File size: 8,734 Bytes
d3dbf03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
#!/usr/bin/env python
import re
import shutil
from collections import defaultdict
from pathlib import Path

from modelindex.load_model_index import load
from modelindex.models.Result import Result
from tabulate import tabulate
from utils import replace_link

MMACT_ROOT = Path(__file__).absolute().parents[2]
PAPERS_ROOT = Path('model_zoo')  # Path to save generated paper pages.
GITHUB_PREFIX = 'https://github.com/open-mmlab/mmaction2/blob/main/'
MODELZOO_TEMPLATE = """\

# Model Zoo Summary



In this page, we list [all algorithms](#all-supported-algorithms) we support. You can click the link to jump to the corresponding model pages.



And we also list all checkpoints for different tasks we provide. You can sort or search checkpoints in the table and click the corresponding link to model pages for more details.



## All supported algorithms



* Number of papers: {num_papers}

{type_msg}



* Number of checkpoints: {num_ckpts}

{paper_msg}



"""  # noqa: E501

METRIC_ALIAS = {
    'Top 1 Accuracy': 'Top-1 (%)',
    'Top 5 Accuracy': 'Top-5 (%)',
}

TASK_MAP = dict(
    detection='Spatio Temporal Action Detection Models',
    localization='Action Localization Models',
    recognition='Action Recognition Models',
    skeleton='Skeleton-based Action Recognition Models',
    retrieval='Video Retrieval Models',
    recognition_audio='Audio-based Action Recognition Models')

model_index = load(str(MMACT_ROOT / 'model-index.yml'))


def build_collections(model_index):
    # add models for collections
    col_by_name = {}
    for col in model_index.collections:
        setattr(col, 'models', [])
        col_by_name[col.name] = col

    for model in model_index.models:
        col = col_by_name[model.in_collection]
        col.models.append(model)
        setattr(model, 'collection', col)
        if model.results is None:
            setattr(model, 'tasks', [])
        else:
            setattr(model, 'tasks', [result.task for result in model.results])


build_collections(model_index)

# save a map from model name to title in README
model2title = dict()


def count_papers(collections):
    total_num_ckpts = 0
    type_count = defaultdict(int)
    paper_msgs = []

    for collection in collections:
        with open(MMACT_ROOT / collection.readme) as f:
            readme = f.read()

        ckpts = set(x.lower().strip()
                    for x in re.findall(r'\[ckpt.*\]\((https?.*)\)', readme))
        total_num_ckpts += len(ckpts)
        title = collection.paper['Title']
        papertype = collection.data.get('type', 'Algorithm')
        type_count[papertype] += 1

        readme_title = re.search(r'^#\s+.+', readme)

        readme = Path(collection.filepath).parents[1].with_suffix('.md').name
        model = Path(collection.filepath).parent.name
        model2title[model] = readme_title.group()[2:].replace(' ', '-')
        paper_msgs.append(f'\t- [{papertype}] [{title}]({PAPERS_ROOT / readme}'
                          f'#{model2title[model]}) ({len(ckpts)} ckpts)')

    type_msg = '\n'.join(
        [f'\t- {type_}: {count}' for type_, count in type_count.items()])
    paper_msg = '\n'.join(paper_msgs)

    modelzoo = MODELZOO_TEMPLATE.format(
        num_papers=len(collections),
        num_ckpts=total_num_ckpts,
        type_msg=type_msg,
        paper_msg=paper_msg,
    )

    with open('modelzoo_statistics.md', 'w') as f:
        f.write(modelzoo)


count_papers(model_index.collections)


def generate_paper_page(collection):

