first commit
Browse files- README.md +78 -0
- config.json +39 -0
- convert_flax_to_pytorch.py +3 -0
- convert_pytorch_to_flax.py +3 -0
- convert_pytorch_to_tensorflow.py +3 -0
- flax_model.msgpack +3 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +1 -0
- tf_model.h5 +3 -0
- tokenizer_config.json +1 -0
- vocab.txt +0 -0
README.md
ADDED
|
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language:
|
| 3 |
+
- en
|
| 4 |
+
thumbnail: https://avatars3.githubusercontent.com/u/32437151?s=460&u=4ec59abc8d21d5feea3dab323d23a5860e6996a4&v=4
|
| 5 |
+
tags:
|
| 6 |
+
- text-classification
|
| 7 |
+
- emotion
|
| 8 |
+
- pytorch
|
| 9 |
+
license: apache-2.0
|
| 10 |
+
datasets:
|
| 11 |
+
- emotion
|
| 12 |
+
metrics:
|
| 13 |
+
- Accuracy, F1 Score
|
| 14 |
+
---
|
| 15 |
+
# Distilbert-base-uncased-emotion
|
| 16 |
+
|
| 17 |
+
## Model description:
|
| 18 |
+
[Distilbert](https://arxiv.org/abs/1910.01108) is created with knowledge distillation during the pre-training phase which reduces the size of a BERT model by 40%, while retaining 97% of its language understanding. It's smaller, faster than Bert and any other Bert-based model.
|
| 19 |
+
|
| 20 |
+
[Distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) finetuned on the emotion dataset using HuggingFace Trainer with below Hyperparameters
|
| 21 |
+
```
|
| 22 |
+
learning rate 2e-5,
|
| 23 |
+
batch size 64,
|
| 24 |
+
num_train_epochs=8,
|
| 25 |
+
```
|
| 26 |
+
|
| 27 |
+
## Model Performance Comparision on Emotion Dataset from Twitter:
|
| 28 |
+
|
| 29 |
+
| Model | Accuracy | F1 Score | Test Sample per Second |
|
| 30 |
+
| --- | --- | --- | --- |
|
| 31 |
+
| [Distilbert-base-uncased-emotion](https://huggingface.co/bhadresh-savani/distilbert-base-uncased-emotion) | 93.8 | 93.79 | 398.69 |
|
| 32 |
+
| [Bert-base-uncased-emotion](https://huggingface.co/bhadresh-savani/bert-base-uncased-emotion) | 94.05 | 94.06 | 190.152 |
|
| 33 |
+
| [Roberta-base-emotion](https://huggingface.co/bhadresh-savani/roberta-base-emotion) | 93.95 | 93.97| 195.639 |
|
| 34 |
+
| [Albert-base-v2-emotion](https://huggingface.co/bhadresh-savani/albert-base-v2-emotion) | 93.6 | 93.65 | 182.794 |
|
| 35 |
+
|
| 36 |
+
## How to Use the model:
|
| 37 |
+
```python
|
| 38 |
+
from transformers import pipeline
|
| 39 |
+
classifier = pipeline("text-classification",model='bhadresh-savani/distilbert-base-uncased-emotion', return_all_scores=True)
|
| 40 |
+
prediction = classifier("I love using transformers. The best part is wide range of support and its easy to use", )
|
| 41 |
+
print(prediction)
|
| 42 |
+
|
| 43 |
+
"""
|
| 44 |
+
Output:
|
| 45 |
+
[[
|
| 46 |
+
{'label': 'sadness', 'score': 0.0006792712374590337},
|
| 47 |
+
{'label': 'joy', 'score': 0.9959300756454468},
|
| 48 |
+
{'label': 'love', 'score': 0.0009452480007894337},
|
| 49 |
+
{'label': 'anger', 'score': 0.0018055217806249857},
|
| 50 |
+
{'label': 'fear', 'score': 0.00041110432357527316},
|
| 51 |
+
{'label': 'surprise', 'score': 0.0002288572577526793}
|
| 52 |
+
]]
|
| 53 |
+
"""
|
| 54 |
+
```
|
| 55 |
+
|
| 56 |
+
## Dataset:
|
| 57 |
+
[Twitter-Sentiment-Analysis](https://huggingface.co/nlp/viewer/?dataset=emotion).
