|  | from logging import warn | 
					
						
						|  | import torch | 
					
						
						|  | from transformers.models.bart.modeling_bart import * | 
					
						
						|  | from transformers.models.bart.modeling_bart import _expand_mask | 
					
						
						|  | import torch.nn as nn | 
					
						
						|  | import sys | 
					
						
						|  |  | 
					
						
						|  | AUTO_MAP = { | 
					
						
						|  | "AutoModel": "modeling_lsg_bart.LSGBartModel", | 
					
						
						|  | "AutoModelForCausalLM": "modeling_lsg_bart.LSGBartForCausalLM", | 
					
						
						|  | "AutoModelForQuestionAnswering": "modeling_lsg_bart.LSGBartForQuestionAnswering", | 
					
						
						|  | "AutoModelForSequenceClassification": "modeling_lsg_bart.LSGBartForSequenceClassification", | 
					
						
						|  | "AutoModelForSeq2SeqLM": "modeling_lsg_bart.LSGBartForConditionalGeneration" | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  | class LSGBartConfig(BartConfig): | 
					
						
						|  | """ | 
					
						
						|  | This class overrides :class:`~transformers.BartConfig`. Please check the superclass for the appropriate | 
					
						
						|  | documentation alongside usage examples. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | base_model_prefix = "lsg" | 
					
						
						|  | model_type = "bart" | 
					
						
						|  | keys_to_ignore_at_inference = ["past_key_values"] | 
					
						
						|  | attribute_map = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} | 
					
						
						|  |  | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | adaptive=True, | 
					
						
						|  | base_model_prefix="lsg", | 
					
						
						|  | block_size=128, | 
					
						
						|  | lsh_num_pre_rounds=1, | 
					
						
						|  | mask_first_token=False, | 
					
						
						|  | num_global_tokens=1, | 
					
						
						|  | pass_global_tokens_to_decoder=True, | 
					
						
						|  | pool_with_global=True, | 
					
						
						|  | sparse_block_size=128, | 
					
						
						|  | sparsity_factor=2, | 
					
						
						|  | sparsity_type="norm", | 
					
						
						|  | **kwargs | 
					
						
						|  | ): | 
					
						
						|  | """Constructs LSGConfig.""" | 
					
						
						|  | super().__init__(**kwargs) | 
					
						
						|  |  | 
					
						
						|  | self.adaptive = adaptive | 
					
						
						|  | self.auto_map = AUTO_MAP | 
					
						
						|  | self.base_model_prefix = base_model_prefix | 
					
						
						|  | self.block_size = block_size | 
					
						
						|  | self.lsh_num_pre_rounds = lsh_num_pre_rounds | 
					
						
						|  | self.mask_first_token = mask_first_token | 
					
						
						|  | self.num_global_tokens = num_global_tokens | 
					
						
						|  | self.pass_global_tokens_to_decoder = pass_global_tokens_to_decoder | 
					
						
						|  | self.pool_with_global = pool_with_global | 
					
						
						|  | self.sparse_block_size = sparse_block_size | 
					
						
						|  | self.sparsity_factor = sparsity_factor | 
					
						
						|  | self.sparsity_type = sparsity_type | 
					
						
						|  |  | 
					
						
						|  | if sparsity_type not in [None, "none", "norm", "lsh", "pooling", "stride", "block_stride"]: | 
					
						
						|  | logger.warning( | 
					
						
						|  | "[WARNING CONFIG]: sparsity_mode not in [None, 'none', 'norm', 'lsh', 'pooling', 'stride', 'block_stride'], \ | 
					
						
						|  | setting sparsity_type=None, computation will skip sparse attention") | 
					
						
						|  | self.sparsity_type = None | 
					
						
						|  |  | 
					
						
						|  | if self.sparsity_type in ["stride", "block_stride"]: | 
					
						
						|  | if self.sparsity_factor > self.encoder_attention_heads: | 
					
						
						|  | logger.warning( | 
					
						
						|  | "[WARNING CONFIG]: sparsity_factor > encoder_attention_heads is not recommended for stride/block_stride sparsity" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if self.num_global_tokens < 1: | 
					
						
						|  | logger.warning( | 
					
						
						|  | "[WARNING CONFIG]: num_global_tokens < 1 is not compatible, setting num_global_tokens=1" | 
					
						
						|  | ) | 
					
						
						|  | self.num_global_tokens = 1 | 
					
						
						|  | elif self.num_global_tokens > 512: | 
					
						
						|  | logger.warning( | 
					
						
						|  | "[WARNING CONFIG]: num_global_tokens > 512 is not allowed, setting num_global_tokens=512" | 
					
						
						|  | ) | 
					
						
						|  | self.num_global_tokens = 512 | 
					
						
						|  |  | 
					
						
						|  | if self.sparsity_factor > 0: | 
					
						
						|  | assert self.block_size % self.sparsity_factor == 0, "[ERROR CONFIG]: block_size must be divisible by sparsity_factor" | 
					
						
						|  | assert self.block_size//self.sparsity_factor >= 1, "[ERROR CONFIG]: make sure block_size >= sparsity_factor" | 
					
						
						|  |  | 
					
						
						|  | if self.mask_first_token and not pool_with_global: | 
					
						
						|  | logger.warning( | 
					
						
						|  | "[WARNING CONFIG]: pool_with_global==False is not compatible with mask_first_token==True. Setting pool_with_global to True.") | 
					
						
						|  | self.pool_with_global = True | 
					
						
						|  |  | 
					
						
						|  | if hasattr(self, "position_embedding_type"): | 
					
						
						|  | if self.position_embedding_type != "absolute": | 
					
						
						|  | logger.warning( | 
					
						
						|  | "[WARNING CONFIG]: LSG Attention is not compatible with relative positional embedding and will skip its computation. Set position_embedding_type='absolute' to remove this warning.") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class BaseSelfAttention(nn.Module): | 
					
						
						|  |  | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | embed_dim, | 
					
						
						|  | num_heads, | 
					
						
						|  | dropout=0.0, | 
					
						
						|  | is_decoder=False, | 
					
						
						|  | bias=True, | 
					
						
						|  | ): | 
					
						
						|  |  | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.embed_dim = embed_dim | 
					
						
						|  | self.num_heads = num_heads | 
					
						
						|  | self.dropout = dropout | 
					
						
						|  | self.head_dim = embed_dim // num_heads | 
					
						
						|  |  | 
					
						
						|  | if (self.head_dim * num_heads) != self.embed_dim: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" | 
					
