nanami commited on
Commit
9401756
·
verified ·
1 Parent(s): 8c5c3df

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,147 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - togethercomputer/SFT-stage2-v3.0
7
+ model-index:
8
+ - name: data/muru/ladder_residual/ladder-last16L-llama3.1-8binstruct-sft4k-stage2v03-bsize32-rkl8b
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
16
+ <details><summary>See axolotl config</summary>
17
+
18
+ axolotl version: `0.6.0`
19
+ ```yaml
20
+ base_model: /data/muru/ladder_residual/ladder-last16L-llama3.1-8binstruct-sft4k-stage1v03-bsize32-rkl8b/checkpoint-37418
21
+ model_type: AutoModelForCausalLM
22
+ tokenizer_type: AutoTokenizer
23
+ tokenizer_config: meta-llama/Meta-Llama-3.1-8B-Instruct
24
+
25
+ # modeling
26
+ trust_remote_code: true
27
+ model_config_type: llamaLadder
28
+ tokenizer_use_fast: true
29
+
30
+ load_in_8bit: false
31
+ load_in_4bit: false
32
+ strict: false
33
+
34
+ datasets:
35
+ - name: tokenized_llama31
36
+ path: togethercomputer/SFT-stage2-v3.0
37
+ type:
38
+
39
+ dataset_prepared_path: /data/muru/sft_datasets/SFT-stage2-v3.0-4k
40
+ output_dir: /data/muru/ladder_residual/ladder-last16L-llama3.1-8binstruct-sft4k-stage2v03-bsize32-rkl8b
41
+ evaluation_strategy: "no"
42
+
43
+ sequence_len: 4096
44
+ sample_packing: true
45
+ pad_to_sequence_len: true
46
+
47
+ wandb_mode:
48
+ wandb_project: skip-residual-sft
49
+ wandb_entity: together-research
50
+ wandb_watch:
51
+ wandb_name: ladder-last16L-llama3.1-8binstruct-sft4k-stage2v03-bsize32-rkl8b
52
+ wandb_log_model:
53
+
54
+ gradient_accumulation_steps: 2
55
+ micro_batch_size: 1
56
+ num_epochs: 2
57
+ optimizer: adamw_torch
58
+ lr_scheduler: cosine
59
+ learning_rate: 1.0e-05
60
+ adam_beta1: 0.9
61
+ adam_beta2: 0.95
62
+ adam_epsilon: 0.00001
63
+ max_grad_norm: 1.0
64
+
65
+ train_on_inputs: false
66
+ group_by_length: false
67
+ bf16: true
68
+ tf32: true
69
+
70
+ gradient_checkpointing: true
71
+ gradient_checkpointing_kwargs:
72
+ use_reentrant: false
73
+ early_stopping_patience:
74
+ resume_from_checkpoint:
75
+ logging_steps: 1
76
+ xformers_attention:
77
+ flash_attention: true
78
+
79
+ warmup_ratio: 0.05
80
+ saves_per_epoch: 1
81
+ save_total_limit: 5
82
+ debug:
83
+ deepspeed: /home/mauriceweber/workspace/research-finetuning/axolotl-configs/deepspeed_configs/zero2_nooffload.json
84
+ weight_decay: 0.1
85
+ fsdp:
86
+ fsdp_config:
87
+ special_tokens:
88
+ bos_token: <|begin_of_text|>
89
+ eos_token: <|eot_id|>
90
+ pad_token: <|finetune_right_pad_id|>
91
+
92
+ # Distillation
93
+ distillation: true
94
+ distillation_loss_type: reverse_kl
95
+ distillation_loss_weight: 1.0
96
+ distillation_target_model: meta-llama/Llama-3.1-8B-Instruct
97
+
98
+ dataset_processes: 128
99
+ ```
100
+
101
+ </details><br>
102
+
103
+ # data/muru/ladder_residual/ladder-last16L-llama3.1-8binstruct-sft4k-stage2v03-bsize32-rkl8b
104
+
105
+ This model was trained from scratch on the togethercomputer/SFT-stage2-v3.0 dataset.
106
+
107
+ ## Model description
108
+
109
+ More information needed
110
+
111
+ ## Intended uses & limitations
112
+
113
+ More information needed
114
+
115
+ ## Training and evaluation data
116
+
117
+ More information needed
118
+
119
+ ## Training procedure
120
+
121
+ ### Training hyperparameters
122
+
123
+ The following hyperparameters were used during training:
124
+ - learning_rate: 1e-05
125
+ - train_batch_size: 1
126
+ - eval_batch_size: 1
127
+ - seed: 42
128
+ - distributed_type: multi-GPU
129
+ - num_devices: 16
130
+ - gradient_accumulation_steps: 2
131
+ - total_train_batch_size: 32
132
+ - total_eval_batch_size: 16
133
+ - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.95) and epsilon=1e-05 and optimizer_args=No additional optimizer arguments
134
+ - lr_scheduler_type: cosine
135
+ - lr_scheduler_warmup_steps: 4098
136
+ - num_epochs: 2
137
+
138
+ ### Training results
139
+
140
+
141
+
142
+ ### Framework versions
143
+
144
+ - Transformers 4.47.0
145
+ - Pytorch 2.5.1+cu124
146
+ - Datasets 3.1.0
147
+ - Tokenizers 0.21.0
config.json ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/data/muru/ladder_residual/ladder-last16L-llama3.1-8binstruct-sft4k-stage1v03-bsize32-rkl8b/checkpoint-37418",
3
+ "architectures": [
4
+ "LlamaLadderForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "auto_map": {
9
+ "AutoConfig": "configuration_llama_ladder.LlamaLadderConfig",
10
+ "AutoModelForCausalLM": "modeling_llama_ladder.LlamaLadderForCausalLM"
11
+ },
12
+ "bos_token_id": 128000,
13
+ "eos_token_id": 128009,
14
+ "head_dim": 128,
15
+ "hidden_act": "silu",
16
+ "hidden_size": 4096,
17
+ "initializer_range": 0.02,
18
+ "intermediate_size": 14336,
19
+ "ladder_layers": [
20
+ 16,
21
+ 17,
22
+ 18,
23
+ 19,
24
+ 20,
25
+ 21,
26
+ 22,
27
+ 23,
28
+ 24,
29
+ 25,
30
+ 26,
31
+ 27,
32
+ 28,
33
+ 29,
34
+ 30,
35
+ 31
36
+ ],
37
+ "max_position_embeddings": 131072,
38
+ "mlp_bias": false,
39
+ "model_type": "llamaLadder",
40
+ "num_attention_heads": 32,
41
+ "num_hidden_layers": 32,
42
+ "num_key_value_heads": 8,
43
+ "pretraining_tp": 1,
44
+ "rms_norm_eps": 1e-05,
45
+ "rope_scaling": {
46
+ "factor": 8.0,
47
+ "high_freq_factor": 4.0,
48
+ "low_freq_factor": 1.0,
49
+ "original_max_position_embeddings": 8192,
50
+ "rope_type": "llama3"
51
+ },
52
+ "rope_theta": 500000.0,
53
+ "tie_word_embeddings": false,
54
+ "torch_dtype": "bfloat16",
55
+ "transformers_version": "4.47.0",
56
+ "use_cache": false,
57
+ "vocab_size": 128256
58
+ }
configuration_llama_ladder.py ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+ """LLaMA model configuration"""
21
+
22
+ from transformers.models.llama.configuration_llama import LlamaConfig
23
+
24
+
25
+ class LlamaLadderConfig(LlamaConfig):
26
+
27
+ model_type = "llamaLadder"
28
+ keys_to_ignore_at_inference = ["past_key_values"]
29
+
30
+ def __init__(
31
+ self,
32
+ ladder_layers=None,
33
+ **kwargs,
34
+ ):
35
+ super().__init__(
36
+ **kwargs,
37
+ )
38
+ if ladder_layers is None:
39
+ self.ladder_layers = None
40
+ elif isinstance(ladder_layers, int):
41
+ self.ladder_layers = list(range(self.num_hidden_layers - ladder_layers, self.num_hidden_layers))
42
+ elif isinstance(ladder_layers, list):
43
+ self.ladder_layers = ladder_layers
44
+ else:
45
+ raise ValueError(f"Invalid ladder_layers type: {type(ladder_layers)}")
46
+
47
+ print(f"Ladder layers: {self.ladder_layers}")
generation_config.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 128000,
3
+ "do_sample": true,
4
+ "eos_token_id": [
5
+ 128001,
6
+ 128008,
7
+ 128009
8
+ ],
9
+ "temperature": 0.6,
10
+ "top_p": 0.9,
11
+ "transformers_version": "4.47.0"
12
+ }
modeling_llama_ladder.py ADDED
@@ -0,0 +1,1217 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+ import math
21
+ from typing import List, Optional, Tuple, Union
22
+
23
+ import torch
24
+ import torch.utils.checkpoint
25
+ from torch import nn
26
+
27
+ from transformers.activations import ACT2FN
28
+ from transformers.cache_utils import Cache, DynamicCache, StaticCache
29
+ from transformers.generation import GenerationMixin
30
+ from transformers.modeling_attn_mask_utils import AttentionMaskConverter
31
+ from transformers.modeling_flash_attention_utils import FlashAttentionKwargs, _flash_attention_forward
32
+ from transformers.modeling_outputs import (
33
+ BaseModelOutputWithPast,
34
+ CausalLMOutputWithPast,
35
+ )
36
+ from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS
37
+ from transformers.modeling_utils import PreTrainedModel
38
+ from transformers.processing_utils import Unpack
39
+ from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS
40
+ from transformers.utils import (
41
+ LossKwargs,
42
+ add_code_sample_docstrings,
43
+ add_start_docstrings,
44
+ add_start_docstrings_to_model_forward,
45
+ is_flash_attn_greater_or_equal_2_10,
46
+ logging,
47
+ replace_return_docstrings,
48
+ )
49
+ from transformers.models.llama.configuration_llama import LlamaConfig
50
+ from .configuration_llama_ladder import LlamaLadderConfig
51
+
52
+
53
+ logger = logging.get_logger(__name__)
54
+
55
+ _CHECKPOINT_FOR_DOC = "meta-llama/Llama-2-7b-hf"
56
+ _CONFIG_FOR_DOC = "LlamaConfig"
57
+
58
+
59
+ class LlamaRMSNorm(nn.Module):
60
+ def __init__(self, hidden_size, eps=1e-6):
61
+ """
62
+ LlamaRMSNorm is equivalent to T5LayerNorm
63
+ """
64
+ super().__init__()
65
+ self.weight = nn.Parameter(torch.ones(hidden_size))
66
+ self.variance_epsilon = eps
67
+
68
+ def forward(self, hidden_states):
69
+ input_dtype = hidden_states.dtype
70
+ hidden_states = hidden_states.to(torch.float32)
71
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
72
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
73
+ return self.weight * hidden_states.to(input_dtype)
74
+
75
+ def extra_repr(self):
76
+ return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
77
+
78
+
79
+ ALL_LAYERNORM_LAYERS.append(LlamaRMSNorm)
80
+
81
+
82
+ class LlamaRotaryEmbedding(nn.Module):
83
+ def __init__(
84
+ self,
85
+ dim=None,
86
+ max_position_embeddings=2048,
87
+ base=10000,
88
+ device=None,
89
+ scaling_factor=1.0,
90
+ rope_type="default",
91
+ config: Optional[LlamaConfig] = None,
92
+ ):
93
+ super().__init__()
94
+ # TODO (joao): remove the `if` below, only used for BC
95
+ self.rope_kwargs = {}
96
+ if config is None:
97
+ logger.warning_once(
98
+ "`LlamaRotaryEmbedding` can now be fully parameterized by passing the model config through the "
99
+ "`config` argument. All other arguments will be removed in v4.46"
100
+ )
101
+ self.rope_kwargs = {
102
+ "rope_type": rope_type,
103
+ "factor": scaling_factor,
104
+ "dim": dim,
105
+ "base": base,
106
+ "max_position_embeddings": max_position_embeddings,
107
+ }
108
+ self.rope_type = rope_type
109
+ self.max_seq_len_cached = max_position_embeddings
110
+ self.original_max_seq_len = max_position_embeddings
111
+ else:
112
+ # BC: "rope_type" was originally "type"
113
+ if config.rope_scaling is not None:
114
+ self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
115
+ else:
116
+ self.rope_type = "default"
117
+ self.max_seq_len_cached = config.max_position_embeddings
118
+ self.original_max_seq_len = config.max_position_embeddings
119
+
120
+ self.config = config
121
+ self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
122
+
123
+ inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device, **self.rope_kwargs)
124
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
125
+ self.original_inv_freq = self.inv_freq
126
+
127
+ def _dynamic_frequency_update(self, position_ids, device):
128
+ """
129
+ dynamic RoPE layers should recompute `inv_freq` in the following situations:
130
+ 1 - growing beyond the cached sequence length (allow scaling)
131
+ 2 - the current sequence length is in the original scale (avoid losing precision with small sequences)
132
+ """
133
+ seq_len = torch.max(position_ids) + 1
134
+ if seq_len > self.max_seq_len_cached: # growth
135
+ inv_freq, self.attention_scaling = self.rope_init_fn(
136
+ self.config, device, seq_len=seq_len, **self.rope_kwargs
137
+ )
138
+ self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: may break with compilation
139
+ self.max_seq_len_cached = seq_len
140
+
141
+ if seq_len < self.original_max_seq_len and self.max_seq_len_cached > self.original_max_seq_len: # reset
142
+ self.register_buffer("inv_freq", self.original_inv_freq, persistent=False)
143
+ self.max_seq_len_cached = self.original_max_seq_len
144
+
145
+ @torch.no_grad()
146
+ def forward(self, x, position_ids):
147
+ if "dynamic" in self.rope_type:
148
+ self._dynamic_frequency_update(position_ids, device=x.device)
149
+
150
+ # Core RoPE block
151
+ inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
152
+ position_ids_expanded = position_ids[:, None, :].float()
153
+ # Force float32 (see https://github.com/huggingface/transformers/pull/29285)
154
+ device_type = x.device.type
155
+ device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
156
+ with torch.autocast(device_type=device_type, enabled=False):
157
+ freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
158
+ emb = torch.cat((freqs, freqs), dim=-1)
159
+ cos = emb.cos()
160
+ sin = emb.sin()
161
+
162
+ # Advanced RoPE types (e.g. yarn) apply a post-processing scaling factor, equivalent to scaling attention
163
+ cos = cos * self.attention_scaling
164
+ sin = sin * self.attention_scaling
165
+
166
+ return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
167
+
168
+
169
+ class LlamaLinearScalingRotaryEmbedding(LlamaRotaryEmbedding):
170
+ """LlamaRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
171
+
172
+ def __init__(self, *args, **kwargs):
173
+ logger.warning_once(
174
+ "`LlamaLinearScalingRotaryEmbedding` is deprecated an will be removed in v4.46. Please use "
175
+ "`LlamaRotaryEmbedding`, which now also does linear scaling (simply pass the model config to __init__)."
176
+ )
177
+ kwargs["rope_type"] = "linear"
178
+ super().__init__(*args, **kwargs)
179
+
180
+
181
+ class LlamaDynamicNTKScalingRotaryEmbedding(LlamaRotaryEmbedding):
182
+ """LlamaRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
183
+
184
+ def __init__(self, *args, **kwargs):
185
+ logger.warning_once(
186
+ "`LlamaDynamicNTKScalingRotaryEmbedding` is deprecated an will be removed in v4.46. Please use "
187
+ "`LlamaRotaryEmbedding`, which now also does dynamic ntk scaling (simply pass the model config to "
188
+ "__init__)."
189
+ )
190
+ kwargs["rope_type"] = "dynamic"
191
+ super().__init__(*args, **kwargs)
192
+
193
+
194
+ def rotate_half(x):
195
+ """Rotates half the hidden dims of the input."""
196
+ x1 = x[..., : x.shape[-1] // 2]
197
+ x2 = x[..., x.shape[-1] // 2 :]
198
+ return torch.cat((-x2, x1), dim=-1)
199
+
200
+
201
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
202
+ """Applies Rotary Position Embedding to the query and key tensors.
203
+
204
+ Args:
205
+ q (`torch.Tensor`): The query tensor.
206
+ k (`torch.Tensor`): The key tensor.
207
+ cos (`torch.Tensor`): The cosine part of the rotary embedding.
