         | 
| 254 | 
             
                    pad_token_id: int = 0,
         | 
| 255 | 
            -
                    **kwargs
         | 
| 256 | 
             
                ):
         | 
| 257 | 
             
                    if vision_config is None:
         | 
| 258 | 
             
                        vision_config = MoonViTConfig()
         | 
| @@ -269,4 +270,15 @@ class KimiVLConfig(PretrainedConfig): | |
| 269 | 
             
                    self.ignore_index = ignore_index
         | 
| 270 | 
             
                    self.media_placeholder_token_id = media_placeholder_token_id
         | 
| 271 |  | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 272 | 
             
                    super().__init__(pad_token_id=pad_token_id, **kwargs)
         | 
|  | |
| 6 |  | 
| 7 | 
             
            DEEPSEEK_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
         | 
| 8 |  | 
| 9 | 
            +
             | 
| 10 | 
             
            class DeepseekV3Config(PretrainedConfig):
         | 
| 11 | 
             
                r"""
         | 
| 12 | 
             
                This is the configuration class to store the configuration of a [`DeepseekV3Model`]. It is used to instantiate an DeepSeek
         | 
|  | |
| 123 | 
             
                    vocab_size=129280,
         | 
| 124 | 
             
                    hidden_size=7168,
         | 
| 125 | 
             
                    intermediate_size=18432,
         | 
| 126 | 
            +
                    moe_intermediate_size=2048,
         | 
| 127 | 
             
                    num_hidden_layers=61,
         | 
| 128 | 
             
                    num_nextn_predict_layers=1,
         | 
| 129 | 
             
                    num_attention_heads=128,
         | 
| 130 | 
             
                    num_key_value_heads=128,
         | 
| 131 | 
            +
                    n_shared_experts=1,
         | 
| 132 | 
            +
                    n_routed_experts=256,
         | 
| 133 | 
            +
                    ep_size=1,
         | 
| 134 | 
            +
                    routed_scaling_factor=2.5,
         | 
| 135 | 
            +
                    kv_lora_rank=512,
         | 
| 136 | 
            +
                    q_lora_rank=1536,
         | 
| 137 | 
            +
                    qk_rope_head_dim=64,
         | 
| 138 | 
            +
                    v_head_dim=128,
         | 
| 139 | 
            +
                    qk_nope_head_dim=128,
         | 
| 140 | 
            +
                    topk_method="noaux_tc",
         | 
| 141 | 
            +
                    n_group=8,
         | 
| 142 | 
            +
                    topk_group=4,
         | 
| 143 | 
            +
                    num_experts_per_tok=8,
         | 
| 144 | 
            +
                    moe_layer_freq=1,
         | 
| 145 | 
            +
                    first_k_dense_replace=3,
         | 
| 146 | 
            +
                    norm_topk_prob=True,
         | 
| 147 | 
            +
                    scoring_func="sigmoid",
         | 
| 148 | 
            +
                    aux_loss_alpha=0.001,
         | 
| 149 | 
            +
                    seq_aux=True,
         | 
| 150 | 
             
                    hidden_act="silu",
         | 
| 151 | 
             
                    max_position_embeddings=4096,
         | 
| 152 | 
             
                    initializer_range=0.02,
         | 
|  | |
| 253 | 
             
                    ignore_index: int = -100,
         | 
| 254 | 
             
                    media_placeholder_token_id: int = 163605,
         | 
| 255 | 
             
                    pad_token_id: int = 0,
         | 
| 256 | 
            +
                    **kwargs,
         | 
| 257 | 
             
                ):
         | 
| 258 | 
             
                    if vision_config is None:
         | 
| 259 | 
             
                        vision_config = MoonViTConfig()
         | 
|  | |
| 270 | 
             
                    self.ignore_index = ignore_index
         | 
| 271 | 
             
                    self.media_placeholder_token_id = media_placeholder_token_id
         | 
| 272 |  | 
| 273 | 
            +
                    attn_implementation = kwargs.get("attn_implementation")
         | 
| 274 | 
            +
                    if attn_implementation is not None:
         | 
| 275 | 
            +
                        if attn_implementation in ["eager", "flash_attention_2"]:
         | 
| 276 | 
            +
                            self._attn_implementation = attn_implementation
         | 
| 277 | 
            +
                            self.vision_config._attn_implementation = attn_implementation
         | 
| 278 | 
            +
                            self.text_config._attn_implementation = attn_implementation
         | 
| 279 | 
            +
                        else:
         | 
| 280 | 
            +
                            raise ValueError(
         | 
| 281 | 
            +
                                f"Invalid attention implementation: {attn_implementation}"
         | 
| 282 | 
            +
                            )
         | 
| 283 | 
            +
             | 
| 284 | 
             
                    super().__init__(pad_token_id=pad_token_id, **kwargs)
         | 
    	
        modeling_kimi_vl.py
    CHANGED
    
    | @@ -177,9 +177,41 @@ def sdpa_attention( | |
| 177 | 
             
                return attn_output
         | 
| 178 |  | 
| 179 |  | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 180 | 
             