						
						|  | f" and `num_heads`: {num_heads})." | 
					
						
						|  | ) | 
					
						
						|  | self.scaling = self.head_dim ** -0.5 | 
					
						
						|  | self.is_decoder = is_decoder | 
					
						
						|  |  | 
					
						
						|  | self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias) | 
					
						
						|  | self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias) | 
					
						
						|  | self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias) | 
					
						
						|  | self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) | 
					
						
						|  |  | 
					
						
						|  | def transpose_for_scores(self, x): | 
					
						
						|  | new_x_shape = x.size()[:-1] + ( | 
					
						
						|  | self.num_heads, | 
					
						
						|  | self.head_dim, | 
					
						
						|  | ) | 
					
						
						|  | x = x.view(*new_x_shape) | 
					
						
						|  | return x.permute(0, 2, 1, 3) | 
					
						
						|  |  | 
					
						
						|  | def reshape_output(self, context_layer): | 
					
						
						|  | context_layer = context_layer.permute(0, 2, 1, 3).contiguous() | 
					
						
						|  | new_context_layer_shape = context_layer.size()[:-2] + (self.embed_dim,) | 
					
						
						|  | return context_layer.view(*new_context_layer_shape) | 
					
						
						|  |  | 
					
						
						|  | def project_QKV(self, hidden_states): | 
					
						
						|  |  | 
					
						
						|  | query_layer = self.transpose_for_scores(self.q_proj(hidden_states)) | 
					
						
						|  | key_layer = self.transpose_for_scores(self.k_proj(hidden_states)) | 
					
						
						|  | value_layer = self.transpose_for_scores(self.v_proj(hidden_states)) | 
					
						
						|  | return query_layer, key_layer, value_layer | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class BaseAttentionProduct(nn.Module): | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, config): | 
					
						
						|  | """ | 
					
						
						|  | Compute attention: softmax(Q @ K.T) @ V | 
					
						
						|  | """ | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.dropout = nn.Dropout(config.attention_dropout) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, query_layer, key_layer, value_layer, attention_mask=None): | 
					
						
						|  |  | 
					
						
						|  | d = query_layer.shape[-1] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | attention_scores = query_layer @ key_layer.transpose(-1, -2) / math.sqrt(d) | 
					
						
						|  |  | 
					
						
						|  | del query_layer | 
					
						
						|  | del key_layer | 
					
						
						|  |  | 
					
						
						|  | if attention_mask is not None: | 
					
						
						|  |  | 
					
						
						|  | attention_scores = attention_scores + attention_mask | 
					
						
						|  | del attention_mask | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | attention_probs = nn.Softmax(dim=-1)(attention_scores) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | context_layer = self.dropout(attention_probs) @ value_layer | 
					
						
						|  |  | 
					
						
						|  | return context_layer | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class LSGAttentionProduct(nn.Module): | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, config, block_size=None, sparse_block_size=None, sparsity_factor=4): | 
					
						
						|  | """ | 
					
						
						|  | Compute block or overlapping blocks attention products | 
					
						
						|  | """ | 
					
						
						|  | super().__init__() | 
					
						
						|  |  | 
					
						
						|  | self.block_size = block_size | 
					
						
						|  | self.sparse_block_size = sparse_block_size | 
					
						
						|  | self.sparsity_factor = sparsity_factor | 
					
						
						|  |  | 
					
						
						|  | if self.block_size is None: | 
					
						
						|  | self.block_size = config.block_size | 
					
						
						|  |  | 
					
						
						|  | if self.sparse_block_size is None: | 
					
						
						|  | self.sparse_block_size = config.sparse_block_size | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.local_shapes = (self.block_size*3, self.block_size) | 
					
						
						|  | if self.sparse_block_size and self.sparsity_factor > 0: | 
					
						
						|  | self.sparse_shapes = (self.sparse_block_size*3, self.block_size//self.sparsity_factor) | 
					
						
						|  |  | 
					
						
						|  | self.attention = BaseAttentionProduct(config) | 
					
						
						|  |  | 
					
						
						|  | def build_lsg_inputs(self, hidden_states, sparse_hidden_states, global_hidden_states, is_attn_mask=False): | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | local_hidden_states = self.reshape_to_local_block(hidden_states, is_attn_mask) | 
					
						
						|  | del hidden_states | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if sparse_hidden_states is not None: | 
					
						
						|  | sparse_hidden_states = self.reshape_to_sparse_block(sparse_hidden_states, is_attn_mask) | 
					
						
						|  |  | 
					
						
						|  | return self.cat_global_sparse_local_tokens(global_hidden_states, sparse_hidden_states, local_hidden_states) | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | query_layer, | 
					
						
						|  | key_layer, | 
					
						
						|  | value_layer, | 
					
						
						|  | attention_mask=None, | 
					
						
						|  | sparse_key=None, | 
					
						
						|  | sparse_value=None, | 
					
						
						|  | sparse_mask=None, | 
					
						
						|  | global_key=None, | 
					
						
						|  | global_value=None, | 
					
						
						|  | global_mask=None | 
					
						
						|  | ): | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | n, h, t, d = query_layer.size() | 
					
						
						|  | n_blocks = t // self.block_size | 
					
						
						|  | assert t % self.block_size == 0 | 
					
						
						|  |  | 
					
						
						|  | key_layer = self.build_lsg_inputs( | 
					
						
						|  | key_layer, | 
					
						
						|  | sparse_key, | 
					
						
						|  | global_key | 
					
						
						|  | ) | 
					
						
						|  | del sparse_key | 
					
						
						|  | del global_key | 
					
						
						|  |  | 
					
						
						|  | value_layer = self.build_lsg_inputs( | 
					
						
						|  | value_layer, | 
					
						
						|  | sparse_value, | 
					
						
						|  | global_value | 
					
						
						|  | ) | 
					
						
						|  | del sparse_value | 
					
						
						|  | del global_value | 
					
						
						|  |  | 
					
						
						|  | attention_mask = self.build_lsg_inputs( | 
					
						
						|  | attention_mask, | 
					
						
						|  | sparse_mask, | 
					
						
						|  | global_mask.transpose(-1, -2), | 
					
						
						|  | is_attn_mask=True | 
					
						
						|  | ).transpose(-1, -2) | 
					
						
						|  | del sparse_mask | 
					
						
						|  | del global_mask | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | context_layer = self.attention( | 
					
						
						|  | query_layer=self.chunk(query_layer, n_blocks), | 
					
						
						|  | key_layer=key_layer, | 
					
						
						|  | value_layer=value_layer, | 
					
						
						|  | attention_mask=attention_mask | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | return context_layer.reshape(n, h, -1, d) | 
					