208
+ sin (`torch.Tensor`): The sine part of the rotary embedding.
209
+ position_ids (`torch.Tensor`, *optional*):
210
+ Deprecated and unused.
211
+ unsqueeze_dim (`int`, *optional*, defaults to 1):
212
+ The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
213
+ sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
214
+ that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
215
+ k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
216
+ cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
217
+ the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
218
+ Returns:
219
+ `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
220
+ """
221
+ cos = cos.unsqueeze(unsqueeze_dim)
222
+ sin = sin.unsqueeze(unsqueeze_dim)
223
+ q_embed = (q * cos) + (rotate_half(q) * sin)
224
+ k_embed = (k * cos) + (rotate_half(k) * sin)
225
+ return q_embed, k_embed
226
+
227
+
228
+ class LlamaMLP(nn.Module):
229
+ def __init__(self, config):
230
+ super().__init__()
231
+ self.config = config
232
+ self.hidden_size = config.hidden_size
233
+ self.intermediate_size = config.intermediate_size
234
+ self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias)
235
+ self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias)
236
+ self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=config.mlp_bias)
237
+ self.act_fn = ACT2FN[config.hidden_act]
238
+
239
+ def forward(self, x):
240
+ down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
241
+ return down_proj
242
+
243
+
244
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
245
+ """
246
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
247
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
248
+ """
249
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
250
+ if n_rep == 1:
251
+ return hidden_states
252
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
253
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
254
+
255
+
256
+ class LlamaAttention(nn.Module):
257
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
258
+
259
+ def __init__(self, config: LlamaConfig, layer_idx: Optional[int] = None):
260
+ super().__init__()
261
+ self.config = config
262
+ self.layer_idx = layer_idx
263
+ if layer_idx is None:
264
+ logger.warning_once(
265
+ f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
266
+ "lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
267
+ "when creating this class."
268
+ )
269
+
270
+ self.attention_dropout = config.attention_dropout
271
+ self.hidden_size = config.hidden_size
272
+ self.num_heads = config.num_attention_heads
273
+ self.head_dim = getattr(config, "head_dim", self.hidden_size // self.num_heads)
274
+ self.num_key_value_heads = config.num_key_value_heads
275
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
276
+ self.max_position_embeddings = config.max_position_embeddings
277
+ self.rope_theta = config.rope_theta
278
+ self.is_causal = True
279
+
280
+ self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias)
281
+ self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
282
+ self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
283
+ self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.attention_bias)
284
+
285
+ # TODO (joao): remove in v4.46 (RoPE is computed in the model, not in the decoder layers)
286
+ self.rotary_emb = LlamaRotaryEmbedding(config=self.config)
287
+
288
+ def forward(
289
+ self,
290
+ hidden_states: torch.Tensor,
291
+ attention_mask: Optional[torch.Tensor] = None,
292
+ position_ids: Optional[torch.LongTensor] = None,
293
+ past_key_value: Optional[Cache] = None,
294
+ output_attentions: bool = False,
295
+ use_cache: bool = False,
296
+ cache_position: Optional[torch.LongTensor] = None,
297
+ position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.46
298
+ **kwargs,
299
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
300
+ bsz, q_len, _ = hidden_states.size()
301
+
302
+ query_states = self.q_proj(hidden_states)
303
+ key_states = self.k_proj(hidden_states)
304
+ value_states = self.v_proj(hidden_states)
305
+
306
+ # use -1 to infer num_heads and num_key_value_heads as they may vary if tensor parallel is used
307
+ query_states = query_states.view(bsz, q_len, -1, self.head_dim).transpose(1, 2)
308
+ key_states = key_states.view(bsz, q_len, -1, self.head_dim).transpose(1, 2)
309
+ value_states = value_states.view(bsz, q_len, -1, self.head_dim).transpose(1, 2)
310
+
311
+ if position_embeddings is None:
312
+ logger.warning_once(
313
+ "The attention layers in this model are transitioning from computing the RoPE embeddings internally "
314
+ "through `position_ids` (2D tensor with the indexes of the tokens), to using externally computed "
315
+ "`position_embeddings` (Tuple of tensors, containing cos and sin). In v4.46 `position_ids` will be "
316
+ "removed and `position_embeddings` will be mandatory."
317
+ )
318
+ cos, sin = self.rotary_emb(value_states, position_ids)
319
+ else:
320
+ cos, sin = position_embeddings
321
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
322
+
323
+ if past_key_value is not None:
324
+ # sin and cos are specific to RoPE models; cache_position needed for the static cache
325
+ cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
326
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
327
+
328
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
329
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
330
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
331
+
332
+ if attention_mask is not None: # no matter the length, we just slice it
333
+ causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
334
+ attn_weights = attn_weights + causal_mask
335
+
336
+ # upcast attention to fp32
337
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
338
+ attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
339
+ attn_output = torch.matmul(attn_weights, value_states)
340
+
341
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
342
+ raise ValueError(
343
+ f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
344
+ f" {attn_output.size()}"
345
+ )
346
+
347
+ attn_output = attn_output.transpose(1, 2).contiguous()
348
+
349
+ attn_output = attn_output.reshape(bsz, q_len, -1)
350
+
351
+ attn_output = self.o_proj(attn_output)
352
+
353
+ if not output_attentions:
354
+ attn_weights = None
355
+
356
+ return attn_output, attn_weights, past_key_value
357
+
358
+
359
+ class LlamaFlashAttention2(LlamaAttention):
360
+ """
361
+ Llama flash attention module. This module inherits from `LlamaAttention` as the weights of the module stays
362
+ untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
363
+ flash attention and deal with padding tokens in case the input contains any of them.
364
+ """
365
+
366
+ def __init__(self, *args, **kwargs):
367
+ super().__init__(*args, **kwargs)
368
+
369
+ # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
370
+ # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
371
+ # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
372
+ self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
373
+
374
+ def forward(
375
+ self,
376
+ hidden_states: torch.Tensor,
377
+ attention_mask: Optional[torch.LongTensor] = None,
378
+ position_ids: Optional[torch.LongTensor] = None,
379
+ past_key_value: Optional[Cache] = None,
380
+ output_attentions: bool = False,
381
+ use_cache: bool = False,
382
+ cache_position: Optional[torch.LongTensor] = None,
383
+ position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.46
384
+ **kwargs: Unpack[FlashAttentionKwargs],
385
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
386
+ if isinstance(past_key_value, StaticCache):
387
+ raise ValueError(
388
+ "`static` cache implementation is not compatible with `attn_implementation==flash_attention_2` "
389
+ "make sure to use `sdpa` in the mean time, and open an issue at https://github.com/huggingface/transformers"
390
+ )
391
+
392
+ output_attentions = False
393
+
394
+ bsz, q_len, _ = hidden_states.size()
395
+
396
+ query_states = self.q_proj(hidden_states)
397
+ key_states = self.k_proj(hidden_states)
398
+ value_states = self.v_proj(hidden_states)
399
+
400
+ # Flash attention requires the input to have the shape
401
+ # batch_size x seq_length x head_dim x hidden_dim
402
+ # therefore we just need to keep the original shape
403
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
404
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
405
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
406
+
407
+ if position_embeddings is None:
408
+ logger.warning_once(
409
+ "The attention layers in this model are transitioning from computing the RoPE embeddings internally "
410
+ "through `position_ids` (2D tensor with the indexes of the tokens), to using externally computed "
411
+ "`position_embeddings` (Tuple of tensors, containing cos and sin). In v4.46 `position_ids` will be "
412
+ "removed and `position_embeddings` will be mandatory."
413
+ )
414
+ cos, sin = self.rotary_emb(value_states, position_ids)
415
+ else:
416
+ cos, sin = position_embeddings
417
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
418
+
419
+ if past_key_value is not None:
420
+ # sin and cos are specific to RoPE models; cache_position needed for the static cache
421
+ cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
422
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
423
+
424
+ # TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
425
+ # to be able to avoid many of these transpose/reshape/view.
426
+ query_states = query_states.transpose(1, 2)
427
+ key_states = key_states.transpose(1, 2)
428
+ value_states = value_states.transpose(1, 2)
429
+
430
+ dropout_rate = self.attention_dropout if self.training else 0.0
431
+
432
+ # In PEFT, usually we cast the layer norms in float32 for training stability reasons
433
+ # therefore the input hidden states gets silently casted in float32. Hence, we need
434
+ # cast them back in the correct dtype just to be sure everything works as expected.
435
+ # This might slowdown training & inference so it is recommended to not cast the LayerNorms
436
+ # in fp32. (LlamaRMSNorm handles it correctly)
437
+
438
+ input_dtype = query_states.dtype
439
+ if input_dtype == torch.float32:
440
+ if torch.is_autocast_enabled():
441
+ target_dtype = torch.get_autocast_gpu_dtype()
442
+ # Handle the case where the model is quantized
443
+ elif hasattr(self.config, "_pre_quantization_dtype"):
444
+ target_dtype = self.config._pre_quantization_dtype
445
+ else:
446
+ target_dtype = self.q_proj.weight.dtype
447
+
448
+ logger.warning_once(
449
+ f"The input hidden states seems to be silently casted in float32, this might be related to"
450
+ f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
451
+ f" {target_dtype}."
452
+ )
453
+
454
+ query_states = query_states.to(target_dtype)
455
+ key_states = key_states.to(target_dtype)
456
+ value_states = value_states.to(target_dtype)
457
+
458
+ attn_output = _flash_attention_forward(
459
+ query_states,
460
+ key_states,
461
+ value_states,
462
+ attention_mask,
463
+ q_len,
464
+ position_ids=position_ids,
465
+ dropout=dropout_rate,
466
+ sliding_window=getattr(self, "sliding_window", None),
467
+ use_top_left_mask=self._flash_attn_uses_top_left_mask,
468
+ is_causal=self.is_causal,
469
+ **kwargs,
470
+ )
471
+
472
+ attn_output = attn_output.reshape(bsz, q_len, -1).contiguous()
473
+ attn_output = self.o_proj(attn_output)
474
+
475
+ if not output_attentions:
476
+ attn_weights = None
477
+
478
+ return attn_output, attn_weights, past_key_value
479
+
480
+
481
+ class LlamaSdpaAttention(LlamaAttention):
482
+ """
483
+ Llama attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
484
+ `LlamaAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
485
+ SDPA API.
486
+ """
487
+
488
+ # Adapted from LlamaAttention.forward
489
+ def forward(
490
+ self,
491
+ hidden_states: torch.Tensor,
492
+ attention_mask: Optional[torch.Tensor] = None,
493
+ position_ids: Optional[torch.LongTensor] = None,
494
+ past_key_value: Optional[Cache] = None,
495
+ output_attentions: bool = False,
496
+ use_cache: bool = False,
497
+ cache_position: Optional[torch.LongTensor] = None,
498
+ position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.46
499
+ **kwargs,
500
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
501
+ if output_attentions:
502
+ # TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
503
+ logger.warning_once(
504
+ "LlamaModel is using LlamaSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
505
+ 'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
506
+ )
507
+ return super().forward(
508
+ hidden_states=hidden_states,
509
+ attention_mask=attention_mask,
510
+ position_ids=position_ids,
511
+ past_key_value=past_key_value,
512
+ output_attentions=output_attentions,
513
+ use_cache=use_cache,
514
+ cache_position=cache_position,
515
+ position_embeddings=position_embeddings,
516
+ )
517
+
518
+ bsz, q_len, _ = hidden_states.size()
519
+
520
+ query_states = self.q_proj(hidden_states)
521
+ key_states = self.k_proj(hidden_states)
522
+ value_states = self.v_proj(hidden_states)
523
+
524
+ # use -1 to infer num_heads and num_key_value_heads as they may vary if tensor parallel is used
525
+ query_states = query_states.view(bsz, q_len, -1, self.head_dim).transpose(1, 2)
526
+ key_states = key_states.view(bsz, q_len, -1, self.head_dim).transpose(1, 2)
527
+ value_states = value_states.view(bsz, q_len, -1, self.head_dim).transpose(1, 2)
528
+
529
+ if position_embeddings is None:
530
+ logger.warning_once(
531
+ "The attention layers in this model are transitioning from computing the RoPE embeddings internally "
532
+ "through `position_ids` (2D tensor with the indexes of the tokens), to using externally computed "
533
+ "`position_embeddings` (Tuple of tensors, containing cos and sin). In v4.46 `position_ids` will be "
534
+ "removed and `position_embeddings` will be mandatory."
535
+ )
536
+ cos, sin = self.rotary_emb(value_states, position_ids)
537
+ else:
538
+ cos, sin = position_embeddings
539
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
540
+
541
+ if past_key_value is not None:
542
+ # sin and cos are specific to RoPE models; cache_position needed for the static cache
543
+ cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
544
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
545
+
546
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
547
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
548
+
549
+ causal_mask = attention_mask
550
+ if attention_mask is not None:
551
+ causal_mask = causal_mask[:, :, :, : key_states.shape[-2]]
552
+
553
+ # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
554
+ # Reference: https://github.com/pytorch/pytorch/issues/112577.
555
+ if query_states.device.type == "cuda" and causal_mask is not None:
556
+ query_states = query_states.contiguous()
557
+ key_states = key_states.contiguous()
558
+ value_states = value_states.contiguous()
559
+
560
+ # We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment
561
+ # in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling.
562
+ is_causal = True if causal_mask is None and q_len > 1 else False
563
+
564
+ attn_output = torch.nn.functional.scaled_dot_product_attention(
565
+ query_states,
566
+ key_states,
567
+ value_states,
568
+ attn_mask=causal_mask,
569
+ dropout_p=self.attention_dropout if self.training else 0.0,
570
+ is_causal=is_causal,
571
+ )
572
+
573
+ attn_output = attn_output.transpose(1, 2).contiguous()
574
+ attn_output = attn_output.view(bsz, q_len, -1)
575
+
576
+ attn_output = self.o_proj(attn_output)
577
+
578
+ return attn_output, None, past_key_value
579
+
580
+
581
+ LLAMA_ATTENTION_CLASSES = {
582
+ "eager": LlamaAttention,
583
+ "flash_attention_2": LlamaFlashAttention2,
584
+ "sdpa": LlamaSdpaAttention,
585
+ }
586
+
587
+
588
+ class LlamaLadderDecoderLayer(nn.Module):
589
+ def __init__(self, config: LlamaLadderConfig, layer_idx: int):
590
+ super().__init__()
591
+ self.hidden_size = config.hidden_size
592
+
593
+ self.self_attn = LLAMA_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx)
594
+
595
+ self.mlp = LlamaMLP(config)
596
+ self.input_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
597
+ self.post_attention_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
598
+
599
+ def forward(
600
+ self,
601
+ hidden_states: torch.Tensor,
602
+ attention_mask: Optional[torch.Tensor] = None,
603
+ position_ids: Optional[torch.LongTensor] = None,
604
+ past_key_value: Optional[Cache] = None,
605
+ output_attentions: Optional[bool] = False,
606
+ use_cache: Optional[bool] = False,
607
+ cache_position: Optional[torch.LongTensor] = None,
608
+ position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
609
+ prev_attn_output: Optional[torch.Tensor] = None,
610
+ **kwargs: Unpack[FlashAttentionKwargs],
611
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
612
+
613
+ if prev_attn_output is None:
614
+ # Normal computation flow
615
+ residual = hidden_states
616
+ hidden_states = self.input_layernorm(hidden_states)
617
+
618
+ # Self Attention
619
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
620
+ hidden_states=hidden_states,
621
+ attention_mask=attention_mask,
622
+ position_ids=position_ids,
623
+ past_key_value=past_key_value,
624
+ output_attentions=output_attentions,
625
+ use_cache=use_cache,
626
+ cache_position=cache_position,
627
+ position_embeddings=position_embeddings,
628
+ **kwargs,
629
+ )
630
+ hidden_states = residual + hidden_states
631
+ attn_output = hidden_states
632
+
633
+ # Fully Connected
634
+ residual = hidden_states
635
+ hidden_states = self.post_attention_layernorm(hidden_states)
636
+ hidden_states = self.mlp(hidden_states)
637
+ hidden_states = residual + hidden_states
638
+ mlp_output = hidden_states
639
+
640
+ else:
641
+ # Ladder computation flow
642
+ prev_mlp_output = hidden_states
643
+ attn_input = self.input_layernorm(prev_attn_output)
644
+
645
+ # Self Attention
646
+ attn_output, self_attn_weights, present_key_value = self.self_attn(
647
+ hidden_states=attn_input,
648
+ attention_mask=attention_mask,
649
+ position_ids=position_ids,
650
+ past_key_value=past_key_value,
651
+ output_attentions=output_attentions,
652
+ use_cache=use_cache,
653
+ cache_position=cache_position,
654
+ position_embeddings=position_embeddings,
655
+ **kwargs,
656
+ )
657
+ attn_output = prev_mlp_output + attn_output
658
+
659
+ # Fully Connected
660
+ mlp_input = self.post_attention_layernorm(prev_mlp_output)
661
+ mlp_output = self.mlp(mlp_input)
662
+ mlp_output = attn_output + mlp_output
663
+
664
+ outputs = ((attn_output, mlp_output),)
665
+ if output_attentions:
666
+ outputs += (self_attn_weights,)
667
+
668
+ if use_cache:
669
+ outputs += (present_key_value,)
670
+
671
+ return outputs
672
+
673
+
674
+ LLAMA_START_DOCSTRING = r"""
675
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
676
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
677
+ etc.)
