Update pipeline.py
Browse files- pipeline.py +21 -30
pipeline.py
CHANGED
|
@@ -1,37 +1,25 @@
|
|
| 1 |
from typing import Dict, List, Any
|
| 2 |
from fastai.learner import load_learner
|
| 3 |
-
import fastai
|
| 4 |
-
from fastbook import *
|
| 5 |
from PIL import Image
|
| 6 |
import os
|
| 7 |
import json
|
| 8 |
import numpy as np
|
| 9 |
|
| 10 |
-
dls = DataBlock(
|
| 11 |
-
blocks=(ImageBlock, CategoryBlock),
|
| 12 |
-
get_items=get_image_files,
|
| 13 |
-
splitter=RandomSplitter(valid_pct=0.2, seed=42),
|
| 14 |
-
get_y=parent_label,
|
| 15 |
-
item_tfms=[Resize(192, method='squish')]
|
| 16 |
-
).dataloaders(path, bs=32)
|
| 17 |
-
|
| 18 |
-
print('PIPELINE')
|
| 19 |
-
|
| 20 |
class ImageClassificationPipeline:
|
| 21 |
-
def __init__(self, path=""):
|
| 22 |
-
# IMPLEMENT_THIS
|
| 23 |
-
# Preload all the elements you are going to need at inference.
|
| 24 |
-
# For instance your model, processors, tokenizer that might be needed.
|
| 25 |
-
# This function is only called once, so do all the heavy processing I/O here"""
|
| 26 |
-
print('init')
|
| 27 |
-
self.model = load_learner(os.path.join(path, "model.pkl"))
|
| 28 |
-
with open(os.path.join(path, "config.json")) as config:
|
| 29 |
-
config = json.load(config)
|
| 30 |
-
self.labels = config["labels"]
|
| 31 |
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
Args:
|
| 36 |
inputs (:obj:`PIL.Image`):
|
| 37 |
The raw image representation as PIL.
|
|
@@ -40,8 +28,11 @@ class ImageClassificationPipeline:
|
|
| 40 |
A :obj:`list`:. The list contains items that are dicts should be liked {"label": "XXX", "score": 0.82}
|
| 41 |
It is preferred if the returned list is in decreasing `score` order
|
| 42 |
"""
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
from typing import Dict, List, Any
|
| 2 |
from fastai.learner import load_learner
|
|
|
|
|
|
|
| 3 |
from PIL import Image
|
| 4 |
import os
|
| 5 |
import json
|
| 6 |
import numpy as np
|
| 7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
class ImageClassificationPipeline:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
+
def __init__(self, path=""):
|
| 11 |
+
# IMPLEMENT_THIS
|
| 12 |
+
# Preload all the elements you are going to need at inference.
|
| 13 |
+
# For instance your model, processors, tokenizer that might be needed.
|
| 14 |
+
# This function is only called once, so do all the heavy processing I/O here"""
|
| 15 |
+
self.model = load_learner(os.path.join(path, "model.pkl"))
|
| 16 |
+
with open(os.path.join(path, "config.json")) as config:
|
| 17 |
+
config = json.load(config)
|
| 18 |
+
self.labels = config["labels"]
|
| 19 |
+
|
| 20 |
+
def __call__(self, inputs: "Image.Image") -> List[Dict[str, Any]]:
|
| 21 |
+
print('call')
|
| 22 |
+
"""
|
| 23 |
Args:
|
| 24 |
inputs (:obj:`PIL.Image`):
|
| 25 |
The raw image representation as PIL.
|
|
|
|
| 28 |
A :obj:`list`:. The list contains items that are dicts should be liked {"label": "XXX", "score": 0.82}
|
| 29 |
It is preferred if the returned list is in decreasing `score` order
|
| 30 |
"""
|
| 31 |
+
# IMPLEMENT_THIS
|
| 32 |
+
# FastAI expects a np array, not a PIL Image.
|
| 33 |
+
_, _, preds = self.model.predict(np.array(inputs))
|
| 34 |
+
preds = preds.tolist()
|
| 35 |
+
return [{
|
| 36 |
+
"label": label,
|
| 37 |
+
"score": preds[idx]
|
| 38 |
+
} for idx, label in enumerate(self.labels)]
|