						
						|  |  | 
					
						
						|  | def reshape_to_local_block(self, hidden_states, is_attn_mask=False): | 
					
						
						|  |  | 
					
						
						|  | size, step = self.local_shapes | 
					
						
						|  | s = (size - step) // 2 | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if is_attn_mask: | 
					
						
						|  | pad_value = torch.finfo(hidden_states.dtype).min | 
					
						
						|  | hidden_states = hidden_states.transpose(-1, -2) | 
					
						
						|  | else: | 
					
						
						|  | pad_value = 0 | 
					
						
						|  |  | 
					
						
						|  | hidden_states = torch.nn.functional.pad( | 
					
						
						|  | hidden_states.transpose(-1, -2), | 
					
						
						|  | pad=(s, s), | 
					
						
						|  | value=pad_value | 
					
						
						|  | ).transpose(-1, -2) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | hidden_states = hidden_states.unfold(-2, size=size, step=step).transpose(-1, -2) | 
					
						
						|  |  | 
					
						
						|  | return hidden_states | 
					
						
						|  |  | 
					
						
						|  | def reshape_to_sparse_block(self, hidden_states, is_attn_mask=False): | 
					
						
						|  |  | 
					
						
						|  | size, step = self.sparse_shapes | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | odd_offset = (step % 2) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | size = size*2 | 
					
						
						|  | s = (size - step) // 2 + odd_offset | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if is_attn_mask: | 
					
						
						|  | pad_value = torch.finfo(hidden_states.dtype).min | 
					
						
						|  | hidden_states = hidden_states.transpose(-1, -2) | 
					
						
						|  | else: | 
					
						
						|  | pad_value = 0 | 
					
						
						|  |  | 
					
						
						|  | hidden_states = torch.nn.functional.pad( | 
					
						
						|  | hidden_states.transpose(-1, -2), | 
					
						
						|  | pad=(s, s), | 
					
						
						|  | value=pad_value | 
					
						
						|  | ).transpose(-1, -2) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | hidden_states = hidden_states.unfold(-2, size=size, step=step).transpose(-1, -2) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if odd_offset: | 
					
						
						|  | hidden_states = hidden_states[..., :-1, :, :] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | u = (size - self.block_size * 3 // self.sparsity_factor) // 2 + odd_offset | 
					
						
						|  | s = self.sparse_block_size | 
					
						
						|  |  | 
					
						
						|  | u_ = u + odd_offset | 
					
						
						|  | return torch.cat([hidden_states[..., u-s:u, :], hidden_states[..., -u_:-u_+s, :]], dim=-2) | 
					
						
						|  |  | 
					
						
						|  | def cat_global_sparse_local_tokens(self, x_global, x_sparse=None, x_local=None, dim=-2): | 
					
						
						|  |  | 
					
						
						|  | n, h, b, t, d = x_local.size() | 
					
						
						|  | x_global = x_global.unsqueeze(-3).expand(-1, -1, b, -1, -1) | 
					
						
						|  | if x_sparse is not None: | 
					
						
						|  | return torch.cat([x_global, x_sparse, x_local], dim=dim) | 
					
						
						|  | return torch.cat([x_global, x_local], dim=dim) | 
					
						
						|  |  | 
					
						
						|  | def chunk(self, x, n_blocks): | 
					
						
						|  |  | 
					
						
						|  | t, d = x.size()[-2:] | 
					
						
						|  | return x.reshape(*x.size()[:-2], n_blocks, -1, d) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class LSGBartEncoderAttention(BaseSelfAttention): | 
					
						
						|  | ''' | 
					
						
						|  | Compute local attention with overlapping blocs | 
					
						
						|  | Use global attention for tokens with highest norm | 
					
						
						|  | ''' | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | config, | 
					
						
						|  | embed_dim, | 
					
						
						|  | num_heads, | 
					
						
						|  | dropout | 
					
						
						|  | ): | 
					
						
						|  |  | 
					
						
						|  | super().__init__(embed_dim, num_heads, dropout) | 
					
						
						|  |  | 
					
						
						|  | self.block_size = config.block_size | 
					
						
						|  | self.sparse_block_size = config.sparse_block_size | 
					
						
						|  | self.num_global_tokens = config.num_global_tokens | 
					
						
						|  | self.sparsity_factor = config.sparsity_factor | 
					
						
						|  |  | 
					
						
						|  | self.attention = LSGAttentionProduct( | 
					
						
						|  | config, | 
					
						
						|  | block_size=config.block_size, | 
					
						
						|  | sparse_block_size=config.sparse_block_size, | 
					
						
						|  | sparsity_factor=self.sparsity_factor, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | self.full_attention = BaseAttentionProduct(config) | 
					
						
						|  |  | 
					
						
						|  | sparse_functions = { | 
					
						
						|  | "norm": self.get_sparse_tokens_with_norm, | 
					
						
						|  | "pooling": self.get_sparse_tokens_with_pooling, | 
					
						
						|  | "lsh": self.get_sparse_tokens_with_lsh, | 
					
						
						|  | "stride": self.get_sparse_tokens_with_stride, | 
					
						
						|  | "block_stride": self.get_sparse_tokens_with_block_stride, | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  | self.sparsity_type = config.sparsity_type | 
					
						
						|  | self.get_sparse_elements = sparse_functions.get(self.sparsity_type, lambda x, y, z: (None, None, None)) | 
					
						
						|  |  | 
					
						
						|  | if config.sparsity_type == "lsh": | 
					
						
						|  | self.lsh_num_pre_rounds = config.lsh_num_pre_rounds | 
					
						
						|  |  | 
					
						
						|  | def get_sparse_tokens_with_norm(self, keys, values, mask): | 
					
						
						|  |  | 
					
						
						|  | if self.sparsity_factor == 1: | 
					
						
						|  | return keys, values, mask.expand(-1, keys.size()[1], -1, -1) | 
					
						
						|  |  | 
					
						
						|  | with torch.no_grad(): | 
					
						
						|  |  | 
					
						
						|  | block_size = min(self.block_size, self.sparse_block_size) | 
					
						
						|  | key_norm = keys.detach().norm(dim=-1, keepdim=True) | 
					
						
						|  | key_norm = key_norm * ~mask.transpose(-1, -2).bool() | 
					
						
						|  | key_norm = self.chunk(key_norm, block_size) | 
					
						
						|  |  | 
					
						
						|  | n, h, b, t, d = key_norm.size() | 
					
						
						|  |  | 
					
						
						|  | idx = key_norm.argsort(dim=-2) | 
					
						
						|  | del key_norm | 
					
						
						|  | idx += (torch.arange(b, device=keys.device)*t).reshape(1, 1, b, 1, 1) | 
					
						
						|  |  | 
					
						
						|  | split = (t - block_size // self.sparsity_factor, block_size // self.sparsity_factor) | 
					