678
+
679
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
680
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
681
+ and behavior.
682
+
683
+ Parameters:
684
+ config ([`LlamaConfig`]):
685
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
686
+ load the weights associated with the model, only the configuration. Check out the
687
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
688
+ """
689
+
690
+
691
+ @add_start_docstrings(
692
+ "The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
693
+ LLAMA_START_DOCSTRING,
694
+ )
695
+ class LlamaPreTrainedModel(PreTrainedModel):
696
+ config_class = LlamaConfig
697
+ base_model_prefix = "model"
698
+ supports_gradient_checkpointing = True
699
+ _no_split_modules = ["LlamaDecoderLayer", "LlamaLadderDecoderLayer"]
700
+ _skip_keys_device_placement = ["past_key_values"]
701
+ _supports_flash_attn_2 = True
702
+ _supports_sdpa = True
703
+ _supports_flex_attn = True
704
+ _supports_cache_class = True
705
+ _supports_quantized_cache = True
706
+ _supports_static_cache = True
707
+
708
+ def _init_weights(self, module):
709
+ std = self.config.initializer_range
710
+ if isinstance(module, nn.Linear):
711
+ module.weight.data.normal_(mean=0.0, std=std)
712
+ if module.bias is not None:
713
+ module.bias.data.zero_()
714
+ elif isinstance(module, nn.Embedding):
715
+ module.weight.data.normal_(mean=0.0, std=std)
716
+ if module.padding_idx is not None:
717
+ module.weight.data[module.padding_idx].zero_()
718
+
719
+
720
+ LLAMA_INPUTS_DOCSTRING = r"""
721
+ Args:
722
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
723
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
724
+ it.
725
+
726
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
727
+ [`PreTrainedTokenizer.__call__`] for details.
728
+
729
+ [What are input IDs?](../glossary#input-ids)
730
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
731
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
732
+
733
+ - 1 for tokens that are **not masked**,
734
+ - 0 for tokens that are **masked**.
735
+
736
+ [What are attention masks?](../glossary#attention-mask)
737
+
738
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
739
+ [`PreTrainedTokenizer.__call__`] for details.
740
+
741
+ If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
742
+ `past_key_values`).
743
+
744
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
745
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
746
+ information on the default strategy.
747
+
748
+ - 1 indicates the head is **not masked**,
749
+ - 0 indicates the head is **masked**.
750
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
751
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
752
+ config.n_positions - 1]`.
753
+
754
+ [What are position IDs?](../glossary#position-ids)
755
+ past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
756
+ Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
757
+ blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
758
+ returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
759
+
760
+ Two formats are allowed:
761
+ - a [`~cache_utils.Cache`] instance, see our
762
+ [kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache);
763
+ - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
764
+ shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
765
+ cache format.
766
+
767
+ The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
768
+ legacy cache format will be returned.
769
+
770
+ If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
771
+ have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
772
+ of shape `(batch_size, sequence_length)`.
773
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
774
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
775
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
776
+ model's internal embedding lookup matrix.
777
+ use_cache (`bool`, *optional*):
778
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
779
+ `past_key_values`).
780
+ output_attentions (`bool`, *optional*):
781
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
782
+ tensors for more detail.
783
+ output_hidden_states (`bool`, *optional*):
784
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
785
+ more detail.
786
+ return_dict (`bool`, *optional*):
787
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
788
+ cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
789
+ Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
790
+ this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
791
+ the complete sequence length.
792
+ """
793
+
794
+
795
+ @add_start_docstrings(
796
+ "The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
797
+ LLAMA_START_DOCSTRING,
798
+ )
799
+ class LlamaLadderModel(LlamaPreTrainedModel):
800
+ """
801
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`LlamaLadderDecoderLayer`]
802
+
803
+ Args:
804
+ config: LlamaConfig
805
+ """
806
+
807
+ def __init__(self, config: LlamaLadderConfig):
808
+ super().__init__(config)
809
+ self.padding_idx = config.pad_token_id
810
+ self.vocab_size = config.vocab_size
811
+
812
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
813
+ self.layers = nn.ModuleList(
814
+ [LlamaLadderDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
815
+ )
816
+ self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
817
+ self.rotary_emb = LlamaRotaryEmbedding(config=config)
818
+ self.gradient_checkpointing = False
819
+
820
+ # Initialize weights and apply final processing
821
+ self.post_init()
822
+
823
+ def get_input_embeddings(self):
824
+ return self.embed_tokens
825
+
826
+ def set_input_embeddings(self, value):
827
+ self.embed_tokens = value
828
+
829
+ @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
830
+ def forward(
831
+ self,
832
+ input_ids: torch.LongTensor = None,
833
+ attention_mask: Optional[torch.Tensor] = None,
834
+ position_ids: Optional[torch.LongTensor] = None,
835
+ past_key_values: Optional[Cache] = None,
836
+ inputs_embeds: Optional[torch.FloatTensor] = None,
837
+ use_cache: Optional[bool] = None,
838
+ output_attentions: Optional[bool] = None,
839
+ output_hidden_states: Optional[bool] = None,
840
+ return_dict: Optional[bool] = None,
841
+ cache_position: Optional[torch.LongTensor] = None,
842
+ **flash_attn_kwargs: Unpack[FlashAttentionKwargs],
843
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
844
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
845
+ output_hidden_states = (
846
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
847
+ )
848
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
849
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
850
+
851
+ if (input_ids is None) ^ (inputs_embeds is not None):
852
+ raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
853
+
854
+ if self.gradient_checkpointing and self.training and use_cache:
855
+ logger.warning_once(
856
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
857
+ )
858
+ use_cache = False
859
+
860
+ if inputs_embeds is None:
861
+ inputs_embeds = self.embed_tokens(input_ids)
862
+
863
+ if use_cache and past_key_values is None:
864
+ past_key_values = DynamicCache()
865
+
866
+ if cache_position is None:
867
+ past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
868
+ cache_position = torch.arange(
869
+ past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
870
+ )
871
+
872
+ if position_ids is None:
873
+ position_ids = cache_position.unsqueeze(0)
874
+
875
+ causal_mask = self._update_causal_mask(
876
+ attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
877
+ )
878
+
879
+ hidden_states = inputs_embeds
880
+
881
+ # create position embeddings to be shared across the decoder layers
882
+ position_embeddings = self.rotary_emb(hidden_states, position_ids)
883
+
884
+ # decoder layers
885
+ all_hidden_states = () if output_hidden_states else None
886
+ all_self_attns = () if output_attentions else None
887
+
888
+ prev_attn_output = hidden_states # No previous attn output for the first layer, we feed the embedding to both first attention and mlp if we do ladder
889
+ for layer_idx, decoder_layer in enumerate(self.layers[: self.config.num_hidden_layers]):
890
+ if output_hidden_states:
891
+ all_hidden_states += (hidden_states,)
892
+
893
+ if layer_idx not in self.config.ladder_layers:
894
+ if self.gradient_checkpointing and self.training:
895
+ layer_outputs = self._gradient_checkpointing_func(
896
+ decoder_layer.__call__,
897
+ hidden_states,
898
+ causal_mask,
899
+ position_ids,
900
+ past_key_values,
901
+ output_attentions,
902
+ use_cache,
903
+ cache_position,
904
+ position_embeddings,
905
+ )
906
+ else:
907
+ layer_outputs = decoder_layer(
908
+ hidden_states,
909
+ attention_mask=causal_mask,
910
+ position_ids=position_ids,
911
+ past_key_value=past_key_values,
912
+ output_attentions=output_attentions,
913
+ use_cache=use_cache,
914
+ cache_position=cache_position,
915
+ position_embeddings=position_embeddings,
916
+ **flash_attn_kwargs,
917
+ )
918
+ else:
919
+ if self.gradient_checkpointing and self.training:
920
+ layer_outputs = self._gradient_checkpointing_func(
921
+ decoder_layer.__call__,
922
+ hidden_states,
923
+ causal_mask,
924
+ position_ids,
925
+ past_key_values,
926
+ output_attentions,
927
+ use_cache,
928
+ cache_position,
929
+ position_embeddings,
930
+ prev_attn_output,
931
+ )
932
+ else:
933
+ layer_outputs = decoder_layer(
934
+ hidden_states,
935
+ attention_mask=causal_mask,
936
+ position_ids=position_ids,
937
+ past_key_value=past_key_values,
938
+ output_attentions=output_attentions,
939
+ use_cache=use_cache,
940
+ cache_position=cache_position,
941
+ position_embeddings=position_embeddings,
942
+ **flash_attn_kwargs,
943
+ prev_attn_output=prev_attn_output,
944
+ )
945
+
946
+ hidden_states = layer_outputs[0][1] # This will correspond to the mlp output
947
+ prev_attn_output = layer_outputs[0][0] # Store the attention output to be used as the stale input for next attention
948
+
949
+ if output_attentions:
950
+ all_self_attns += (layer_outputs[1],)
951
+
952
+ hidden_states = self.norm(hidden_states)
953
+
954
+ # add hidden states from the last decoder layer
955
+ if output_hidden_states:
956
+ all_hidden_states += (hidden_states,)
957
+
958
+ output = BaseModelOutputWithPast(
959
+ last_hidden_state=hidden_states,
960
+ past_key_values=past_key_values if use_cache else None,
961
+ hidden_states=all_hidden_states,
962
+ attentions=all_self_attns,
963
+ )
964
+ return output if return_dict else output.to_tuple()
965
+
966
+ def _update_causal_mask(
967
+ self,
968
+ attention_mask: torch.Tensor,
969
+ input_tensor: torch.Tensor,
970
+ cache_position: torch.Tensor,
971
+ past_key_values: Cache,
972
+ output_attentions: bool,
973
+ ):
974
+ if self.config._attn_implementation == "flash_attention_2":
975
+ if attention_mask is not None and (attention_mask == 0.0).any():
976
+ return attention_mask
977
+ return None
978
+
979
+ # For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
980
+ # order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
981
+ # to infer the attention mask.
982
+ past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
983
+ using_static_cache = isinstance(past_key_values, StaticCache)
984
+
985
+ # When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
986
+ if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions:
987
+ if AttentionMaskConverter._ignore_causal_mask_sdpa(
988
+ attention_mask,
989
+ inputs_embeds=input_tensor,
990
+ past_key_values_length=past_seen_tokens,
991
+ is_training=self.training,
992
+ ):
993
+ return None
994
+
995
+ dtype, device = input_tensor.dtype, input_tensor.device
996
+ sequence_length = input_tensor.shape[1]
997
+ if using_static_cache:
998
+ target_length = past_key_values.get_max_cache_shape()
999
+ else:
1000
+ target_length = (
1001
+ attention_mask.shape[-1]
1002
+ if isinstance(attention_mask, torch.Tensor)
1003
+ else past_seen_tokens + sequence_length + 1
1004
+ )
1005
+
1006
+ # In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
1007
+ causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
1008
+ attention_mask,
1009
+ sequence_length=sequence_length,
1010
+ target_length=target_length,
1011
+ dtype=dtype,
1012
+ device=device,
1013
+ cache_position=cache_position,
1014
+ batch_size=input_tensor.shape[0],
1015
+ )
1016
+
1017
+ if (
1018
+ self.config._attn_implementation == "sdpa"
1019
+ and attention_mask is not None
1020
+ and attention_mask.device.type == "cuda"
1021
+ and not output_attentions
1022
+ ):
1023
+ # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
1024
+ # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
1025
+ # Details: https://github.com/pytorch/pytorch/issues/110213
1026
+ min_dtype = torch.finfo(dtype).min
1027
+ causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
1028
+
1029
+ return causal_mask
1030
+
1031
+ @staticmethod
1032
+ def _prepare_4d_causal_attention_mask_with_cache_position(
1033
+ attention_mask: torch.Tensor,
1034
+ sequence_length: int,
1035
+ target_length: int,
1036
+ dtype: torch.dtype,
1037
+ device: torch.device,
1038
+ cache_position: torch.Tensor,
1039
+ batch_size: int,
1040
+ **kwargs,
1041
+ ):
1042
+ """
1043
+ Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
1044
+ `(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
1045
+
1046
+ Args:
1047
+ attention_mask (`torch.Tensor`):
1048
+ A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape
1049
+ `(batch_size, 1, query_length, key_value_length)`.
1050
+ sequence_length (`int`):
1051
+ The sequence length being processed.
1052
+ target_length (`int`):
1053
+ The target length: when generating with static cache, the mask should be as long as the static cache,
1054
+ to account for the 0 padding, the part of the cache that is not filled yet.
1055
+ dtype (`torch.dtype`):
1056
+ The dtype to use for the 4D attention mask.
1057
+ device (`torch.device`):
1058
+ The device to plcae the 4D attention mask on.
1059
+ cache_position (`torch.Tensor`):
1060
+ Indices depicting the position of the input sequence tokens in the sequence.
1061
+ batch_size (`torch.Tensor`):
1062
+ Batch size.
1063
+ """
1064
+ if attention_mask is not None and attention_mask.dim() == 4:
1065
+ # In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
1066
+ causal_mask = attention_mask
1067
+ else:
1068
+ min_dtype = torch.finfo(dtype).min
1069
+ causal_mask = torch.full(
1070
+ (sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
1071
+ )
1072
+ if sequence_length != 1:
1073
+ causal_mask = torch.triu(causal_mask, diagonal=1)
1074
+ causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
1075
+ causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
1076
+ if attention_mask is not None:
1077
+ causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
1078
+ mask_length = attention_mask.shape[-1]
1079
+ padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :]
1080
+ padding_mask = padding_mask == 0
1081
+ causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
1082
+ padding_mask, min_dtype
1083
+ )
1084
+
1085
+ return causal_mask
1086
+
1087
+
1088
+ class KwargsForCausalLM(FlashAttentionKwargs, LossKwargs): ...