|
| 58 |
+
|
| 59 |
+
## Training procedure
|
| 60 |
+
[Colab Notebook](https://github.com/bhadreshpsavani/ExploringSentimentalAnalysis/blob/main/SentimentalAnalysisWithDistilbert.ipynb)
|
| 61 |
+
|
| 62 |
+
## Eval results
|
| 63 |
+
```json
|
| 64 |
+
{
|
| 65 |
+
'test_accuracy': 0.938,
|
| 66 |
+
'test_f1': 0.937932884041714,
|
| 67 |
+
'test_loss': 0.1472451239824295,
|
| 68 |
+
'test_mem_cpu_alloc_delta': 0,
|
| 69 |
+
'test_mem_cpu_peaked_delta': 0,
|
| 70 |
+
'test_mem_gpu_alloc_delta': 0,
|
| 71 |
+
'test_mem_gpu_peaked_delta': 163454464,
|
| 72 |
+
'test_runtime': 5.0164,
|
| 73 |
+
'test_samples_per_second': 398.69
|
| 74 |
+
}
|
| 75 |
+
```
|
| 76 |
+
|
| 77 |
+
## Reference:
|
| 78 |
+
* [Natural Language Processing with Transformer By Lewis Tunstall, Leandro von Werra, Thomas Wolf](https://learning.oreilly.com/library/view/natural-language-processing/9781098103231/)
|
config.json
ADDED
|
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "./",
|
| 3 |
+
"activation": "gelu",
|
| 4 |
+
"architectures": [
|
| 5 |
+
"DistilBertForSequenceClassification"
|
| 6 |
+
],
|
| 7 |
+
"attention_dropout": 0.1,
|
| 8 |
+
"dim": 768,
|
| 9 |
+
"dropout": 0.1,
|
| 10 |
+
"hidden_dim": 3072,
|
| 11 |
+
"id2label": {
|
| 12 |
+
"0": "sadness",
|
| 13 |
+
"1": "joy",
|
| 14 |
+
"2": "love",
|
| 15 |
+
"3": "anger",
|
| 16 |
+
"4": "fear",
|
| 17 |
+
"5": "surprise"
|
| 18 |
+
},
|
| 19 |
+
"initializer_range": 0.02,
|
| 20 |
+
"label2id": {
|
| 21 |
+
"anger": 3,
|
| 22 |
+
"fear": 4,
|
| 23 |
+
"joy": 1,
|
| 24 |
+
"love": 2,
|
| 25 |
+
"sadness": 0,
|
| 26 |
+
"surprise": 5
|
| 27 |
+
},
|
| 28 |
+
"max_position_embeddings": 512,
|
| 29 |
+
"model_type": "distilbert",
|
| 30 |
+
"n_heads": 12,
|
| 31 |
+
"n_layers": 6,
|
| 32 |
+
"pad_token_id": 0,
|
| 33 |
+
"qa_dropout": 0.1,
|
| 34 |
+
"seq_classif_dropout": 0.2,
|
| 35 |
+
"sinusoidal_pos_embds": false,
|
| 36 |
+
"tie_weights_": true,
|
| 37 |
+
"transformers_version": "4.11.0.dev0",
|
| 38 |
+
"vocab_size": 30522
|
| 39 |
+
}
|
convert_flax_to_pytorch.py
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import AutoModelForSequenceClassification
|
| 2 |
+
model = AutoModelForSequenceClassification.from_pretrained("./", from_flax=True)
|
| 3 |
+
model.save_pretrained("./")
|
convert_pytorch_to_flax.py
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import FlaxAutoModelForSequenceClassification
|
| 2 |
+
model = FlaxAutoModelForSequenceClassification.from_pretrained("./", from_pt=True)
|
| 3 |
+
model.save_pretrained("./")
|
convert_pytorch_to_tensorflow.py
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import TFAutoModelForSequenceClassification
|
| 2 |
+
model = TFAutoModelForSequenceClassification.from_pretrained("./", from_pt=True)
|
| 3 |
+
model.save_pretrained("./")
|
flax_model.msgpack
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d925341280e22bf3041ac1cd44bc7e00b7ca267add097a8ffe14238b9e067826
|
| 3 |
+
size 267836005
|
pytorch_model.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:5aa7398d830fcc94f95af88d7cc3013813668cfc58a07d75a8116cfd8af75c4d
|
| 3 |
+
size 267875479
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]"}
|
tf_model.h5
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:abd2741ba3b64886080d795f4b58771f4a1597b8ea8ae2b6cad9ef2e2357a0c3
|
| 3 |
+
size 267964184
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"do_lower_case": true, "unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]", "tokenize_chinese_chars": true, "strip_accents": null, "model_max_length": 512, "special_tokens_map_file": null, "name_or_path": "distilbert-base-uncased"}
|
vocab.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|