						
						|  | sparse_idx = idx.split(split, -2)[-1].reshape(n, h, -1, 1) | 
					
						
						|  |  | 
					
						
						|  | d = keys.size()[-1] | 
					
						
						|  | keys = keys.gather(dim=-2, index=sparse_idx.expand(-1, -1, -1, d)) | 
					
						
						|  | values = values.gather(dim=-2, index=sparse_idx.expand(-1, -1, -1, d)) | 
					
						
						|  | mask = mask.expand(-1, h, -1, -1).transpose(-1, -2).gather(dim=-2, index=sparse_idx).transpose(-1, -2) | 
					
						
						|  |  | 
					
						
						|  | return keys, values, mask | 
					
						
						|  |  | 
					
						
						|  | def get_sparse_tokens_with_pooling(self, keys, values, mask): | 
					
						
						|  |  | 
					
						
						|  | if self.sparsity_factor == 1: | 
					
						
						|  | return keys, values, mask.expand(-1, keys.size()[1], -1, -1) | 
					
						
						|  |  | 
					
						
						|  | keys = self.chunk(keys, self.sparsity_factor) | 
					
						
						|  | values = self.chunk(values, self.sparsity_factor) | 
					
						
						|  |  | 
					
						
						|  | n, h, b, t, d = keys.size() | 
					
						
						|  | mask = mask.reshape(n, 1, b, 1, t) | 
					
						
						|  | mask = ~mask.transpose(-1, -2).bool() | 
					
						
						|  |  | 
					
						
						|  | keys = keys * mask | 
					
						
						|  | values = values * mask | 
					
						
						|  |  | 
					
						
						|  | mask = mask.sum(dim=-2) | 
					
						
						|  | keys = keys.sum(dim=-2) / (mask + 1e-6) | 
					
						
						|  | values = values.sum(dim=-2) / (mask + 1e-6) | 
					
						
						|  |  | 
					
						
						|  | mask = (1. - mask.clamp(0, 1)) | 
					
						
						|  | mask *= torch.finfo(mask.dtype).min | 
					
						
						|  | return keys.reshape(n, h, -1, d), values.reshape(n, h, -1, d), mask.expand(-1, h, -1, -1).transpose(-1, -2) | 
					
						
						|  |  | 
					
						
						|  | def get_sparse_tokens_with_stride(self, keys, values, mask): | 
					
						
						|  |  | 
					
						
						|  | if self.sparsity_factor == 1: | 
					
						
						|  | return keys, values, mask.expand(-1, keys.size()[1], -1, -1) | 
					
						
						|  |  | 
					
						
						|  | n, h, t, d = keys.size() | 
					
						
						|  | sparse_idx = torch.arange(t // self.sparsity_factor, device=keys.device) * self.sparsity_factor | 
					
						
						|  | sparse_idx = sparse_idx.reshape(1, 1, -1, 1) + (torch.arange(h, device=keys.device) % self.sparsity_factor).reshape(1, h, 1, 1) | 
					
						
						|  | sparse_idx = sparse_idx.expand(n, h, -1, 1) | 
					
						
						|  |  | 
					
						
						|  | keys = keys.gather(dim=-2, index=sparse_idx.expand(-1, -1, -1, d)) | 
					
						
						|  | values = values.gather(dim=-2, index=sparse_idx.expand(-1, -1, -1, d)) | 
					
						
						|  | mask = mask.expand(-1, h, -1, -1).transpose(-1, -2).gather(dim=-2, index=sparse_idx).transpose(-1, -2) | 
					
						
						|  |  | 
					
						
						|  | return keys, values, mask | 
					
						
						|  |  | 
					
						
						|  | def get_sparse_tokens_with_block_stride(self, keys, values, mask): | 
					
						
						|  |  | 
					
						
						|  | if self.sparsity_factor == 1: | 
					
						
						|  | return keys, values, mask.expand(-1, keys.size()[1], -1, -1) | 
					
						
						|  |  | 
					
						
						|  | n, h, t, d = keys.size() | 
					
						
						|  |  | 
					
						
						|  | t, b = self.block_size, t // self.block_size | 
					
						
						|  | sparse_idx = torch.arange(t // self.sparsity_factor, device=keys.device) | 
					
						
						|  | sparse_idx = sparse_idx.reshape(1, 1, 1, -1, 1) + torch.arange(h, device=keys.device).reshape(1, h, 1, 1, 1) * (t // self.sparsity_factor) | 
					
						
						|  | sparse_idx = (sparse_idx % t) | 
					
						
						|  | sparse_idx = sparse_idx + torch.arange(b, device=keys.device).reshape(1, 1, -1, 1, 1) * t | 
					
						
						|  | sparse_idx = sparse_idx.reshape(1, h, -1, 1).expand(n, h, -1, 1) | 
					
						
						|  |  | 
					
						
						|  | keys = keys.gather(dim=-2, index=sparse_idx.expand(-1, -1, -1, d)) | 
					
						
						|  | values = values.gather(dim=-2, index=sparse_idx.expand(-1, -1, -1, d)) | 
					
						
						|  | mask = mask.expand(-1, h, -1, -1).transpose(-1, -2).gather(dim=-2, index=sparse_idx).transpose(-1, -2) | 
					
						
						|  |  | 
					
						
						|  | return keys, values, mask | 
					
						
						|  |  | 
					
						
						|  | def get_sparse_tokens_with_lsh(self, keys, values, mask): | 
					
						
						|  |  | 
					
						
						|  | if self.sparsity_factor == 1: | 
					
						
						|  | return keys, values, mask.expand(-1, keys.size()[1], -1, -1) | 
					
						
						|  |  | 
					
						
						|  | block_size = min(self.block_size, self.sparse_block_size) | 
					
						
						|  | keys = self.chunk(keys, block_size) | 
					
						
						|  | values = self.chunk(values, block_size) | 
					
						
						|  |  | 
					
						
						|  | n, h, b, t, d = keys.size() | 
					
						
						|  | mask = mask.reshape(n, 1, b, 1, t) | 
					
						
						|  | mask = ~mask.transpose(-1, -2).bool() | 
					
						
						|  |  | 
					
						
						|  | keys = keys * mask | 
					
						
						|  | values = values * mask | 
					
						
						|  | mask = mask.expand(-1, h, -1, -1, -1).float() | 
					
						
						|  |  | 
					
						
						|  | extra_factor = 1 | 
					
						
						|  |  | 
					
						
						|  | for _ in range(self.lsh_num_pre_rounds): | 
					
						
						|  | keys, values, mask = self.lsh_round(keys, values, mask, t*extra_factor) | 
					
						
						|  |  | 
					
						
						|  | keys, values, mask = self.lsh_round(keys, values, mask, t//self.sparsity_factor) | 
					