1089
+
1090
+
1091
+ class LlamaLadderForCausalLM(LlamaPreTrainedModel, GenerationMixin):
1092
+ config_class = LlamaLadderConfig
1093
+ _tied_weights_keys = ["lm_head.weight"]
1094
+ _tp_plan = {"lm_head": "colwise_rep"}
1095
+
1096
+ def __init__(self, config):
1097
+ super().__init__(config)
1098
+ self.model = LlamaLadderModel(config)
1099
+ self.vocab_size = config.vocab_size
1100
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
1101
+
1102
+ # Initialize weights and apply final processing
1103
+ self.post_init()
1104
+
1105
+ def get_input_embeddings(self):
1106
+ return self.model.embed_tokens
1107
+
1108
+ def set_input_embeddings(self, value):
1109
+ self.model.embed_tokens = value
1110
+
1111
+ def get_output_embeddings(self):
1112
+ return self.lm_head
1113
+
1114
+ def set_output_embeddings(self, new_embeddings):
1115
+ self.lm_head = new_embeddings
1116
+
1117
+ def set_decoder(self, decoder):
1118
+ self.model = decoder
1119
+
1120
+ def get_decoder(self):
1121
+ return self.model
1122
+
1123
+ @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
1124
+ @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
1125
+ def forward(
1126
+ self,
1127
+ input_ids: torch.LongTensor = None,
1128
+ attention_mask: Optional[torch.Tensor] = None,
1129
+ position_ids: Optional[torch.LongTensor] = None,
1130
+ past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
1131
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1132
+ labels: Optional[torch.LongTensor] = None,
1133
+ use_cache: Optional[bool] = None,
1134
+ output_attentions: Optional[bool] = None,
1135
+ output_hidden_states: Optional[bool] = None,
1136
+ return_dict: Optional[bool] = None,
1137
+ cache_position: Optional[torch.LongTensor] = None,
1138
+ num_logits_to_keep: int = 0,
1139
+ **kwargs: Unpack[KwargsForCausalLM],
1140
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
1141
+ r"""
1142
+ Args:
1143
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1144
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
1145
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
1146
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
1147
+
1148
+ num_logits_to_keep (`int`, *optional*):
1149
+ Calculate logits for the last `num_logits_to_keep` tokens. If `0`, calculate logits for all
1150
+ `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
1151
+ token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
1152
+
1153
+ Returns:
1154
+
1155
+ Example:
1156
+
1157
+ ```python
1158
+ >>> from transformers import AutoTokenizer, LlamaForCausalLM
1159
+
1160
+ >>> model = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-7b-hf")
1161
+ >>> tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-hf")
1162
+
1163
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
1164
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
1165
+
1166
+ >>> # Generate
1167
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
1168
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
1169
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
1170
+ ```"""
1171
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1172
+ output_hidden_states = (
1173
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1174
+ )
1175
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1176
+
1177
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
1178
+ outputs = self.model(
1179
+ input_ids=input_ids,
1180
+ attention_mask=attention_mask,
1181
+ position_ids=position_ids,
1182
+ past_key_values=past_key_values,
1183
+ inputs_embeds=inputs_embeds,
1184
+ use_cache=use_cache,
1185
+ output_attentions=output_attentions,
1186
+ output_hidden_states=output_hidden_states,
1187
+ return_dict=return_dict,
1188
+ cache_position=cache_position,
1189
+ **kwargs,
1190
+ )
1191
+
1192
+ hidden_states = outputs[0]
1193
+ # Only compute necessary logits, and do not upcast them to float if we are not computing the loss
1194
+ logits = self.lm_head(hidden_states[:, -num_logits_to_keep:, :])
1195
+
1196
+ loss = None
1197
+ if labels is not None:
1198
+ loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs)
1199
+
1200
+ if not return_dict:
1201
+ output = (logits,) + outputs[1:]
1202
+ return (loss,) + output if loss is not None else output
1203
+
1204
+ return CausalLMOutputWithPast(
1205
+ loss=loss,
1206
+ logits=logits,
1207
+ past_key_values=outputs.past_key_values,
1208
+ hidden_states=outputs.hidden_states,
1209
+ attentions=outputs.attentions,
1210
+ )
1211
+
1212
+
1213
+ __all__ = [
1214
+ "LlamaLadderForCausalLM",
1215
+ "LlamaLadderModel",
1216
+ "LlamaPreTrainedModel",
1217
+ ]
pytorch_model-00001-of-00002.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:77444d52b81ef58dc4044880d0f8d80a8a07333d943be0a0dfe995fc4e919504
3
+ size 16060021945
pytorch_model-00002-of-00002.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a8c61eec87f38913734aafd99429af28e4fc44c205dbb2c78bcbf8dc0131c6a6
3
+ size 541701
pytorch_model.bin.index.json ADDED
@@ -0,0 +1,298 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 16060522496
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "pytorch_model-00001-of-00002.bin",
7
+ "model.embed_tokens.weight": "pytorch_model-00001-of-00002.bin",
8
+ "model.layers.0.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
9
+ "model.layers.0.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
10
+ "model.layers.0.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
11
+ "model.layers.0.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
12
+ "model.layers.0.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
13
+ "model.layers.0.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
14
+ "model.layers.0.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
15
+ "model.layers.0.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
16
+ "model.layers.0.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
17
+ "model.layers.1.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
18
+ "model.layers.1.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
19
+ "model.layers.1.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
20
+ "model.layers.1.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
21
+ "model.layers.1.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
22
+ "model.layers.1.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
23
+ "model.layers.1.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
24
+ "model.layers.1.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
25
+ "model.layers.1.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
26
+ "model.layers.10.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
27
+ "model.layers.10.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
28
+ "model.layers.10.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
29
+ "model.layers.10.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
30
+ "model.layers.10.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
31
+ "model.layers.10.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
32
+ "model.layers.10.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
33
+ "model.layers.10.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
34
+ "model.layers.10.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
35
+ "model.layers.11.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
36
+ "model.layers.11.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
37
+ "model.layers.11.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
38
+ "model.layers.11.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
39
+ "model.layers.11.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
40
+ "model.layers.11.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
41
+ "model.layers.11.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
42
+ "model.layers.11.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
43
+ "model.layers.11.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
44
+ "model.layers.12.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
45
+ "model.layers.12.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
46
+ "model.layers.12.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
47
+ "model.layers.12.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
48
+ "model.layers.12.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
49
+ "model.layers.12.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
50
+ "model.layers.12.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
51
+ "model.layers.12.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
52
+ "model.layers.12.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
53
+ "model.layers.13.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
54
+ "model.layers.13.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
55
+ "model.layers.13.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
56
+ "model.layers.13.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
57
+ "model.layers.13.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
58
+ "model.layers.13.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
59
+ "model.layers.13.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
60
+ "model.layers.13.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
61
+ "model.layers.13.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
62
+ "model.layers.14.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
63
+ "model.layers.14.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
64
+ "model.layers.14.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
65
+ "model.layers.14.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
66
+ "model.layers.14.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
67
+ "model.layers.14.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
68
+ "model.layers.14.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
69
+ "model.layers.14.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
70
+ "model.layers.14.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
71
+ "model.layers.15.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
72
+ "model.layers.15.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
73
+ "model.layers.15.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
74
+ "model.layers.15.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
75
+ "model.layers.15.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
76
+ "model.layers.15.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
77
+ "model.layers.15.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
78
+ "model.layers.15.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
79
+ "model.layers.15.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
80
+ "model.layers.16.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
81
+ "model.layers.16.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
82
+ "model.layers.16.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
83
+ "model.layers.16.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
84
+ "model.layers.16.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
85
+ "model.layers.16.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
86
+ "model.layers.16.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
87
+ "model.layers.16.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
88
+ "model.layers.16.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
89
+ "model.layers.17.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
90
+ "model.layers.17.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
91
+ "model.layers.17.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
92
+ "model.layers.17.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
93
+ "model.layers.17.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
94
+ "model.layers.17.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
95
+ "model.layers.17.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
96
+ "model.layers.17.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
97
+ "model.layers.17.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
98
+ "model.layers.18.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
99
+ "model.layers.18.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
100
+ "model.layers.18.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
101
+ "model.layers.18.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
102
+ "model.layers.18.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
103
+ "model.layers.18.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
104
+ "model.layers.18.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
105
+ "model.layers.18.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
106
+ "model.layers.18.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
107
+ "model.layers.19.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
108
+ "model.layers.19.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
109
+ "model.layers.19.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
110
+ "model.layers.19.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
111
+ "model.layers.19.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
112
+ "model.layers.19.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
113
+ "model.layers.19.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
114
+ "model.layers.19.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
115
+ "model.layers.19.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
116
+ "model.layers.2.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
117
+ "model.layers.2.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
118
+ "model.layers.2.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
119
+ "model.layers.2.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
120
+ "model.layers.2.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
121
+ "model.layers.2.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
122
+ "model.layers.2.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
123
+ "model.layers.2.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
124
+ "model.layers.2.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
125
+ "model.layers.20.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
126
+ "model.layers.20.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
127
+ "model.layers.20.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
128
+ "model.layers.20.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
129
+ "model.layers.20.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
130
+ "model.layers.20.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
131
+ "model.layers.20.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
132
+ "model.layers.20.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
133
+ "model.layers.20.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
134
+ "model.layers.21.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
135
+ "model.layers.21.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
136
+ "model.layers.21.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
137
+ "model.layers.21.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
138
+ "model.layers.21.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
139
+ "model.layers.21.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
140
+ "model.layers.21.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
141
+ "model.layers.21.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
142
+ "model.layers.21.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
143
+ "model.layers.22.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
144
+ "model.layers.22.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
145
+ "model.layers.22.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
146
+ "model.layers.22.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
147
+ "model.layers.22.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
148
+ "model.layers.22.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
149
+ "model.layers.22.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
150
+ "model.layers.22.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
151
+ "model.layers.22.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
152
+ "model.layers.23.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
153
+ "model.layers.23.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
154
+ "model.layers.23.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
155
+ "model.layers.23.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
156
+ "model.layers.23.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
157
+ "model.layers.23.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
158
+ "model.layers.23.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
159
+ "model.layers.23.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
160