            VL_VISION_ATTENTION_FUNCTIONS = {
         | 
| 181 | 
             
                "flash_attention_2": multihead_attention,
         | 
| 182 | 
             
                "sdpa": sdpa_attention,
         | 
|  | |
| 183 | 
             
            }
         | 
| 184 |  | 
| 185 |  | 
| @@ -412,7 +444,7 @@ class MoonVitEncoderLayer(nn.Module): | |
| 412 | 
             
                    hidden_dim: int,
         | 
| 413 | 
             
                    mlp_dim: int,
         | 
| 414 | 
             
                    *,
         | 
| 415 | 
            -
                    attn_implementation: str = " | 
| 416 | 
             
                    activation=F.gelu,
         | 
| 417 | 
             
                    attn_bias: bool = False,
         | 
| 418 | 
             
                ):
         | 
|  | |
| 177 | 
             
                return attn_output
         | 
| 178 |  | 
| 179 |  | 
| 180 | 
            +
            def eager_attention(
         | 
| 181 | 
            +
                q: torch.Tensor,
         | 
| 182 | 
            +
                k: torch.Tensor,
         | 
| 183 | 
            +
                v: torch.Tensor,
         | 
| 184 | 
            +
                q_cu_seqlens: Optional[torch.Tensor] = None,
         | 
| 185 | 
            +
                k_cu_seqlens: Optional[torch.Tensor] = None,
         | 
| 186 | 
            +
            ) -> torch.Tensor:
         | 
| 187 | 
            +
                seq_length = q.shape[0]
         | 
| 188 | 
            +
                attention_mask = torch.zeros(
         | 
| 189 | 
            +
                    [1, seq_length, seq_length], device=q.device, dtype=torch.bool
         | 
| 190 | 
            +
                )
         | 
| 191 | 
            +
                for i in range(1, len(q_cu_seqlens)):
         | 
| 192 | 
            +
                    attention_mask[
         | 
| 193 | 
            +
                        ...,
         | 
| 194 | 
            +
                        q_cu_seqlens[i - 1] : q_cu_seqlens[i],
         | 
| 195 | 
            +
                        q_cu_seqlens[i - 1] : q_cu_seqlens[i],
         | 
| 196 | 
            +
                    ] = True
         | 
| 197 | 
            +
                q = q.transpose(0, 1)
         | 
| 198 | 
            +
                k = k.transpose(0, 1)
         | 
| 199 | 
            +
                v = v.transpose(0, 1)
         | 
| 200 | 
            +
             | 
| 201 | 
            +
                attn_weight = q @ k.transpose(-2, -1) / math.sqrt(q.shape[-1])
         | 
| 202 | 
            +
                attn_weight += attention_mask
         | 
| 203 | 
            +
                attn_weight = torch.softmax(attn_weight, dim=-1, dtype=torch.float32).to(q.dtype)
         | 
| 204 | 
            +
             | 
| 205 | 
            +
                attn_output = attn_weight @ v
         | 
| 206 | 
            +
                attn_output = attn_output.transpose(0, 1)
         | 
| 207 | 
            +
                attn_output = attn_output.reshape(seq_length, -1)
         | 
| 208 | 
            +
                return attn_output
         | 
| 209 | 
            +
             | 
| 210 | 
            +
             | 
| 211 | 
             
            VL_VISION_ATTENTION_FUNCTIONS = {
         | 
| 212 | 
             
                "flash_attention_2": multihead_attention,
         | 
| 213 | 
             
                "sdpa": sdpa_attention,
         | 
| 214 | 
            +
                "eager": eager_attention,
         | 
| 215 | 
             
            }
         | 
| 216 |  | 
| 217 |  | 
|  | |
| 444 | 
             
                    hidden_dim: int,
         | 
| 445 | 
             
                    mlp_dim: int,
         | 
| 446 | 
             
                    *,
         | 
| 447 | 
            +
                    attn_implementation: str = "eager",
         | 
| 448 | 
             
                    activation=F.gelu,
         | 
| 449 | 
             
                    attn_bias: bool = False,
         | 
| 450 | 
             
                ):
         | 
