--- library_name: transformers license: apache-2.0 base_model: google-bert/bert-base-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: bert-meme-classifier results: [] --- # bert-meme-classifier This model is a fine-tuned version of [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0546 - Accuracy: 0.46 - Auc: 0.636 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Auc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-----:| | 1.0854 | 1.0 | 560 | 1.0647 | 0.43 | 0.619 | | 1.0549 | 2.0 | 1120 | 1.0566 | 0.453 | 0.62 | | 1.0372 | 3.0 | 1680 | 1.0591 | 0.421 | 0.627 | | 1.0232 | 4.0 | 2240 | 1.0514 | 0.46 | 0.633 | | 1.0203 | 5.0 | 2800 | 1.0655 | 0.439 | 0.634 | | 1.0237 | 6.0 | 3360 | 1.0529 | 0.469 | 0.636 | | 1.006 | 7.0 | 3920 | 1.0576 | 0.442 | 0.635 | | 1.0035 | 8.0 | 4480 | 1.0529 | 0.444 | 0.637 | | 0.9947 | 9.0 | 5040 | 1.0544 | 0.447 | 0.635 | | 0.9897 | 10.0 | 5600 | 1.0546 | 0.46 | 0.636 | ### Framework versions - Transformers 4.51.3 - Pytorch 2.6.0+cu124 - Datasets 3.5.0 - Tokenizers 0.21.1