+ "model.layers.23.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
161
+ "model.layers.24.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
162
+ "model.layers.24.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
163
+ "model.layers.24.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
164
+ "model.layers.24.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
165
+ "model.layers.24.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
166
+ "model.layers.24.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
167
+ "model.layers.24.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
168
+ "model.layers.24.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
169
+ "model.layers.24.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
170
+ "model.layers.25.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
171
+ "model.layers.25.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
172
+ "model.layers.25.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
173
+ "model.layers.25.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
174
+ "model.layers.25.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
175
+ "model.layers.25.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
176
+ "model.layers.25.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
177
+ "model.layers.25.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
178
+ "model.layers.25.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
179
+ "model.layers.26.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
180
+ "model.layers.26.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
181
+ "model.layers.26.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
182
+ "model.layers.26.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
183
+ "model.layers.26.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
184
+ "model.layers.26.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
185
+ "model.layers.26.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
186
+ "model.layers.26.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
187
+ "model.layers.26.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
188
+ "model.layers.27.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
189
+ "model.layers.27.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
190
+ "model.layers.27.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
191
+ "model.layers.27.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
192
+ "model.layers.27.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
193
+ "model.layers.27.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
194
+ "model.layers.27.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
195
+ "model.layers.27.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
196
+ "model.layers.27.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
197
+ "model.layers.28.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
198
+ "model.layers.28.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
199
+ "model.layers.28.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
200
+ "model.layers.28.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
201
+ "model.layers.28.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
202
+ "model.layers.28.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
203
+ "model.layers.28.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
204
+ "model.layers.28.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
205
+ "model.layers.28.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
206
+ "model.layers.29.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
207
+ "model.layers.29.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
208
+ "model.layers.29.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
209
+ "model.layers.29.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
210
+ "model.layers.29.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
211
+ "model.layers.29.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
212
+ "model.layers.29.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
213
+ "model.layers.29.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
214
+ "model.layers.29.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
215
+ "model.layers.3.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
216
+ "model.layers.3.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
217
+ "model.layers.3.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
218
+ "model.layers.3.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
219
+ "model.layers.3.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
220
+ "model.layers.3.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
221
+ "model.layers.3.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
222
+ "model.layers.3.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
223
+ "model.layers.3.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
224
+ "model.layers.30.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
225
+ "model.layers.30.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
226
+ "model.layers.30.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
227
+ "model.layers.30.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
228
+ "model.layers.30.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
229
+ "model.layers.30.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
230
+ "model.layers.30.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
231
+ "model.layers.30.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
232
+ "model.layers.30.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
233
+ "model.layers.31.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
234
+ "model.layers.31.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
235
+ "model.layers.31.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
236
+ "model.layers.31.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
237
+ "model.layers.31.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
238
+ "model.layers.31.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
239
+ "model.layers.31.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
240
+ "model.layers.31.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
241
+ "model.layers.31.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
242
+ "model.layers.4.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
243
+ "model.layers.4.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
244
+ "model.layers.4.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
245
+ "model.layers.4.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
246
+ "model.layers.4.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
247
+ "model.layers.4.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
248
+ "model.layers.4.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
249
+ "model.layers.4.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
250
+ "model.layers.4.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
251
+ "model.layers.5.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
252
+ "model.layers.5.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
253
+ "model.layers.5.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
254
+ "model.layers.5.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
255
+ "model.layers.5.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
256
+ "model.layers.5.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
257
+ "model.layers.5.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
258
+ "model.layers.5.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
259
+ "model.layers.5.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
260
+ "model.layers.6.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
261
+ "model.layers.6.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
262
+ "model.layers.6.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
263
+ "model.layers.6.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
264
+ "model.layers.6.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
265
+ "model.layers.6.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
266
+ "model.layers.6.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
267
+ "model.layers.6.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
268
+ "model.layers.6.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
269
+ "model.layers.7.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
270
+ "model.layers.7.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
271
+ "model.layers.7.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
272
+ "model.layers.7.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
273
+ "model.layers.7.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
274
+ "model.layers.7.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
275
+ "model.layers.7.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
276
+ "model.layers.7.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
277
+ "model.layers.7.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
278
+ "model.layers.8.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
279
+ "model.layers.8.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
280
+ "model.layers.8.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
281
+ "model.layers.8.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
282
+ "model.layers.8.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
283
+ "model.layers.8.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
284
+ "model.layers.8.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
285
+ "model.layers.8.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
286
+ "model.layers.8.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
287
+ "model.layers.9.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
288
+ "model.layers.9.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
289
+ "model.layers.9.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
290
+ "model.layers.9.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
291
+ "model.layers.9.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
292
+ "model.layers.9.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
293
+ "model.layers.9.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
294
+ "model.layers.9.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
295
+ "model.layers.9.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
296
+ "model.norm.weight": "pytorch_model-00002-of-00002.bin"
297
+ }
298
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<|begin_of_text|>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|eot_id|>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "<|finetune_right_pad_id|>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ }
23
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6b9e4e7fb171f92fd137b777cc2714bf87d11576700a1dcd7a399e7bbe39537b
3
+ size 17209920
tokenizer_config.json ADDED
@@ -0,0 +1,2064 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "128000": {
4
+ "content": "<|begin_of_text|>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "128001": {
12
+ "content": "<|end_of_text|>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "128002": {
20
+ "content": "<|reserved_special_token_0|>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "128003": {
28
+ "content": "<|reserved_special_token_1|>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "128004": {
36
+ "content": "<|finetune_right_pad_id|>",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "128005": {
44
+ "content": "<|reserved_special_token_2|>",
45
+ "lstrip": false,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ },
51
+ "128006": {
52
+ "content": "<|start_header_id|>",
53
+ "lstrip": false,
54
+ "normalized": false,
55
+ "rstrip": false,
56
+ "single_word": false,
57
+ "special": true
58
+ },
59
+ "128007": {
60
+ "content": "<|end_header_id|>",
61
+ "lstrip": false,
62
+ "normalized": false,
63
+ "rstrip": false,
64
+ "single_word": false,
65
+ "special": true
66
+ },
67
+ "128008": {
68
+ "content": "<|eom_id|>",
69
+ "lstrip": false,
70
+ "normalized": false,
71
+ "rstrip": false,
72
+ "single_word": false,
73
+ "special": true
74
+ },
75
+ "128009": {
76
+ "content": "<|eot_id|>",
77
+ "lstrip": false,
78
+ "normalized": false,
79
+ "rstrip": false,
80
+ "single_word": false,
81
+ "special": true
82
+ },
83
+ "128010": {
84
+ "content": "<|python_tag|>",
85
+ "lstrip": false,
86
+ "normalized": false,
87
+ "rstrip": false,
88
+ "single_word": false,
89
+ "special": true
90
+ },
91
+ "128011": {
92
+ "content": "<|reserved_special_token_3|>",
93
+ "lstrip": false,
94
+ "normalized": false,
95
+ "rstrip": false,
96
+ "single_word": false,
97
+ "special": true
98
+ },
99
+ "128012": {
100
+ "content": "<|reserved_special_token_4|>",
101
+ "lstrip": false,
102
+ "normalized": false,
103
+ "rstrip": false,
104
+ "single_word": false,
105
+ "special": true
106
+ },
107
+ "128013": {
108
+ "content": "<|reserved_special_token_5|>",
109
+ "lstrip": false,
110
+ "normalized": false,
111
+ "rstrip": false,
112
+ "single_word": false,
113
+ "special": true
114
+ },
115
+ "128014": {
116
+ "content": "<|reserved_special_token_6|>",
117
+ "lstrip": false,
118
+ "normalized": false,
119
+ "rstrip": false,
120
+ "single_word": false,
121
+ "special": true
122
+ },
123
+ "128015": {
124
+ "content": "<|reserved_special_token_7|>",
125
+ "lstrip": false,
126
+ "normalized": false,
127
+ "rstrip": false,
128
+ "single_word": false,
129
+ "special": true
130
+ },
131
+ "128016": {
132
+ "content": "<|reserved_special_token_8|>",
133
+ "lstrip": false,
134
+ "normalized": false,
135
+ "rstrip": false,
136
+ "single_word": false,
137
+ "special": true
138
+ },
139
+ "128017": {
140
+ "content": "<|reserved_special_token_9|>",
141
+ "lstrip": false,
142
+ "normalized": false,
143
+ "rstrip": false,
144
+ "single_word": false,
145
+ "special": true
146
+ },
147
+ "128018": {
148
+ "content": "<|reserved_special_token_10|>",
149
+ "lstrip": false,
150
+ "normalized": false,
151
+ "rstrip": false,
152
+ "single_word": false,
153
+ "special": true
154
+ },
155
+ "128019": {
156
+ "content": "<|reserved_special_token_11|>",
157
+ "lstrip": false,
158
+ "normalized": false,
159
+ "rstrip": false,
160
+ "single_word": false,
161
+ "special": true
162
+ },
163
+ "128020": {
164
+ "content": "<|reserved_special_token_12|>",
165
+ "lstrip": false,
166
+ "normalized": false,
167
+ "rstrip": false,
168
+ "single_word": false,
169
+ "special": true
170
+ },
171
+ "128021": {
172
+ "content": "<|reserved_special_token_13|>",
173
+ "lstrip": false,
174
+ "normalized": false,
175
+ "rstrip": false,
176
+ "single_word": false,
177
+ "special": true
178
+ },
179
+ "128022": {
180
+ "content": "<|reserved_special_token_14|>",
181
+ "lstrip": false,
182
+ "normalized": false,
183
+ "rstrip": false,
184
+ "single_word": false,
185
+ "special": true
186
+ },
187
+ "128023": {
188
+ "content": "<|reserved_special_token_15|>",
189
+ "lstrip": false,
190
+ "normalized": false,
191
+ "rstrip": false,
192
+ "single_word": false,
193
+ "special": true
194
+ },
195
+ "128024": {
196
+ "content": "<|reserved_special_token_16|>",
197
+ "lstrip": false,
198
+ "normalized": false,
199
+ "rstrip": false,
200
+ "single_word": false,
201
+ "special": true
202
+ },
203
+ "128025": {
204
+ "content": "<|reserved_special_token_17|>",
205
+ "lstrip": false,
206
+ "normalized": false,
207
+ "rstrip": false,
208
+ "single_word": false,
209
+ "special": true
210
+ },
211
+ "128026": {
212
+ "content": "<|reserved_special_token_18|>",
213
+ "lstrip": false,
214
+ "normalized": false,
215
+ "rstrip": false,
216
+ "single_word": false,
217
+ "special": true
218
+ },
219
+ "128027": {
220
+ "content": "<|reserved_special_token_19|>",
221
+ "lstrip": false,
222
+ "normalized": false,
223
+ "rstrip": false,
224
+ "single_word": false,
225
+ "special": true
226
+ },
227
+ "128028": {
228
+ "content": "<|reserved_special_token_20|>",
229
+ "lstrip": false,
230
+ "normalized": false,
231
+ "rstrip": false,
232
+ "single_word": false,
233
+ "special": true
234
+ },
235
+ "128029": {
236
+ "content": "<|reserved_special_token_21|>",
237
+ "lstrip": false,
238
+ "normalized": false,
239
+ "rstrip": false,
240
+ "single_word": false,
241
+ "special": true
242
+ },
243
+ "128030": {
244
+ "content": "<|reserved_special_token_22|>",
245
+ "lstrip": false,
246
+ "normalized": false,
247
+ "rstrip": false,
248
+ "single_word": false,
249
+ "special": true
250
+ },
251
+ "128031": {
252
+ "content": "<|reserved_special_token_23|>",
253
+ "lstrip": false,
254
+ "normalized": false,
255
+ "rstrip": false,
256
+ "single_word": false,
257
+ "special": true
258
+ },
259
+ "128032": {
260
+ "content": "<|reserved_special_token_24|>",
261
+ "lstrip": false,
262
+ "normalized": false,