						
						|  | keys /= mask + 1e-8 | 
					
						
						|  | values /= mask + 1e-8 | 
					
						
						|  |  | 
					
						
						|  | mask = (1. - mask.clamp(0, 1)) | 
					
						
						|  | mask *= torch.finfo(mask.dtype).min | 
					
						
						|  | return keys.reshape(n, h, -1, d), values.reshape(n, h, -1, d), mask.transpose(-1, -2).reshape(n, h, 1, -1) | 
					
						
						|  |  | 
					
						
						|  | def lsh_round(self, keys, values, mask, output_size): | 
					
						
						|  |  | 
					
						
						|  | with torch.no_grad(): | 
					
						
						|  |  | 
					
						
						|  | n_hashes = output_size // 2 | 
					
						
						|  | n, h, b, t, d = keys.size() | 
					
						
						|  | binary_mask = mask.clamp(0, 1) | 
					
						
						|  |  | 
					
						
						|  | indexes = (torch.nn.functional.normalize(keys, dim=-1) * binary_mask) @ torch.randn(1, h, 1, d, n_hashes, device=keys.device) | 
					
						
						|  | indexes = torch.cat([indexes, -indexes], dim=-1).argmax(dim=-1, keepdim=True) | 
					
						
						|  |  | 
					
						
						|  | n, h, b, t, d = keys.size() | 
					
						
						|  |  | 
					
						
						|  | x_ = torch.zeros(n, h, b, output_size, d, device=keys.device) | 
					
						
						|  | mask_ = torch.zeros(n, h, b, output_size, 1, device=keys.device) | 
					
						
						|  | keys = torch.scatter_add(x_, dim=-2, index=indexes.expand(-1, -1, -1, -1, d), src=keys) | 
					
						
						|  | values = torch.scatter_add(x_, dim=-2, index=indexes.expand(-1, -1, -1, -1, d), src=values) | 
					
						
						|  | mask = torch.scatter_add(mask_, dim=-2, index=indexes, src=mask) | 
					
						
						|  |  | 
					
						
						|  | return keys[..., :output_size, :], values[..., :output_size, :], mask[..., :output_size, :] | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | hidden_states, | 
					
						
						|  | attention_mask=None, | 
					
						
						|  | layer_head_mask=None, | 
					
						
						|  | output_attentions=False | 
					
						
						|  | ): | 
					
						
						|  |  | 
					
						
						|  | query_layer, key_layer, value_layer = self.project_QKV(hidden_states) | 
					
						
						|  | outputs = self.not_causal_forward( | 
					
						
						|  | query_layer, | 
					
						
						|  | key_layer, | 
					
						
						|  | value_layer, | 
					
						
						|  | attention_mask=attention_mask[:, :, :1, :], | 
					
						
						|  | head_mask=layer_head_mask, | 
					
						
						|  | output_attentions=output_attentions | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | return self.out_proj(outputs), None, None | 
					
						
						|  |  | 
					
						
						|  | def not_causal_forward( | 
					
						
						|  | self, | 
					
						
						|  | query_layer, | 
					
						
						|  | key_layer, | 
					
						
						|  | value_layer, | 
					
						
						|  | attention_mask=None, | 
					
						
						|  | head_mask=None, | 
					
						
						|  | output_attentions=False, | 
					
						
						|  | ): | 
					
						
						|  |  | 
					
						
						|  | n, h, t, d = query_layer.size() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | attention_mask = torch.nn.functional.pad(attention_mask, (self.num_global_tokens, 0), value=0) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if t <= 2 * self.block_size + self.num_global_tokens: | 
					
						
						|  | context_layer = self.full_attention( | 
					
						
						|  | query_layer=query_layer, | 
					
						
						|  | key_layer=key_layer, | 
					
						
						|  | value_layer=value_layer, | 
					
						
						|  | attention_mask=attention_mask | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | return self.reshape_output(context_layer) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | split = (self.num_global_tokens, t - self.num_global_tokens) | 
					
						
						|  | global_query, query_layer = query_layer.split(split, dim=-2) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | bos = self.full_attention( | 
					
						
						|  | query_layer=global_query, | 
					
						
						|  | key_layer=key_layer, | 
					
						
						|  | value_layer=value_layer, | 
					
						
						|  | attention_mask=attention_mask | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | global_key, key_layer = key_layer.split(split, dim=-2) | 
					
						
						|  | global_value, value_layer = value_layer.split(split, dim=-2) | 
					
						
						|  | global_mask, attention_mask = attention_mask.split(split, dim=-1) | 
					
						
						|  |  | 
					
						
						|  | n, h, t, d = key_layer.size() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | sparse_key, sparse_value, sparse_mask = (None, None, None) | 
					
						
						|  |  | 
					
						
						|  | if self.sparse_block_size and self.sparsity_factor > 0: | 
					
						
						|  | sparse_key, sparse_value, sparse_mask = self.get_sparse_elements(key_layer, value_layer, attention_mask) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | attention_mask = attention_mask.expand(-1, h, -1, -1) | 
					
						
						|  | global_mask = global_mask.expand(-1, h, -1, -1) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | context_layer = self.attention( | 
					
						
						|  | query_layer, | 
					
						
						|  | key_layer, | 
					
						
						|  | value_layer, | 
					
						
						|  | attention_mask, | 
					
						
						|  | sparse_key=sparse_key, | 
					
						
						|  | sparse_value=sparse_value, | 
					
						
						|  | sparse_mask=sparse_mask, | 
					
						
						|  | global_key=global_key, | 
					
						
						|  | global_value=global_value, | 
					
						
						|  | global_mask=global_mask | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | context_layer = torch.cat([bos, context_layer], dim=-2) | 
					