263
+ "rstrip": false,
264
+ "single_word": false,
265
+ "special": true
266
+ },
267
+ "128033": {
268
+ "content": "<|reserved_special_token_25|>",
269
+ "lstrip": false,
270
+ "normalized": false,
271
+ "rstrip": false,
272
+ "single_word": false,
273
+ "special": true
274
+ },
275
+ "128034": {
276
+ "content": "<|reserved_special_token_26|>",
277
+ "lstrip": false,
278
+ "normalized": false,
279
+ "rstrip": false,
280
+ "single_word": false,
281
+ "special": true
282
+ },
283
+ "128035": {
284
+ "content": "<|reserved_special_token_27|>",
285
+ "lstrip": false,
286
+ "normalized": false,
287
+ "rstrip": false,
288
+ "single_word": false,
289
+ "special": true
290
+ },
291
+ "128036": {
292
+ "content": "<|reserved_special_token_28|>",
293
+ "lstrip": false,
294
+ "normalized": false,
295
+ "rstrip": false,
296
+ "single_word": false,
297
+ "special": true
298
+ },
299
+ "128037": {
300
+ "content": "<|reserved_special_token_29|>",
301
+ "lstrip": false,
302
+ "normalized": false,
303
+ "rstrip": false,
304
+ "single_word": false,
305
+ "special": true
306
+ },
307
+ "128038": {
308
+ "content": "<|reserved_special_token_30|>",
309
+ "lstrip": false,
310
+ "normalized": false,
311
+ "rstrip": false,
312
+ "single_word": false,
313
+ "special": true
314
+ },
315
+ "128039": {
316
+ "content": "<|reserved_special_token_31|>",
317
+ "lstrip": false,
318
+ "normalized": false,
319
+ "rstrip": false,
320
+ "single_word": false,
321
+ "special": true
322
+ },
323
+ "128040": {
324
+ "content": "<|reserved_special_token_32|>",
325
+ "lstrip": false,
326
+ "normalized": false,
327
+ "rstrip": false,
328
+ "single_word": false,
329
+ "special": true
330
+ },
331
+ "128041": {
332
+ "content": "<|reserved_special_token_33|>",
333
+ "lstrip": false,
334
+ "normalized": false,
335
+ "rstrip": false,
336
+ "single_word": false,
337
+ "special": true
338
+ },
339
+ "128042": {
340
+ "content": "<|reserved_special_token_34|>",
341
+ "lstrip": false,
342
+ "normalized": false,
343
+ "rstrip": false,
344
+ "single_word": false,
345
+ "special": true
346
+ },
347
+ "128043": {
348
+ "content": "<|reserved_special_token_35|>",
349
+ "lstrip": false,
350
+ "normalized": false,
351
+ "rstrip": false,
352
+ "single_word": false,
353
+ "special": true
354
+ },
355
+ "128044": {
356
+ "content": "<|reserved_special_token_36|>",
357
+ "lstrip": false,
358
+ "normalized": false,
359
+ "rstrip": false,
360
+ "single_word": false,
361
+ "special": true
362
+ },
363
+ "128045": {
364
+ "content": "<|reserved_special_token_37|>",
365
+ "lstrip": false,
366
+ "normalized": false,
367
+ "rstrip": false,
368
+ "single_word": false,
369
+ "special": true
370
+ },
371
+ "128046": {
372
+ "content": "<|reserved_special_token_38|>",
373
+ "lstrip": false,
374
+ "normalized": false,
375
+ "rstrip": false,
376
+ "single_word": false,
377
+ "special": true
378
+ },
379
+ "128047": {
380
+ "content": "<|reserved_special_token_39|>",
381
+ "lstrip": false,
382
+ "normalized": false,
383
+ "rstrip": false,
384
+ "single_word": false,
385
+ "special": true
386
+ },
387
+ "128048": {
388
+ "content": "<|reserved_special_token_40|>",
389
+ "lstrip": false,
390
+ "normalized": false,
391
+ "rstrip": false,
392
+ "single_word": false,
393
+ "special": true
394
+ },
395
+ "128049": {
396
+ "content": "<|reserved_special_token_41|>",
397
+ "lstrip": false,
398
+ "normalized": false,
399
+ "rstrip": false,
400
+ "single_word": false,
401
+ "special": true
402
+ },
403
+ "128050": {
404
+ "content": "<|reserved_special_token_42|>",
405
+ "lstrip": false,
406
+ "normalized": false,
407
+ "rstrip": false,
408
+ "single_word": false,
409
+ "special": true
410
+ },
411
+ "128051": {
412
+ "content": "<|reserved_special_token_43|>",
413
+ "lstrip": false,
414
+ "normalized": false,
415
+ "rstrip": false,
416
+ "single_word": false,
417
+ "special": true
418
+ },
419
+ "128052": {
420
+ "content": "<|reserved_special_token_44|>",
421
+ "lstrip": false,
422
+ "normalized": false,
423
+ "rstrip": false,
424
+ "single_word": false,
425
+ "special": true
426
+ },
427
+ "128053": {
428
+ "content": "<|reserved_special_token_45|>",
429
+ "lstrip": false,
430
+ "normalized": false,
431
+ "rstrip": false,
432
+ "single_word": false,
433
+ "special": true
434
+ },
435
+ "128054": {
436
+ "content": "<|reserved_special_token_46|>",
437
+ "lstrip": false,
438
+ "normalized": false,
439
+ "rstrip": false,
440
+ "single_word": false,
441
+ "special": true
442
+ },
443
+ "128055": {
444
+ "content": "<|reserved_special_token_47|>",
445
+ "lstrip": false,
446
+ "normalized": false,
447
+ "rstrip": false,
448
+ "single_word": false,
449
+ "special": true
450
+ },
451
+ "128056": {
452
+ "content": "<|reserved_special_token_48|>",
453
+ "lstrip": false,
454
+ "normalized": false,
455
+ "rstrip": false,
456
+ "single_word": false,
457
+ "special": true
458
+ },
459
+ "128057": {
460
+ "content": "<|reserved_special_token_49|>",
461
+ "lstrip": false,
462
+ "normalized": false,
463
+ "rstrip": false,
464
+ "single_word": false,
465
+ "special": true
466
+ },
467
+ "128058": {
468
+ "content": "<|reserved_special_token_50|>",
469
+ "lstrip": false,
470
+ "normalized": false,
471
+ "rstrip": false,
472
+ "single_word": false,
473
+ "special": true
474
+ },
475
+ "128059": {
476
+ "content": "<|reserved_special_token_51|>",
477
+ "lstrip": false,
478
+ "normalized": false,
479
+ "rstrip": false,
480
+ "single_word": false,
481
+ "special": true
482
+ },
483
+ "128060": {
484
+ "content": "<|reserved_special_token_52|>",
485
+ "lstrip": false,
486
+ "normalized": false,
487
+ "rstrip": false,
488
+ "single_word": false,
489
+ "special": true
490
+ },
491
+ "128061": {
492
+ "content": "<|reserved_special_token_53|>",
493
+ "lstrip": false,
494
+ "normalized": false,
495
+ "rstrip": false,
496
+ "single_word": false,
497
+ "special": true
498
+ },
499
+ "128062": {
500
+ "content": "<|reserved_special_token_54|>",
501
+ "lstrip": false,
502
+ "normalized": false,
503
+ "rstrip": false,
504
+ "single_word": false,
505
+ "special": true
506
+ },
507
+ "128063": {
508
+ "content": "<|reserved_special_token_55|>",
509
+ "lstrip": false,
510
+ "normalized": false,
511
+ "rstrip": false,
512
+ "single_word": false,
513
+ "special": true
514
+ },
515
+ "128064": {
516
+ "content": "<|reserved_special_token_56|>",
517
+ "lstrip": false,
518
+ "normalized": false,
519
+ "rstrip": false,
520
+ "single_word": false,
521
+ "special": true
522
+ },
523
+ "128065": {
524
+ "content": "<|reserved_special_token_57|>",
525
+ "lstrip": false,
526
+ "normalized": false,
527
+ "rstrip": false,
528
+ "single_word": false,
529
+ "special": true
530
+ },
531
+ "128066": {
532
+ "content": "<|reserved_special_token_58|>",
533
+ "lstrip": false,
534
+ "normalized": false,
535
+ "rstrip": false,
536
+ "single_word": false,
537
+ "special": true
538
+ },
539
+ "128067": {
540
+ "content": "<|reserved_special_token_59|>",
541
+ "lstrip": false,
542
+ "normalized": false,
543
+ "rstrip": false,
544
+ "single_word": false,
545
+ "special": true
546
+ },
547
+ "128068": {
548
+ "content": "<|reserved_special_token_60|>",
549
+ "lstrip": false,
550
+ "normalized": false,
551
+ "rstrip": false,
552
+ "single_word": false,
553
+ "special": true
554
+ },
555
+ "128069": {
556
+ "content": "<|reserved_special_token_61|>",
557
+ "lstrip": false,
558
+ "normalized": false,
559
+ "rstrip": false,
560
+ "single_word": false,
561
+ "special": true
562
+ },
563
+ "128070": {
564
+ "content": "<|reserved_special_token_62|>",
565
+ "lstrip": false,
566
+ "normalized": false,
567
+ "rstrip": false,
568
+ "single_word": false,
569
+ "special": true
570
+ },
571
+ "128071": {
572
+ "content": "<|reserved_special_token_63|>",
573
+ "lstrip": false,
574
+ "normalized": false,
575
+ "rstrip": false,
576
+ "single_word": false,
577
+ "special": true
578
+ },
579
+ "128072": {
580
+ "content": "<|reserved_special_token_64|>",
581
+ "lstrip": false,
582
+ "normalized": false,
583
+ "rstrip": false,
584
+ "single_word": false,
585
+ "special": true
586
+ },
587
+ "128073": {
588
+ "content": "<|reserved_special_token_65|>",
589
+ "lstrip": false,
590
+ "normalized": false,
591
+ "rstrip": false,
592
+ "single_word": false,
593
+ "special": true
594
+ },
595
+ "128074": {
596
+ "content": "<|reserved_special_token_66|>",
597
+ "lstrip": false,
598
+ "normalized": false,
599
+ "rstrip": false,
600
+ "single_word": false,
601
+ "special": true
602
+ },
603
+ "128075": {
604
+ "content": "<|reserved_special_token_67|>",
605
+ "lstrip": false,
606
+ "normalized": false,
607
+ "rstrip": false,
608
+ "single_word": false,
609
+ "special": true
610
+ },
611
+ "128076": {
612
+ "content": "<|reserved_special_token_68|>",
613
+ "lstrip": false,
614
+ "normalized": false,
615
+ "rstrip": false,
616
+ "single_word": false,
617
+ "special": true
618
+ },
619
+ "128077": {
620
+ "content": "<|reserved_special_token_69|>",
621
+ "lstrip": false,
622
+ "normalized": false,
623
+ "rstrip": false,
624
+ "single_word": false,
625
+ "special": true
626
+ },
627
+ "128078": {
628
+ "content": "<|reserved_special_token_70|>",
629
+ "lstrip": false,
630
+ "normalized": false,
631
+ "rstrip": false,
632
+ "single_word": false,
633
+ "special": true
634
+ },
635
+ "128079": {
636
+ "content": "<|reserved_special_token_71|>",
637
+ "lstrip": false,
638
+ "normalized": false,
639
+ "rstrip": false,
640
+ "single_word": false,
641
+ "special": true
642
+ },
643
+ "128080": {
644
+ "content": "<|reserved_special_token_72|>",
645
+ "lstrip": false,
646
+ "normalized": false,
647
+ "rstrip": false,
648
+ "single_word": false,
649
+ "special": true
650
+ },
651
+ "128081": {
652
+ "content": "<|reserved_special_token_73|>",
653
+ "lstrip": false,
654
+ "normalized": false,
655
+ "rstrip": false,
656
+ "single_word": false,
657
+ "special": true
658
+ },
659
+ "128082": {
660
+ "content": "<|reserved_special_token_74|>",
661
+ "lstrip": false,
662
+ "normalized": false,
663
+ "rstrip": false,
664
+ "single_word": false,
665
+ "special": true
666
+ },
667
+ "128083": {
668
+ "content": "<|reserved_special_token_75|>",
669
+ "lstrip": false,
670
+ "normalized": false,
671
+ "rstrip": false,
672
+ "single_word": false,
673
+ "special": true
674
+ },
675
+ "128084": {
676
+ "content": "<|reserved_special_token_76|>",
677
+ "lstrip": false,
678
+ "normalized": false,
679
+ "rstrip": false,
680
+ "single_word": false,
681
+ "special": true
682
+ },
683
+ "128085": {
684
+ "content": "<|reserved_special_token_77|>",
685
+ "lstrip": false,
686
+ "normalized": false,
687
+ "rstrip": false,
688
+ "single_word": false,
689
+ "special": true
690
+ },
691
+ "128086": {
692
+ "content": "<|reserved_special_token_78|>",
693
+ "lstrip": false,
694
+ "normalized": false,
695
+ "rstrip": false,
696
+ "single_word": false,
697
+ "special": true
698
+ },
699
+ "128087": {
700
+ "content": "<|reserved_special_token_79|>",
701
+ "lstrip": false,
702
+ "normalized": false,
703
+ "rstrip": false,
704
+ "single_word": false,
705
+ "special": true
706
+ },
707
+ "128088": {
708
+ "content": "<|reserved_special_token_80|>",
709
+ "lstrip": false,
710
+ "normalized": false,
711
+ "rstrip": false,
712
+ "single_word": false,
713
+ "special": true
714
+ },
715
+ "128089": {
716
+ "content": "<|reserved_special_token_81|>",
717
+ "lstrip": false,
718
+ "normalized": false,
719
+ "rstrip": false,
720
+ "single_word": false,
721
+ "special": true
722
+ },
723
+ "128090": {
724
+ "content": "<|reserved_special_token_82|>",
725
+ "lstrip": false,
726
+ "normalized": false,
727
+ "rstrip": false,
728
+ "single_word": false,
729
+ "special": true
730
+ },
731
+ "128091": {
732
+ "content": "<|reserved_special_token_83|>",
733
+ "lstrip": false,
734
+ "normalized": false,
735
+ "rstrip": false,
736
+ "single_word": false,
737
+ "special": true
738
+ },
739
+ "128092": {
740
+ "content": "<|reserved_special_token_84|>",
741
+ "lstrip": false,
742
+ "normalized": false,
743
+ "rstrip": false,
744
+ "single_word": false,
745
+ "special": true
746
+ },
747
+ "128093": {
748
+ "content": "<|reserved_special_token_85|>",
749
+ "lstrip": false,
750
+ "normalized": false,
751
+ "rstrip": false,
752
+ "single_word": false,
753
+ "special": true
754
+ },
755
+ "128094": {
756
+ "content": "<|reserved_special_token_86|>",
757
+ "lstrip": false,
758
+ "normalized": false,
759
+ "rstrip": false,
760
+ "single_word": false,
761
+ "special": true
762
+ },
763
+ "128095": {
764
+ "content": "<|reserved_special_token_87|>",
765
+ "lstrip": false,
766
+ "normalized": false,
767
+ "rstrip": false,
768
+ "single_word": false,
769
+ "special": true
770
+ },
771
+ "128096": {
772
+ "content": "<|reserved_special_token_88|>",
773
+ "lstrip": false,
774
+ "normalized": false,
775
+ "rstrip": false,
776
+ "single_word": false,
777
+ "special": true
778
+ },
779
+ "128097": {
780
+ "content": "<|reserved_special_token_89|>",
781
+ "lstrip": false,
782
+ "normalized": false,
783
+ "rstrip": false,
784
+ "single_word": false,
785
+ "special": true
786
+ },
787
+ "128098": {
788
+ "content": "<|reserved_special_token_90|>",
789
+ "lstrip": false,
790
+ "normalized": false,
791
+ "rstrip": false,
792
+ "single_word": false,
793
+ "special": true
794
+ },
795
+ "128099": {
796
+ "content": "<|reserved_special_token_91|>",
797
+ "lstrip": false,
798
+ "normalized": false,
799
+ "rstrip": false,
800
+ "single_word": false,
801
+ "special": true
802
+ },
803
+ "128100": {
804
+ "content": "<|reserved_special_token_92|>",
805
+ "lstrip": false,
806
+ "normalized": false,
807
+ "rstrip": false,
808
+ "single_word": false,
809
+ "special": true
810
+ },
811
+ "128101": {
812
+ "content": "<|reserved_special_token_93|>",
813
+ "lstrip": false,
814
+ "normalized": false,
815
+ "rstrip": false,
816
+ "single_word": false,
817
+ "special": true
818
+ },
819
+ "128102": {
820
+ "content": "<|reserved_special_token_94|>",
821
+ "lstrip": false,
822
+ "normalized": false,
823
+ "rstrip": false,
824
+ "single_word": false,
825
+ "special": true
826
+ },
827
+ "128103": {
828
+ "content": "<|reserved_special_token_95|>",
829
+ "lstrip": false,
830
+ "normalized": false,
831
+ "rstrip": false,
832
+ "single_word": false,
833
+ "special": true
834
+ },
835
+ "128104": {
836
+ "content": "<|reserved_special_token_96|>",
837
+ "lstrip": false,
838
+ "normalized": false,
839
+ "rstrip": false,
840
+ "single_word": false,
841
+ "special": true
842
+ },
843
+ "128105": {
844
+ "content": "<|reserved_special_token_97|>",
845
+ "lstrip": false,
846
+ "normalized": false,
847
+ "rstrip": false,
848
+ "single_word": false,
849
+ "special": true
850
+ },
851
+ "128106": {
852
+ "content": "<|reserved_special_token_98|>",
853
+ "lstrip": false,
854
+ "normalized": false,
855
+ "rstrip": false,
856
+ "single_word": false,
857
+ "special": true
858
+ },
859
+ "128107": {
860
+ "content": "<|reserved_special_token_99|>",
861
+ "lstrip": false,
862
+ "normalized": false,
863
+ "rstrip": false,
864
+ "single_word": false,
865
+ "special": true
866
+ },
867
+ "128108": {
868
+ "content": "<|reserved_special_token_100|>",
869
+ "lstrip": false,
870
+ "normalized": false,
871
+ "rstrip": false,
872
+ "single_word": false,
873
+ "special": true
874
+ },
875
+ "128109": {
876
+ "content": "<|reserved_special_token_101|>",
877
+ "lstrip": false,
878
+ "normalized": false,
879
+ "rstrip": false,
880
+ "single_word": false,
881
+ "special": true
882
+ },
883
+ "128110": {
884
+ "content": "<|reserved_special_token_102|>",
885
+ "lstrip": false,
886
+ "normalized": false,
887
+ "rstrip": false,
888
+ "single_word": false,
889
+ "special": true
890
+ },
891
+ "128111": {
892
+ "content": "<|reserved_special_token_103|>",
893
+ "lstrip": false,
894
+ "normalized": false,
895
+ "rstrip": false,
896
+ "single_word": false,
897
+ "special": true
898
+ },
899
+ "128112": {
900
+ "content": "<|reserved_special_token_104|>",
901
+ "lstrip": false,
902
+ "normalized": false,
903
+ "rstrip": false,
904
+ "single_word": false,
905
+ "special": true
906
+ },
907
+ "128113": {
908
+ "content": "<|reserved_special_token_105|>",
909
+ "lstrip": false,
910
+ "normalized": false,
911
+ "rstrip": false,
912
+ "single_word": false,
913
+ "special": true
914
+ },
915
+ "128114": {
916
+ "content": "<|reserved_special_token_106|>",
917
+ "lstrip": false,
918
+ "normalized": false,
919
+ "rstrip": false,
920
+ "single_word": false,
921
+ "special": true
922
+ },
923
+ "128115": {
924
+ "content": "<|reserved_special_token_107|>",
925
+ "lstrip": false,
926
+ "normalized": false,
927
+ "rstrip": false,
928
+ "single_word": false,
929
+ "special": true
930
+ },
931
+ "128116": {
932
+ "content": "<|reserved_special_token_108|>",
933
+ "lstrip": false,
934
+ "normalized": false,
935
+ "rstrip": false,
936
+ "single_word": false,
937
+ "special": true
938
+ },
939
+ "128117": {
940
+ "content": "<|reserved_special_token_109|>",
941
+ "lstrip": false,
942
+ "normalized": false,
943
+ "rstrip": false,
944
+ "single_word": false,
945
+ "special": true
946
+ },
947
+ "128118": {
948
+ "content": "<|reserved_special_token_110|>",
949
+ "lstrip": false,
950
+ "normalized": false,
951
+ "rstrip": false,
952
+ "single_word": false,
953
+ "special": true
954
+ },
955
+ "128119": {
956
+ "content": "<|reserved_special_token_111|>",
957
+ "lstrip": false,
958
+ "normalized": false,
959
+ "rstrip": false,
960
+ "single_word": false,
961
+ "special": true
962
+ },
963
+ "128120": {
964
+ "content": "<|reserved_special_token_112|>",
965
+ "lstrip": false,
966
+ "normalized": false,
967
+ "rstrip": false,
968
+ "single_word": false,
969
+ "special": true
970
+ },
971
+ "128121": {
972
+ "content": "<|reserved_special_token_113|>",
973
+ "lstrip": false,
974
+ "normalized": false,
975
+ "rstrip": false,
976
+ "single_word": false,
977
+ "special": true
978
+ },
979
+ "128122": {
980
+ "content": "<|reserved_special_token_114|>",
981
+ "lstrip": false,
982
+ "normalized": false,
983
+ "rstrip": false,
984
+ "single_word": false,
985
+ "special": true
986
+ },
987
+ "128123": {
988
+ "content": "<|reserved_special_token_115|>",
989
+ "lstrip": false,
990
+ "normalized": false,
991
+ "rstrip": false,
992
+ "single_word": false,
993
+ "special": true
994
+ },
995
+ "128124": {
996
+ "content": "<|reserved_special_token_116|>",
997
+ "lstrip": false,
998
+ "normalized": false,
999
+ "rstrip": false,
1000
+ "single_word": false,
1001
+ "special": true
1002
+ },
1003
+ "128125": {
1004
+ "content": "<|reserved_special_token_117|>",
1005
+ "lstrip": false,
1006
+ "normalized": false,
1007
+ "rstrip": false,
1008
+ "single_word": false,
1009
+ "special": true
1010
+ },
1011
+ "128126": {
1012
+ "content": "<|reserved_special_token_118|>",
1013
+ "lstrip": false,
1014
+ "normalized": false,
1015
+ "rstrip": false,
1016
+ "single_word": false,
1017
+ "special": true
1018
+ },
1019
+ "128127": {
1020
+ "content": "<|reserved_special_token_119|>",
1021
+ "lstrip": false,
1022
+ "normalized": false,
1023
+ "rstrip": false,
1024
+ "single_word": false,
1025
+ "special": true
1026
+ },
1027
+ "128128": {
1028
+ "content": "<|reserved_special_token_120|>",
1029
+ "lstrip": false,
1030
+ "normalized": false,
1031
+ "rstrip": false,
1032
+ "single_word": false,
1033
+ "special": true
1034
+ },
1035
+ "128129": {
1036
+ "content": "<|reserved_special_token_121|>",
1037
+ "lstrip": false,
1038
+ "normalized": false,
1039
+ "rstrip": false,
1040
+ "single_word": false,
1041
+ "special": true
1042
+ },
1043
+ "128130": {
1044
+ "content": "<|reserved_special_token_122|>",
1045
+ "lstrip": false,
1046
+ "normalized": false,
1047
+ "rstrip": false,
1048
+ "single_word": false,
1049
+ "special": true
1050
+ },
1051
+ "128131": {
1052
+ "content": "<|reserved_special_token_123|>",
1053
+ "lstrip": false,
1054
+ "normalized": false,
1055
+ "rstrip": false,
1056
+ "single_word": false,
1057
+ "special": true
1058
+ },
1059
+ "128132": {
1060
+ "content": "<|reserved_special_token_124|>",
1061
+ "lstrip": false,
1062
+ "normalized": false,
1063
+ "rstrip": false,
1064
+ "single_word": false,
1065
+ "special": true
1066
+ },
1067
+ "128133": {
1068
+ "content": "<|reserved_special_token_125|>",
1069
+ "lstrip": false,
1070
+ "normalized": false,
1071
+ "rstrip": false,
1072
+ "single_word": false,
1073
+ "special": true
1074
+ },
1075
+ "128134": {
1076
+ "content": "<|reserved_special_token_126|>",
1077
+ "lstrip": false,
1078
+ "normalized": false,
1079
+ "rstrip": false,
1080
+ "single_word": false,
1081
+ "special": true
1082
+ },
1083
+ "128135": {
1084
+ "content": "<|reserved_special_token_127|>",
1085
+ "lstrip": false,
1086
+ "normalized": false,
1087
+ "rstrip": false,
1088
+ "single_word": false,
1089
+ "special": true
1090
+ },
1091
+ "128136": {
1092
+ "content": "<|reserved_special_token_128|>",
1093
+ "lstrip": false,
1094
+ "normalized": false,
1095
+ "rstrip": false,
1096
+ "single_word": false,
1097
+ "special": true
1098
+ },
1099
+ "128137": {
1100
+ "content": "<|reserved_special_token_129|>",
1101
+ "lstrip": false,
1102
+ "normalized": false,
1103
+ "rstrip": false,
1104
+ "single_word": false,
1105
+ "special": true
1106
+ },
1107
+ "128138": {
1108
+ "content": "<|reserved_special_token_130|>",
1109
+ "lstrip": false,
1110
+ "normalized": false,
1111
+ "rstrip": false,
1112
+ "single_word": false,
1113
+ "special": true
1114
+ },
1115
+ "128139": {
1116
+ "content": "<|reserved_special_token_131|>",
1117
+ "lstrip": false,
1118
+ "normalized": false,
1119
+ "rstrip": false,
1120
+ "single_word": false,
1121
+ "special": true
1122
+ },
1123
+ "128140": {
1124
+ "content": "<|reserved_special_token_132|>",
1125
+ "lstrip": false,
1126
+ "normalized": false,
1127
+ "rstrip": false,
1128
+ "single_word": false,
1129
+ "special": true
1130
+ },
1131
+ "128141": {
1132
+ "content": "<|reserved_special_token_133|>",
1133
+ "lstrip": false,
1134
+ "normalized": false,
1135
+ "rstrip": false,
1136
+ "single_word": false,
1137
+ "special": true
1138
+ },
1139
+ "128142": {
1140
+ "content": "<|reserved_special_token_134|>",
1141
+ "lstrip": false,
1142
+ "normalized": false,
1143
+ "rstrip": false,
1144
+ "single_word": false,
1145
+ "special": true
1146
+ },
1147
+ "128143": {
1148
+ "content": "<|reserved_special_token_135|>",
1149
+ "lstrip": false,
1150
+ "normalized": false,
1151
+ "rstrip": false,
1152
+ "single_word": false,
1153
+ "special": true
1154
+ },
1155
+ "128144": {
1156
+ "content": "<|reserved_special_token_136|>",
1157
+ "lstrip": false,
1158
+ "normalized": false,
1159
+ "rstrip": false,
1160
+ "single_word": false,
1161
+ "special": true
1162
+ },
1163
+ "128145": {
1164
+ "content": "<|reserved_special_token_137|>",
1165
+ "lstrip": false,
1166
+ "normalized": false,
1167
+ "rstrip": false,
1168
+ "single_word": false,
1169
+ "special": true
1170
+ },
1171
+ "128146": {
1172
+ "content": "<|reserved_special_token_138|>",
1173
+ "lstrip": false,
1174
+ "normalized": false,
1175
+ "rstrip": false,
1176
+ "single_word": false,
1177
+ "special": true
1178
+ },
1179
+ "128147": {
1180
+ "content": "<|reserved_special_token_139|>",
1181
+ "lstrip": false,
1182
+ "normalized": false,
1183
+ "rstrip": false,
1184
+ "single_word": false,
1185
+ "special": true
1186
+ },
1187
+ "128148": {
1188
+ "content": "<|reserved_special_token_140|>",
1189
+ "lstrip": false,
1190
+ "normalized": false,
1191
+ "rstrip": false,
1192
+ "single_word": false,
1193
+ "special": true
1194
+ },
1195
+ "128149": {
1196
+ "content": "<|reserved_special_token_141|>",
1197
+ "lstrip": false,
1198
+ "normalized": false,
1199
+ "rstrip": false,
1200
+ "single_word": false,
1201
+ "special": true
1202
+ },
1203
+ "128150": {
1204
+ "content": "<|reserved_special_token_142|>",
1205
+ "lstrip": false,
1206
+ "normalized": false,
1207
+ "rstrip": false,
1208
+ "single_word": false,
1209
+ "special": true
1210
+ },
1211
+ "128151": {
1212
+ "content": "<|reserved_special_token_143|>",
1213
+ "lstrip": false,
1214
+ "normalized": false,
1215
+ "rstrip": false,
1216
+ "single_word": false,
1217
+ "special": true
1218
+ },
1219
+ "128152": {
1220
+ "content": "<|reserved_special_token_144|>",
1221
+ "lstrip": false,
1222
+ "normalized": false,
1223
+ "rstrip": false,
1224
+ "single_word": false,
1225
+ "special": true
1226
+ },
1227
+ "128153": {
1228
+ "content": "<|reserved_special_token_145|>",
1229
+ "lstrip": false,
1230
+ "normalized": false,
1231
+ "rstrip": false,
1232
+ "single_word": false,
1233
+ "special": true
1234
+ },
1235
+ "128154": {
1236
+ "content": "<|reserved_special_token_146|>",
1237
+ "lstrip": false,
1238
+ "normalized": false,
1239
+ "rstrip": false,
1240
+ "single_word": false,
1241
+ "special": true
1242
+ },
1243
+ "128155": {
1244
+ "content": "<|reserved_special_token_147|>",
1245
+ "lstrip": false,
1246
+ "normalized": false,
1247
+ "rstrip": false,
1248
+ "single_word": false,
1249
+ "special": true
1250
+ },
1251
+ "128156": {
1252
+ "content": "<|reserved_special_token_148|>",
1253
+ "lstrip": false,
1254
+ "normalized": false,
1255
+ "rstrip": false,
1256
+ "single_word": false,
1257
+ "special": true
1258
+ },
1259
+ "128157": {
1260
+ "content": "<|reserved_special_token_149|>",
1261
+ "lstrip": false,
1262
+ "normalized": false,
1263
+ "rstrip": false,
1264
+ "single_word": false,
1265
+ "special": true
1266
+ },
1267
+ "128158": {
1268
+ "content": "<|reserved_special_token_150|>",
1269
+ "lstrip": false,
1270
+ "normalized": false,
1271
+ "rstrip": false,
1272
+ "single_word": false,
1273
+ "special": true
1274
+ },
1275
+ "128159": {
1276
+ "content": "<|reserved_special_token_151|>",
1277
+ "lstrip": false,
1278
+ "normalized": false,
1279
+ "rstrip": false,
1280
+ "single_word": false,
1281
+ "special": true
1282
+ },
1283
+ "128160": {
1284
+ "content": "<|reserved_special_token_152|>",
1285
+ "lstrip": false,
1286
+ "normalized": false,
1287
+ "rstrip": false,
1288
+ "single_word": false,
1289
+ "special": true
1290
+ },
1291
+ "128161": {
1292
+ "content": "<|reserved_special_token_153|>",
1293
+ "lstrip": false,
1294
+ "normalized": false,
1295
+ "rstrip": false,
1296
+ "single_word": false,
1297
+ "special": true
1298
+ },
1299
+ "128162": {
1300
+ "content": "<|reserved_special_token_154|>",
1301
+ "lstrip": false,
1302
+ "normalized": false,
1303
+ "rstrip": false,
1304
+ "single_word": false,
1305
+ "special": true
1306
+ },
1307
+ "128163": {
1308
+ "content": "<|reserved_special_token_155|>",
1309
+ "lstrip": false,
1310
+ "normalized": false,
1311
+ "rstrip": false,
1312
+ "single_word": false,
1313
+ "special": true
1314
+ },
1315
+ "128164": {
1316
+ "content": "<|reserved_special_token_156|>",
1317
+ "lstrip": false,
1318
+ "normalized": false,
1319
+ "rstrip": false,
1320
+ "single_word": false,
1321
+ "special": true
1322
+ },
1323
+ "128165": {
1324
+ "content": "<|reserved_special_token_157|>",
1325
+ "lstrip": false,
1326
+ "normalized": false,
1327
+ "rstrip": false,
1328
+ "single_word": false,
1329
+ "special": true
1330
+ },
1331
+ "128166": {
1332
+ "content": "<|reserved_special_token_158|>",
1333
+ "lstrip": false,
1334
+ "normalized": false,
1335
+ "rstrip": false,
1336
+ "single_word": false,
1337
+ "special": true
1338
+ },
1339
+ "128167": {
1340
+ "content": "<|reserved_special_token_159|>",
1341
+ "lstrip": false,
1342
+ "normalized": false,
1343
+ "rstrip": false,
1344
+ "single_word": false,
1345
+ "special": true
1346
+ },
1347
+ "128168": {
1348
+ "content": "<|reserved_special_token_160|>",
1349
+ "lstrip": false,
1350
+ "normalized": false,
1351
+ "rstrip": false,
1352
+ "single_word": false,
1353
+ "special": true
1354
+ },
1355
+ "128169": {
1356
+ "content": "<|reserved_special_token_161|>",
1357
+ "lstrip": false,
1358
+ "normalized": false,
1359
+ "rstrip": false,
1360
+ "single_word": false,
1361
+ "special": true
1362
+ },
1363
+ "128170": {
1364
+ "content": "<|reserved_special_token_162|>",
1365
+ "lstrip": false,
1366
+ "normalized": false,
1367
+ "rstrip": false,
1368
+ "single_word": false,
1369
+ "special": true
1370
+ },
1371
+ "128171": {
1372
+ "content": "<|reserved_special_token_163|>",
1373
+ "lstrip": false,
1374
+ "normalized": false,
1375
+ "rstrip": false,
1376
+ "single_word": false,
1377
+ "special": true
1378
+ },
1379
+ "128172": {
1380
+ "content": "<|reserved_special_token_164|>",
1381
+ "lstrip": false,
1382
+ "normalized": false,
1383
+ "rstrip": false,
1384
+ "single_word": false,
1385
+ "special": true
1386
+ },
1387
+ "128173": {
1388
+ "content": "<|reserved_special_token_165|>",
1389
+ "lstrip": false,
1390
+ "normalized": false,
1391
+ "rstrip": false,
1392
+ "single_word": false,
1393
+ "special": true
1394
+ },
1395
+ "128174": {
1396
+ "content": "<|reserved_special_token_166|>",
1397
+ "lstrip": false,
1398
+ "normalized": false,
1399
+ "rstrip": false,
1400
+ "single_word": false,
1401
+ "special": true
1402
+ },
1403
+ "128175": {
1404
+ "content": "<|reserved_special_token_167|>",
1405
+ "lstrip": false,
1406
+ "normalized": false,
1407
+ "rstrip": false,
1408
+ "single_word": false,
1409
+ "special": true
1410
+ },
1411
+ "128176": {
1412
+ "content": "<|reserved_special_token_168|>",
1413
+ "lstrip": false,
1414
+ "normalized": false,
1415
+ "rstrip": false,
1416
+ "single_word": false,
1417
+ "special": true
1418
+ },
1419
+ "128177": {
1420
+ "content": "<|reserved_special_token_169|>",
1421
+ "lstrip": false,
1422
+ "normalized": false,
1423
+ "rstrip": false,
1424
+ "single_word": false,
1425
+ "special": true
1426
+ },
1427
+ "128178": {
1428
+ "content": "<|reserved_special_token_170|>",
1429
+ "lstrip": false,
1430
+ "normalized": false,
1431
+ "rstrip": false,
1432
+ "single_word": false,
1433
+ "special": true
1434
+ },
1435
+ "128179": {
1436
+ "content": "<|reserved_special_token_171|>",
1437
+ "lstrip": false,
1438
+ "normalized": false,
1439
+ "rstrip": false,
1440
+ "single_word": false,
1441
+ "special": true
1442
+ },
1443
+ "128180": {
1444
+ "content": "<|reserved_special_token_172|>",
1445
+ "lstrip": false,
1446
+ "normalized": false,
1447
+ "rstrip": false,
1448
+ "single_word": false,
1449
+ "special": true
1450
+ },
1451
+ "128181": {
1452
+ "content": "<|reserved_special_token_173|>",
1453
+ "lstrip": false,
1454
+ "normalized": false,
1455
+ "rstrip": false,
1456
+ "single_word": false,
1457
+ "special": true
1458
+ },
1459
+ "128182": {
1460
+ "content": "<|reserved_special_token_174|>",
1461
+ "lstrip": false,
1462
+ "normalized": false,
1463
+ "rstrip": false,
1464
+ "single_word": false,
1465
+ "special": true
1466
+ },
1467
+ "128183": {
1468
+ "content": "<|reserved_special_token_175|>",
1469
+ "lstrip": false,
1470
+ "normalized": false,
1471
+ "rstrip": false,
1472
+ "single_word": false,
1473
+ "special": true
1474
+ },
1475
+ "128184": {
1476
+ "content": "<|reserved_special_token_176|>",
1477
+ "lstrip": false,
1478
+ "normalized": false,
1479
+ "rstrip": false,
1480
+ "single_word": false,
1481
+ "special": true
1482
+ },
1483
+ "128185": {
1484
+ "content": "<|reserved_special_token_177|>",
1485
+ "lstrip": false,
1486
+ "normalized": false,
1487
+ "rstrip": false,
1488
+ "single_word": false,
1489
+ "special": true
1490
+ },
1491
+ "128186": {
1492
+ "content": "<|reserved_special_token_178|>",
1493
+ "lstrip": false,
1494
+ "normalized": false,
1495
+ "rstrip": false,
1496
+ "single_word": false,
1497
+ "special": true
1498
+ },
1499
+ "128187": {
1500
+ "content": "<|reserved_special_token_179|>",
1501
+ "lstrip": false,
1502
+ "normalized": false,
1503
+ "rstrip": false,
1504
+ "single_word": false,
1505
+ "special": true
1506
+ },
1507
+ "128188": {
1508
+ "content": "<|reserved_special_token_180|>",
1509
+ "lstrip": false,
1510
+ "normalized": false,
1511
+ "rstrip": false,
1512
+ "single_word": false,
1513
+ "special": true
1514
+ },
1515
+ "128189": {
1516
+ "content": "<|reserved_special_token_181|>",
1517
+ "lstrip": false,
1518
+ "normalized": false,
1519
+ "rstrip": false,
1520
+ "single_word": false,
1521
+ "special": true
1522
+ },
1523
+ "128190": {
1524
+ "content": "<|reserved_special_token_182|>",
1525
+ "lstrip": false,
1526
+ "normalized": false,
1527
+ "rstrip": false,
1528
+ "single_word": false,
1529
+ "special": true
1530
+ },
1531
+ "128191": {
1532
+ "content": "<|reserved_special_token_183|>",
1533
+ "lstrip": false,
1534
+ "normalized": false,
1535
+ "rstrip": false,
1536
+ "single_word": false,
1537
+ "special": true
1538
+ },
1539
+ "128192": {
1540
+ "content": "<|reserved_special_token_184|>",
1541
+ "lstrip": false,
1542
+ "normalized": false,
1543
+ "rstrip": false,
1544
+ "single_word": false,
1545
+ "special": true
1546
+ },
1547
+ "128193": {
1548
+ "content": "<|reserved_special_token_185|>",
1549
+ "lstrip": false,
1550
+ "normalized": false,
1551
+ "rstrip": false,
1552
+ "single_word": false,
1553
+ "special": true
1554
+ },
1555
+ "128194": {
1556
+ "content": "<|reserved_special_token_186|>",
1557
+ "lstrip": false,
1558
+ "normalized": false,
1559
+ "rstrip": false,
1560
+ "single_word": false,
1561
+ "special": true
1562
+ },
1563
+ "128195": {
1564
+ "content": "<|reserved_special_token_187|>",
1565
+ "lstrip": false,
1566
+ "normalized": false,
1567
+ "rstrip": false,
1568
+ "single_word": false,
1569
+ "special": true
1570
+ },
1571
+ "128196": {
1572
+ "content": "<|reserved_special_token_188|>",
1573
+ "lstrip": false,
1574
+ "normalized": false,
1575
+ "rstrip": false,
1576
+ "single_word": false,
1577
+ "special": true
1578
+ },
1579
+ "128197": {
1580
+ "content": "<|reserved_special_token_189|>",