						
						|  | context_layer = self.reshape_output(context_layer) | 
					
						
						|  |  | 
					
						
						|  | return context_layer | 
					
						
						|  |  | 
					
						
						|  | def chunk(self, x, chunk_size): | 
					
						
						|  |  | 
					
						
						|  | n, h, t, d = x.size() | 
					
						
						|  | return x.reshape(n, h, -1, chunk_size, d) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class LSGBartEncoderLayer(BartEncoderLayer): | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, config): | 
					
						
						|  |  | 
					
						
						|  | super().__init__(config) | 
					
						
						|  | self.self_attn = LSGBartEncoderAttention( | 
					
						
						|  | config=config, | 
					
						
						|  | embed_dim=self.embed_dim, | 
					
						
						|  | num_heads=config.encoder_attention_heads, | 
					
						
						|  | dropout=config.attention_dropout, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class LSGBartPretrainedModel(BartPretrainedModel): | 
					
						
						|  |  | 
					
						
						|  | config_class = LSGBartConfig | 
					
						
						|  |  | 
					
						
						|  | def _set_gradient_checkpointing(self, module, value=False): | 
					
						
						|  |  | 
					
						
						|  | if isinstance(module, (BartDecoder, BartEncoder, LSGBartEncoder)): | 
					
						
						|  | module.gradient_checkpointing = value | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class PretrainedLSGBartModel(LSGBartPretrainedModel): | 
					
						
						|  |  | 
					
						
						|  | def __init_subclass__(self): | 
					
						
						|  | warnings.warn( | 
					
						
						|  | "The class `PretrainedBartModel` has been depreciated, please use `LSGBartPretrainedModel` instead.", | 
					
						
						|  | FutureWarning, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class LSGBartEncoder(LSGBartPretrainedModel, BartEncoder): | 
					
						
						|  | """ | 
					
						
						|  | Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a | 
					
						
						|  | :class:`BartEncoderLayer`. | 
					
						
						|  | Args: | 
					
						
						|  | config: BartConfig | 
					
						
						|  | embed_tokens (nn.Embedding): output embedding | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, config, embed_tokens=None): | 
					
						
						|  |  | 
					
						
						|  | super().__init__(config) | 
					
						
						|  | self.dropout = config.dropout | 
					
						
						|  | self.layerdrop = config.encoder_layerdrop | 
					
						
						|  |  | 
					
						
						|  | embed_dim = config.d_model | 
					
						
						|  | self.padding_idx = config.pad_token_id | 
					
						
						|  | self.max_source_positions = config.max_position_embeddings | 
					
						
						|  | self.embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0 | 
					
						
						|  |  | 
					
						
						|  | if embed_tokens is not None: | 
					
						
						|  | self.embed_tokens = embed_tokens | 
					
						
						|  | else: | 
					
						
						|  | self.embed_tokens = nn.Embedding(config.vocab_size, embed_dim, self.padding_idx) | 
					
						
						|  |  | 
					
						
						|  | self.embed_positions = BartLearnedPositionalEmbedding( | 
					
						
						|  | config.max_position_embeddings, | 
					
						
						|  | embed_dim, | 
					
						
						|  | ) | 
					
						
						|  | self.layers = nn.ModuleList([LSGBartEncoderLayer(config) for _ in range(config.encoder_layers)]) | 
					
						
						|  | self.layernorm_embedding = nn.LayerNorm(embed_dim) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | assert hasattr(config, "num_global_tokens") | 
					
						
						|  | self.num_global_tokens = config.num_global_tokens | 
					
						
						|  | self.pad_idx = config.pad_token_id | 
					
						
						|  |  | 
					
						
						|  | assert hasattr(config, "block_size") and hasattr(config, "adaptive") | 
					
						
						|  | self.block_size = config.block_size | 
					
						
						|  | self.adaptive = config.adaptive | 
					
						
						|  | self.mask_first_token = config.mask_first_token | 
					
						
						|  | self.pool_with_global = config.pool_with_global | 
					
						
						|  | self.pass_global_tokens_to_decoder = config.pass_global_tokens_to_decoder | 
					
						
						|  |  | 
					
						
						|  | self.global_embeddings = nn.Embedding(512, embedding_dim=config.d_model) | 
					
						
						|  |  | 
					
						
						|  | self.gradient_checkpointing = False | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.post_init() | 
					
						
						|  |  | 
					
						
						|  | def forward(self, | 
					
						
						|  | input_ids=None, | 
					
						
						|  | attention_mask=None, | 
					
						
						|  | head_mask=None, | 
					
						
						|  | inputs_embeds=None, | 
					
						
						|  | output_attentions=None, | 
					
						
						|  | output_hidden_states=None, | 
					
						
						|  | return_dict=None | 
					
						
						|  | ): | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | inputs_ = input_ids if input_ids is not None else inputs_embeds | 
					
						
						|  | n, t = inputs_.size()[:2] | 
					
						
						|  |  | 
					
						
						|  | if attention_mask is None: | 
					
						
						|  | attention_mask = torch.ones(n, t, device=inputs_.device, dtype=inputs_.dtype) | 
					
						
						|  | if self.mask_first_token: | 
					
						
						|  | attention_mask[:, 0] = 0 | 
					
						
						|  |  | 
					
						
						|  | b = self.block_size * 2 | 
					
						
						|  | pad = t % self.block_size | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if self.adaptive and t > b and pad > 0: | 
					
						
						|  | pad_length = self.block_size - pad | 
					
						
						|  | if input_ids is not None: | 
					
						
						|  | input_ids = torch.nn.functional.pad(input_ids, (0, pad_length), value=self.pad_idx) | 
					
						
						|  | else: | 
					
						
						|  | inputs_embeds = torch.nn.functional.pad(inputs_embeds.transpose(-1, -2), (0, pad_length), value=0.).transpose(-1, -2) | 
					
						
						|  | attention_mask = torch.nn.functional.pad(attention_mask, (0, pad_length), value=0) | 
					
						
						|  |  | 
					
						
						|  | n, t_ = attention_mask.size() | 
					
						
						|  |  | 
					
						
						|  | encoder_outputs = self.forward_with_adaptive( | 
					
						
						|  | input_ids=input_ids, | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | head_mask=head_mask, | 
					
						
						|  | inputs_embeds=inputs_embeds, | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | output_hidden_states=output_hidden_states, | 
					
						
						|  | return_dict=return_dict, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | context = encoder_outputs[0] | 
					