1581
+ "lstrip": false,
1582
+ "normalized": false,
1583
+ "rstrip": false,
1584
+ "single_word": false,
1585
+ "special": true
1586
+ },
1587
+ "128198": {
1588
+ "content": "<|reserved_special_token_190|>",
1589
+ "lstrip": false,
1590
+ "normalized": false,
1591
+ "rstrip": false,
1592
+ "single_word": false,
1593
+ "special": true
1594
+ },
1595
+ "128199": {
1596
+ "content": "<|reserved_special_token_191|>",
1597
+ "lstrip": false,
1598
+ "normalized": false,
1599
+ "rstrip": false,
1600
+ "single_word": false,
1601
+ "special": true
1602
+ },
1603
+ "128200": {
1604
+ "content": "<|reserved_special_token_192|>",
1605
+ "lstrip": false,
1606
+ "normalized": false,
1607
+ "rstrip": false,
1608
+ "single_word": false,
1609
+ "special": true
1610
+ },
1611
+ "128201": {
1612
+ "content": "<|reserved_special_token_193|>",
1613
+ "lstrip": false,
1614
+ "normalized": false,
1615
+ "rstrip": false,
1616
+ "single_word": false,
1617
+ "special": true
1618
+ },
1619
+ "128202": {
1620
+ "content": "<|reserved_special_token_194|>",
1621
+ "lstrip": false,
1622
+ "normalized": false,
1623
+ "rstrip": false,
1624
+ "single_word": false,
1625
+ "special": true
1626
+ },
1627
+ "128203": {
1628
+ "content": "<|reserved_special_token_195|>",
1629
+ "lstrip": false,
1630
+ "normalized": false,
1631
+ "rstrip": false,
1632
+ "single_word": false,
1633
+ "special": true
1634
+ },
1635
+ "128204": {
1636
+ "content": "<|reserved_special_token_196|>",
1637
+ "lstrip": false,
1638
+ "normalized": false,
1639
+ "rstrip": false,
1640
+ "single_word": false,
1641
+ "special": true
1642
+ },
1643
+ "128205": {
1644
+ "content": "<|reserved_special_token_197|>",
1645
+ "lstrip": false,
1646
+ "normalized": false,
1647
+ "rstrip": false,
1648
+ "single_word": false,
1649
+ "special": true
1650
+ },
1651
+ "128206": {
1652
+ "content": "<|reserved_special_token_198|>",
1653
+ "lstrip": false,
1654
+ "normalized": false,
1655
+ "rstrip": false,
1656
+ "single_word": false,
1657
+ "special": true
1658
+ },
1659
+ "128207": {
1660
+ "content": "<|reserved_special_token_199|>",
1661
+ "lstrip": false,
1662
+ "normalized": false,
1663
+ "rstrip": false,
1664
+ "single_word": false,
1665
+ "special": true
1666
+ },
1667
+ "128208": {
1668
+ "content": "<|reserved_special_token_200|>",
1669
+ "lstrip": false,
1670
+ "normalized": false,
1671
+ "rstrip": false,
1672
+ "single_word": false,
1673
+ "special": true
1674
+ },
1675
+ "128209": {
1676
+ "content": "<|reserved_special_token_201|>",
1677
+ "lstrip": false,
1678
+ "normalized": false,
1679
+ "rstrip": false,
1680
+ "single_word": false,
1681
+ "special": true
1682
+ },
1683
+ "128210": {
1684
+ "content": "<|reserved_special_token_202|>",
1685
+ "lstrip": false,
1686
+ "normalized": false,
1687
+ "rstrip": false,
1688
+ "single_word": false,
1689
+ "special": true
1690
+ },
1691
+ "128211": {
1692
+ "content": "<|reserved_special_token_203|>",
1693
+ "lstrip": false,
1694
+ "normalized": false,
1695
+ "rstrip": false,
1696
+ "single_word": false,
1697
+ "special": true
1698
+ },
1699
+ "128212": {
1700
+ "content": "<|reserved_special_token_204|>",
1701
+ "lstrip": false,
1702
+ "normalized": false,
1703
+ "rstrip": false,
1704
+ "single_word": false,
1705
+ "special": true
1706
+ },
1707
+ "128213": {
1708
+ "content": "<|reserved_special_token_205|>",
1709
+ "lstrip": false,
1710
+ "normalized": false,
1711
+ "rstrip": false,
1712
+ "single_word": false,
1713
+ "special": true
1714
+ },
1715
+ "128214": {
1716
+ "content": "<|reserved_special_token_206|>",
1717
+ "lstrip": false,
1718
+ "normalized": false,
1719
+ "rstrip": false,
1720
+ "single_word": false,
1721
+ "special": true
1722
+ },
1723
+ "128215": {
1724
+ "content": "<|reserved_special_token_207|>",
1725
+ "lstrip": false,
1726
+ "normalized": false,
1727
+ "rstrip": false,
1728
+ "single_word": false,
1729
+ "special": true
1730
+ },
1731
+ "128216": {
1732
+ "content": "<|reserved_special_token_208|>",
1733
+ "lstrip": false,
1734
+ "normalized": false,
1735
+ "rstrip": false,
1736
+ "single_word": false,
1737
+ "special": true
1738
+ },
1739
+ "128217": {
1740
+ "content": "<|reserved_special_token_209|>",
1741
+ "lstrip": false,
1742
+ "normalized": false,
1743
+ "rstrip": false,
1744
+ "single_word": false,
1745
+ "special": true
1746
+ },
1747
+ "128218": {
1748
+ "content": "<|reserved_special_token_210|>",
1749
+ "lstrip": false,
1750
+ "normalized": false,
1751
+ "rstrip": false,
1752
+ "single_word": false,
1753
+ "special": true
1754
+ },
1755
+ "128219": {
1756
+ "content": "<|reserved_special_token_211|>",
1757
+ "lstrip": false,
1758
+ "normalized": false,
1759
+ "rstrip": false,
1760
+ "single_word": false,
1761
+ "special": true
1762
+ },
1763
+ "128220": {
1764
+ "content": "<|reserved_special_token_212|>",
1765
+ "lstrip": false,
1766
+ "normalized": false,
1767
+ "rstrip": false,
1768
+ "single_word": false,
1769
+ "special": true
1770
+ },
1771
+ "128221": {
1772
+ "content": "<|reserved_special_token_213|>",
1773
+ "lstrip": false,
1774
+ "normalized": false,
1775
+ "rstrip": false,
1776
+ "single_word": false,
1777
+ "special": true
1778
+ },
1779
+ "128222": {
1780
+ "content": "<|reserved_special_token_214|>",
1781
+ "lstrip": false,
1782
+ "normalized": false,
1783
+ "rstrip": false,
1784
+ "single_word": false,
1785
+ "special": true
1786
+ },
1787
+ "128223": {
1788
+ "content": "<|reserved_special_token_215|>",
1789
+ "lstrip": false,
1790
+ "normalized": false,
1791
+ "rstrip": false,
1792
+ "single_word": false,
1793
+ "special": true
1794
+ },
1795
+ "128224": {
1796
+ "content": "<|reserved_special_token_216|>",
1797
+ "lstrip": false,
1798
+ "normalized": false,
1799
+ "rstrip": false,
1800
+ "single_word": false,
1801
+ "special": true
1802
+ },
1803
+ "128225": {
1804
+ "content": "<|reserved_special_token_217|>",
1805
+ "lstrip": false,
1806
+ "normalized": false,
1807
+ "rstrip": false,
1808
+ "single_word": false,
1809
+ "special": true
1810
+ },
1811
+ "128226": {
1812
+ "content": "<|reserved_special_token_218|>",
1813
+ "lstrip": false,
1814
+ "normalized": false,
1815
+ "rstrip": false,
1816
+ "single_word": false,
1817
+ "special": true
1818
+ },
1819
+ "128227": {
1820
+ "content": "<|reserved_special_token_219|>",
1821
+ "lstrip": false,
1822
+ "normalized": false,
1823
+ "rstrip": false,
1824
+ "single_word": false,
1825
+ "special": true
1826
+ },
1827
+ "128228": {
1828
+ "content": "<|reserved_special_token_220|>",
1829
+ "lstrip": false,
1830
+ "normalized": false,
1831
+ "rstrip": false,
1832
+ "single_word": false,
1833
+ "special": true
1834
+ },
1835
+ "128229": {
1836
+ "content": "<|reserved_special_token_221|>",
1837
+ "lstrip": false,
1838
+ "normalized": false,
1839
+ "rstrip": false,
1840
+ "single_word": false,
1841
+ "special": true
1842
+ },
1843
+ "128230": {
1844
+ "content": "<|reserved_special_token_222|>",
1845
+ "lstrip": false,
1846
+ "normalized": false,
1847
+ "rstrip": false,
1848
+ "single_word": false,
1849
+ "special": true
1850
+ },
1851
+ "128231": {
1852
+ "content": "<|reserved_special_token_223|>",
1853
+ "lstrip": false,
1854
+ "normalized": false,
1855
+ "rstrip": false,
1856
+ "single_word": false,
1857
+ "special": true
1858
+ },
1859
+ "128232": {
1860
+ "content": "<|reserved_special_token_224|>",
1861
+ "lstrip": false,
1862
+ "normalized": false,
1863
+ "rstrip": false,
1864
+ "single_word": false,
1865
+ "special": true
1866
+ },
1867
+ "128233": {
1868
+ "content": "<|reserved_special_token_225|>",
1869
+ "lstrip": false,
1870
+ "normalized": false,
1871
+ "rstrip": false,
1872
+ "single_word": false,
1873
+ "special": true
1874
+ },
1875
+ "128234": {
1876
+ "content": "<|reserved_special_token_226|>",
1877
+ "lstrip": false,
1878
+ "normalized": false,
1879
+ "rstrip": false,
1880
+ "single_word": false,
1881
+ "special": true
1882
+ },
1883
+ "128235": {
1884
+ "content": "<|reserved_special_token_227|>",
1885
+ "lstrip": false,
1886
+ "normalized": false,
1887
+ "rstrip": false,
1888
+ "single_word": false,
1889
+ "special": true
1890
+ },
1891
+ "128236": {
1892
+ "content": "<|reserved_special_token_228|>",
1893
+ "lstrip": false,
1894
+ "normalized": false,
1895
+ "rstrip": false,
1896
+ "single_word": false,
1897
+ "special": true
1898
+ },
1899
+ "128237": {
1900
+ "content": "<|reserved_special_token_229|>",
1901
+ "lstrip": false,
1902
+ "normalized": false,
1903
+ "rstrip": false,
1904
+ "single_word": false,
1905
+ "special": true
1906
+ },
1907
+ "128238": {
1908
+ "content": "<|reserved_special_token_230|>",
1909
+ "lstrip": false,
1910
+ "normalized": false,
1911
+ "rstrip": false,
1912
+ "single_word": false,
1913
+ "special": true
1914
+ },
1915
+ "128239": {
1916
+ "content": "<|reserved_special_token_231|>",
1917
+ "lstrip": false,
1918
+ "normalized": false,
1919
+ "rstrip": false,
1920
+ "single_word": false,
1921
+ "special": true
1922
+ },
1923
+ "128240": {
1924
+ "content": "<|reserved_special_token_232|>",
1925
+ "lstrip": false,
1926
+ "normalized": false,
1927
+ "rstrip": false,
1928
+ "single_word": false,
1929
+ "special": true
1930
+ },
1931
+ "128241": {
1932
+ "content": "<|reserved_special_token_233|>",
1933
+ "lstrip": false,
1934
+ "normalized": false,
1935
+ "rstrip": false,
1936
+ "single_word": false,
1937
+ "special": true
1938
+ },
1939
+ "128242": {
1940
+ "content": "<|reserved_special_token_234|>",
1941
+ "lstrip": false,
1942
+ "normalized": false,
1943
+ "rstrip": false,
1944
+ "single_word": false,
1945
+ "special": true
1946
+ },
1947
+ "128243": {
1948
+ "content": "<|reserved_special_token_235|>",
1949
+ "lstrip": false,
1950
+ "normalized": false,
1951
+ "rstrip": false,
1952
+ "single_word": false,
1953
+ "special": true
1954
+ },
1955
+ "128244": {
1956
+ "content": "<|reserved_special_token_236|>",
1957
+ "lstrip": false,
1958
+ "normalized": false,
1959
+ "rstrip": false,
1960
+ "single_word": false,
1961
+ "special": true
1962
+ },
1963
+ "128245": {
1964
+ "content": "<|reserved_special_token_237|>",
1965
+ "lstrip": false,
1966
+ "normalized": false,
1967
+ "rstrip": false,
1968
+ "single_word": false,
1969
+ "special": true
1970
+ },
1971
+ "128246": {
1972
+ "content": "<|reserved_special_token_238|>",
1973
+ "lstrip": false,
1974
+ "normalized": false,
1975
+ "rstrip": false,
1976
+ "single_word": false,
1977
+ "special": true
1978
+ },
1979
+ "128247": {
1980
+ "content": "<|reserved_special_token_239|>",
1981
+ "lstrip": false,
1982
+ "normalized": false,
1983
+ "rstrip": false,
1984
+ "single_word": false,
1985
+ "special": true
1986
+ },
1987
+ "128248": {
1988
+ "content": "<|reserved_special_token_240|>",
1989
+ "lstrip": false,
1990
+ "normalized": false,
1991
+ "rstrip": false,
1992
+ "single_word": false,
1993
+ "special": true
1994
+ },
1995
+ "128249": {
1996
+ "content": "<|reserved_special_token_241|>",
1997
+ "lstrip": false,
1998
+ "normalized": false,
1999
+ "rstrip": false,
2000
+ "single_word": false,
2001
+ "special": true
2002
+ },
2003
+ "128250": {
2004
+ "content": "<|reserved_special_token_242|>",
2005
+ "lstrip": false,
2006
+ "normalized": false,
2007
+ "rstrip": false,
2008
+ "single_word": false,
2009
+ "special": true
2010
+ },
2011
+ "128251": {
2012
+ "content": "<|reserved_special_token_243|>",
2013
+ "lstrip": false,
2014
+ "normalized": false,
2015
+ "rstrip": false,
2016
+ "single_word": false,
2017
+ "special": true
2018
+ },
2019
+ "128252": {
2020
+ "content": "<|reserved_special_token_244|>",
2021
+ "lstrip": false,
2022
+ "normalized": false,
2023
+ "rstrip": false,
2024
+ "single_word": false,
2025
+ "special": true
2026
+ },
2027
+ "128253": {
2028
+ "content": "<|reserved_special_token_245|>",
2029
+ "lstrip": false,
2030
+ "normalized": false,
2031
+ "rstrip": false,
2032
+ "single_word": false,
2033
+ "special": true
2034
+ },
2035
+ "128254": {
2036
+ "content": "<|reserved_special_token_246|>",
2037
+ "lstrip": false,
2038
+ "normalized": false,
2039
+ "rstrip": false,
2040
+ "single_word": false,
2041
+ "special": true
2042
+ },
2043
+ "128255": {
2044
+ "content": "<|reserved_special_token_247|>",
2045
+ "lstrip": false,
2046
+ "normalized": false,
2047
+ "rstrip": false,
2048
+ "single_word": false,
2049
+ "special": true
2050
+ }
2051
+ },
2052
+ "bos_token": "<|begin_of_text|>",
2053
+ "chat_template": "{{- bos_token }}\n{%- if custom_tools is defined %}\n {%- set tools = custom_tools %}\n{%- endif %}\n{%- if not tools_in_user_message is defined %}\n {%- set tools_in_user_message = true %}\n{%- endif %}\n{%- if not date_string is defined %}\n {%- set date_string = \"26 Jul 2024\" %}\n{%- endif %}\n{%- if not tools is defined %}\n {%- set tools = none %}\n{%- endif %}\n\n{#- This block extracts the system message, so we can slot it into the right place. #}\n{%- if messages[0]['role'] == 'system' %}\n {%- set system_message = messages[0]['content']|trim %}\n {%- set messages = messages[1:] %}\n{%- else %}\n {%- set system_message = \"\" %}\n{%- endif %}\n\n{#- System message + builtin tools #}\n{{- \"<|start_header_id|>system<|end_header_id|>\\n\\n\" }}\n{%- if builtin_tools is defined or tools is not none %}\n {{- \"Environment: ipython\\n\" }}\n{%- endif %}\n{%- if builtin_tools is defined %}\n {{- \"Tools: \" + builtin_tools | reject('equalto', 'code_interpreter') | join(\", \") + \"\\n\\n\"}}\n{%- endif %}\n{{- \"Cutting Knowledge Date: December 2023\\n\" }}\n{{- \"Today Date: \" + date_string + \"\\n\\n\" }}\n{%- if tools is not none and not tools_in_user_message %}\n {{- \"You have access to the following functions. To call a function, please respond with JSON for a function call.\" }}\n {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n {{- \"Do not use variables.\\n\\n\" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- \"\\n\\n\" }}\n {%- endfor %}\n{%- endif %}\n{{- system_message }}\n{{- \"<|eot_id|>\" }}\n\n{#- Custom tools are passed in a user message with some extra guidance #}\n{%- if tools_in_user_message and not tools is none %}\n {#- Extract the first user message so we can plug it in here #}\n {%- if messages | length != 0 %}\n {%- set first_user_message = messages[0]['content']|trim %}\n {%- set messages = messages[1:] %}\n {%- else %}\n {{- raise_exception(\"Cannot put tools in the first user message when there's no first user message!\") }}\n{%- endif %}\n {{- '<|start_header_id|>user<|end_header_id|>\\n\\n' -}}\n {{- \"Given the following functions, please respond with a JSON for a function call \" }}\n {{- \"with its proper arguments that best answers the given prompt.\\n\\n\" }}\n {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n {{- \"Do not use variables.\\n\\n\" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- \"\\n\\n\" }}\n {%- endfor %}\n {{- first_user_message + \"<|eot_id|>\"}}\n{%- endif %}\n\n{%- for message in messages %}\n {%- if not (message.role == 'ipython' or message.role == 'tool' or 'tool_calls' in message) %}\n {{- '<|start_header_id|>' + message['role'] + '<|end_header_id|>\\n\\n'+ message['content'] | trim + '<|eot_id|>' }}\n {%- elif 'tool_calls' in message %}\n {%- if not message.tool_calls|length == 1 %}\n {{- raise_exception(\"This model only supports single tool-calls at once!\") }}\n {%- endif %}\n {%- set tool_call = message.tool_calls[0].function %}\n {%- if builtin_tools is defined and tool_call.name in builtin_tools %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' -}}\n {{- \"<|python_tag|>\" + tool_call.name + \".call(\" }}\n {%- for arg_name, arg_val in tool_call.arguments | items %}\n {{- arg_name + '=\"' + arg_val + '\"' }}\n {%- if not loop.last %}\n {{- \", \" }}\n {%- endif %}\n {%- endfor %}\n {{- \")\" }}\n {%- else %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' -}}\n {{- '{\"name\": \"' + tool_call.name + '\", ' }}\n {{- '\"parameters\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- \"}\" }}\n {%- endif %}\n {%- if builtin_tools is defined %}\n {#- This means we're in ipython mode #}\n {{- \"<|eom_id|>\" }}\n {%- else %}\n {{- \"<|eot_id|>\" }}\n {%- endif %}\n {%- elif message.role == \"tool\" or message.role == \"ipython\" %}\n {{- \"<|start_header_id|>ipython<|end_header_id|>\\n\\n\" }}\n {%- if message.content is mapping or message.content is iterable %}\n {{- message.content | tojson }}\n {%- else %}\n {{- message.content }}\n {%- endif %}\n {{- \"<|eot_id|>\" }}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' }}\n{%- endif %}\n",
2054
+ "clean_up_tokenization_spaces": true,
2055
+ "eos_token": "<|eot_id|>",
2056
+ "extra_special_tokens": {},
2057
+ "model_input_names": [
2058
+ "input_ids",
2059
+ "attention_mask"
2060
+ ],
2061
+ "model_max_length": 131072,
2062
+ "pad_token": "<|finetune_right_pad_id|>",
2063
+ "tokenizer_class": "PreTrainedTokenizerFast"
2064
+ }