						
						|  | diff = t - t_ | 
					
						
						|  |  | 
					
						
						|  | if self.pass_global_tokens_to_decoder: | 
					
						
						|  | offset = self.num_global_tokens | 
					
						
						|  | else: | 
					
						
						|  | if self.pool_with_global: | 
					
						
						|  | context[:, self.num_global_tokens] = context[:, 0] | 
					
						
						|  | context = context[..., self.num_global_tokens:, :] | 
					
						
						|  | offset = 0 | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if diff < 0: | 
					
						
						|  | context = context[:, :t + offset] | 
					
						
						|  |  | 
					
						
						|  | if return_dict: | 
					
						
						|  | encoder_outputs.last_hidden_state = context | 
					
						
						|  | else: | 
					
						
						|  | encoder_outputs = (context, ) + encoder_outputs[1:] | 
					
						
						|  |  | 
					
						
						|  | return encoder_outputs | 
					
						
						|  |  | 
					
						
						|  | def forward_with_adaptive( | 
					
						
						|  | self, | 
					
						
						|  | input_ids=None, | 
					
						
						|  | attention_mask=None, | 
					
						
						|  | head_mask=None, | 
					
						
						|  | inputs_embeds=None, | 
					
						
						|  | output_attentions=None, | 
					
						
						|  | output_hidden_states=None, | 
					
						
						|  | return_dict=None, | 
					
						
						|  | ): | 
					
						
						|  |  | 
					
						
						|  | output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | 
					
						
						|  | output_hidden_states = ( | 
					
						
						|  | output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | 
					
						
						|  | ) | 
					
						
						|  | return_dict = return_dict if return_dict is not None else self.config.use_return_dict | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if input_ids is not None and inputs_embeds is not None: | 
					
						
						|  | raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") | 
					
						
						|  | elif input_ids is not None: | 
					
						
						|  | input_shape = input_ids.size() | 
					
						
						|  | input_ids = input_ids.view(-1, input_shape[-1]) | 
					
						
						|  | elif inputs_embeds is not None: | 
					
						
						|  | input_shape = inputs_embeds.size()[:-1] | 
					
						
						|  | else: | 
					
						
						|  | raise ValueError("You have to specify either input_ids or inputs_embeds") | 
					
						
						|  |  | 
					
						
						|  | if inputs_embeds is None: | 
					
						
						|  | inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale | 
					
						
						|  |  | 
					
						
						|  | embed_pos = self.embed_positions(inputs_embeds) | 
					
						
						|  | hidden_states = inputs_embeds + embed_pos | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | n, t, d = hidden_states.size() | 
					
						
						|  | global_idx = torch.arange(self.num_global_tokens, device=hidden_states.device).reshape(1, -1) | 
					
						
						|  | hidden_states = torch.cat([self.global_embeddings(global_idx).expand(n, -1, -1), hidden_states], dim=-2) | 
					
						
						|  |  | 
					
						
						|  | hidden_states = self.layernorm_embedding(hidden_states) | 
					
						
						|  | hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if attention_mask is not None: | 
					
						
						|  |  | 
					
						
						|  | attention_mask = _expand_mask(attention_mask, inputs_embeds.dtype) | 
					
						
						|  |  | 
					
						
						|  | encoder_states = () if output_hidden_states else None | 
					
						
						|  | all_attentions = () if output_attentions else None | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if head_mask is not None: | 
					
						
						|  | if head_mask.size()[0] != (len(self.layers)): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"The head_mask should be specified for {len(self.layers)} layers, but it is for {head_mask.size()[0]}." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | for idx, encoder_layer in enumerate(self.layers): | 
					
						
						|  | if output_hidden_states: | 
					
						
						|  | encoder_states = encoder_states + (hidden_states,) | 
					
						
						|  |  | 
					
						
						|  | dropout_probability = random.uniform(0, 1) | 
					
						
						|  | if self.training and (dropout_probability < self.layerdrop): | 
					
						
						|  | layer_outputs = (None, None) | 
					
						
						|  | else: | 
					
						
						|  | if self.gradient_checkpointing and self.training: | 
					
						
						|  |  | 
					
						
						|  | def create_custom_forward(module): | 
					
						
						|  | def custom_forward(*inputs): | 
					
						
						|  | return module(*inputs, output_attentions) | 
					
						
						|  |  | 
					
						
						|  | return custom_forward | 
					
						
						|  |  | 
					
						
						|  | layer_outputs = torch.utils.checkpoint.checkpoint( | 
					
						
						|  | create_custom_forward(encoder_layer), | 
					
						
						|  | hidden_states, | 
					
						
						|  | attention_mask, | 
					
						
						|  | (head_mask[idx] if head_mask is not None else None), | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | layer_outputs = encoder_layer( | 
					
						
						|  | hidden_states, | 
					
						
						|  | attention_mask, | 
					
						
						|  | layer_head_mask=(head_mask[idx] if head_mask is not None else None), | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | hidden_states = layer_outputs[0] | 
					
						
						|  |  | 
					
						
						|  | if output_attentions: | 
					
						
						|  | all_attentions = all_attentions + (layer_outputs[1],) | 
					
						
						|  |  | 
					
						
						|  | if output_hidden_states: | 
					
						
						|  | encoder_states = encoder_states + (hidden_states,) | 
					
						
						|  |  | 
					
						
						|  | if not return_dict: | 
					
						
						|  | return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) | 
					
						
						|  | return BaseModelOutput( | 
					
						
						|  | last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class LSGBartModel(LSGBartPretrainedModel, BartModel): | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, config): | 
					
						
						|  |  | 
					
						
						|  | LSGBartPretrainedModel.__init__(self, config) | 
					
						
						|  |  | 
					
						
						|  | padding_idx, vocab_size = config.pad_token_id, config.vocab_size | 
					
						
						|  | self.shared = nn.Embedding(vocab_size, config.d_model, padding_idx) | 
					
						
						|  |  | 
					
						
						|  | self.pass_global_tokens_to_decoder = config.pass_global_tokens_to_decoder | 
					
						
						|  | self.num_global_tokens = config.num_global_tokens | 
					
						
						|  |  | 
					
						
						|  | self.encoder = LSGBartEncoder(config, self.shared) | 
					
						
						|  | self.decoder = BartDecoder(config, self.shared) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.post_init() | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | input_ids=None, | 
					
						
						|  | attention_mask=None, | 
					
						
						|  | decoder_input_ids=None, | 
					
						
						|  | decoder_attention_mask=None, | 
					
						
						|  | head_mask=None, | 
					
						
						|  | decoder_head_mask=None, | 
					
						
						|  | cross_attn_head_mask=None, | 
					
						
						|  | encoder_outputs=None, | 
					
						
						|  | past_key_values=None, | 
					
						
						|  | inputs_embeds=None, | 
					
						
						|  | decoder_inputs_embeds=None, | 
					
						
						|  | use_cache=None, | 
					
						
						|  | output_attentions=None, | 
					
						
						|  | output_hidden_states=None, | 
					
						
						|  | return_dict=None, | 
					
						
						|  | ): | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if decoder_input_ids is None and decoder_inputs_embeds is None: | 
					
						
						|  | decoder_input_ids = shift_tokens_right( | 
					
						
						|  | input_ids, self.config.pad_token_id, self.config.decoder_start_token_id | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | 
					
						
						|  | output_hidden_states = ( | 
					
						
						|  | output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | 
					
						
						|  | ) | 
					
						
						|  | use_cache = use_cache if use_cache is not None else self.config.use_cache | 
					
						
						|  | return_dict = return_dict if return_dict is not None else self.config.use_return_dict | 
					
						
						|  |  | 
					
						
						|  | if encoder_outputs is None: | 
					
						
						|  | encoder_outputs = self.encoder( | 
					
						
						|  | input_ids=input_ids, | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | head_mask=head_mask, | 
					
						
						|  | inputs_embeds=inputs_embeds, | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | output_hidden_states=output_hidden_states, | 
					
						
						|  | return_dict=return_dict, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | elif return_dict and not isinstance(encoder_outputs, BaseModelOutput): | 
					
						
						|  | encoder_outputs = BaseModelOutput( | 
					
						
						|  | last_hidden_state=encoder_outputs[0], | 
					
						
						|  | hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, | 
					
						
						|  | attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if self.pass_global_tokens_to_decoder and attention_mask is not None: | 
					
						
						|  | attention_mask = torch.nn.functional.pad(attention_mask, pad=(self.num_global_tokens, 0), value=1) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | decoder_outputs = self.decoder( | 
					
						
						|  | input_ids=decoder_input_ids, | 
					
						
						|  | attention_mask=decoder_attention_mask, | 
					
						
						|  | encoder_hidden_states=encoder_outputs[0], | 
					
						
						|  | encoder_attention_mask=attention_mask, | 
					
						
						|  | head_mask=decoder_head_mask, | 
					
						
						|  | cross_attn_head_mask=cross_attn_head_mask, | 
					
						
						|  | past_key_values=past_key_values, | 
					
						
						|  | inputs_embeds=decoder_inputs_embeds, | 
					
						
						|  | use_cache=use_cache, | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | output_hidden_states=output_hidden_states, | 
					
						
						|  | return_dict=return_dict, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if not return_dict: | 
					
						
						|  | return decoder_outputs + encoder_outputs | 
					
						
						|  |  | 
					
						
						|  | return Seq2SeqModelOutput( | 
					
						
						|  | last_hidden_state=decoder_outputs.last_hidden_state, | 
					
						
						|  | past_key_values=decoder_outputs.past_key_values, | 
					
						
						|  | decoder_hidden_states=decoder_outputs.hidden_states, | 
					
						
						|  | decoder_attentions=decoder_outputs.attentions, | 
					
						
						|  | cross_attentions=decoder_outputs.cross_attentions, | 
					
						
						|  | encoder_last_hidden_state=encoder_outputs.last_hidden_state, | 
					
						
						|  | encoder_hidden_states=encoder_outputs.hidden_states, | 
					
						
						|  | encoder_attentions=encoder_outputs.attentions, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class LSGBartForConditionalGeneration(LSGBartPretrainedModel, BartForConditionalGeneration): | 
					
						
						|  |  | 
					
						
						|  | base_model_prefix = "model" | 
					
						
						|  | _keys_to_ignore_on_load_missing = [r"final_logits_bias", r"lm_head\.weight"] | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, config): | 
					
						
						|  |  | 
					
						
						|  | LSGBartPretrainedModel.__init__(self, config) | 
					
						
						|  | self.model = LSGBartModel(config) | 
					
						
						|  | self.register_buffer("final_logits_bias", torch.zeros((1, self.model.shared.num_embeddings))) | 
					
						
						|  | self.lm_head = nn.Linear(config.d_model, self.model.shared.num_embeddings, bias=False) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.post_init() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class LSGBartForSequenceClassification(LSGBartPretrainedModel, BartForSequenceClassification): | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, config: LSGBartConfig, **kwargs): | 
					
						
						|  |  | 
					
						
						|  | LSGBartPretrainedModel.__init__(self, config, **kwargs) | 
					
						
						|  | self.model = LSGBartModel(config) | 
					
						
						|  | self.classification_head = BartClassificationHead( | 
					
						
						|  | config.d_model, | 
					
						
						|  | config.d_model, | 
					
						
						|  | config.num_labels, | 
					
						
						|  | config.classifier_dropout, | 
					
						
						|  | ) | 
					
						
						|  | self.model._init_weights(self.classification_head.dense) | 
					
						
						|  | self.model._init_weights(self.classification_head.out_proj) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class LSGBartForQuestionAnswering(LSGBartPretrainedModel, BartForQuestionAnswering): | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, config: LSGBartConfig): | 
					
						
						|  |  | 
					
						
						|  | LSGBartPretrainedModel.__init__(self, config) | 
					
						
						|  |  | 
					
						
						|  | config.num_labels = 2 | 
					
						
						|  | self.num_labels = config.num_labels | 
					
						
						|  |  | 
					
						
						|  | self.model = LSGBartModel(config) | 
					
						
						|  | self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) | 
					
						
						|  |  | 
					
						
						|  | self.model._init_weights(self.qa_outputs) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class LSGBartForCausalLM(LSGBartPretrainedModel, BartForCausalLM): | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, config: LSGBartConfig): | 
					
						
						|  |  | 
					
						
						|  | LSGBartPretrainedModel.__init__(self, config) | 
					
						
						|  | BartForCausalLM.__init__(self, config) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def str_to_class(classname): | 
					
						
						|  | return getattr(sys.modules[__name__], classname) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | try: | 
					
						
						|  | LSGBartConfig.register_for_auto_class() | 
					
						
						|  | for key, value in AUTO_MAP.items(): | 
					
						
						|  | str_to_class(value.split(".")[-1]).register_for_auto_class(key) | 
					
						
						|  | except: | 
					
						
						|  | warn("AutoRegister isn't available, you'll have to manually copy modeling.py after .save_pretrained(...).") | 
					
						
						|  | warn("Update to transformers >= 4.17.0 to fix.") |