    # Write a copy of README
    with open(MMACT_ROOT / collection.readme) as f:
        content = f.read()
    readme_path = Path(collection.filepath)
    copy = PAPERS_ROOT / readme_path.parents[1].with_suffix('.md').name
    if not copy.exists():
        with open(copy, 'w') as copy_file:
            task = readme_path.parents[1].name
            head_content = f'# {TASK_MAP[task]}\n'
            copy_file.write(head_content)

    def lower_heading(match):
        return '#' + match.group()

    content = replace_link(r'\[([^\]]+)\]\(([^)]+)\)', '[{}]({})', content,
                           Path(collection.readme))
    content = replace_link(r'\[([^\]]+)\]: (.*)', '[{}]: {}', content,
                           Path(collection.readme))

    content = re.sub(r'^#+\s+.+', lower_heading, content, flags=re.M)

    with open(copy, 'a') as copy_file:
        copy_file.write(content)


if PAPERS_ROOT.exists():
    shutil.rmtree(PAPERS_ROOT)
PAPERS_ROOT.mkdir(exist_ok=True)
for collection in model_index.collections:
    generate_paper_page(collection)


def scatter_results(models):
    model_result_pairs = []
    for model in models:
        if model.results is None:
            result = Result(task=None, dataset=None, metrics={})
            model_result_pairs.append((model, result))
        else:
            for result in model.results:
                model_result_pairs.append((model, result))
    return model_result_pairs


def generate_summary_table(task, model_result_pairs, title=None):
    metrics = set()
    for model, result in model_result_pairs:
        if result.task == task:
            metrics = metrics.union(result.metrics.keys())
    metrics = sorted(list(metrics))

    rows = []

    def convert2float(number):
        units = {'M': 1e6, 'G': 1e9, 'T': 1e12}
        if isinstance(number, str):
            num = float(number.rstrip('MGT'))
            number = num * units[number[-1]]
        return number

    for model, result in model_result_pairs:
        if result.task != task:
            continue
        name = model.name
        if model.metadata.parameters is not None:
            params = convert2float(model.metadata.parameters)
            params = f'{params / 1e6:.2f}'  # Params
        else:
            params = None
        if model.metadata.flops is not None:
            flops = convert2float(model.metadata.flops)
            flops = f'{flops / 1e9:.2f}'  # Flops
        else:
            flops = None

        readme = Path(
            model.collection.filepath).parents[1].with_suffix('.md').name
        model = Path(model.collection.filepath).parent.name
        page = f'[link]({PAPERS_ROOT / readme}#{model2title[model]})'
        model_metrics = []
        for metric in metrics:
            model_metrics.append(str(result.metrics.get(metric, '')))

        rows.append([name, params, flops, *model_metrics, page])

    with open('modelzoo_statistics.md', 'a') as f:
        if title is not None:
            f.write(f'\n{title}')
        f.write("""\n```{table}\n:class: model-summary\n""")
        header = [
            'Model',
            'Params (M)',
            'Flops (G)',
            *[METRIC_ALIAS.get(metric, metric) for metric in metrics],
            'Readme',
        ]
        table_cfg = dict(
            tablefmt='pipe',
            floatfmt='.2f',
            numalign='right',
            stralign='center')
        f.write(tabulate(rows, header, **table_cfg))
        f.write('\n```\n')


def generate_dataset_wise_table(task, model_result_pairs, title=None):
    dataset_rows = defaultdict(list)
    for model, result in model_result_pairs:
        if result.task == task:
            dataset_rows[result.dataset].append((model, result))

    if title is not None:
        with open('modelzoo_statistics.md', 'a') as f:
            f.write(f'\n{title}')
    for dataset, pairs in dataset_rows.items():
        generate_summary_table(task, pairs, title=f'### {dataset}')


model_result_pairs = scatter_results(model_index.models)

# Generate Action Recognition Summary
generate_dataset_wise_table(
    task='Action Recognition',
    model_result_pairs=model_result_pairs,
    title='## Action Recognition',
)

# Generate Action Detection Summary
generate_dataset_wise_table(
    task='Action Detection',
    model_result_pairs=model_result_pairs,
    title='## Action Detection',
)

# Generate Skeleton-based Action Recognition Summary
generate_dataset_wise_table(
    task='Skeleton-based Action Recognition',
    model_result_pairs=model_result_pairs,
    title='## Skeleton-based Action Recognition',
)

# Generate Video Retrieval Summary
generate_dataset_wise_table(
    task='Video Retrieval',
    model_result_pairs=model_result_pairs,
    title='## Video Retrieval',
)

# Generate Temporal Action Localization Summary
generate_dataset_wise_table(
    task='Temporal Action Localization',
    model_result_pairs=model_result_pairs,
    title='## Temporal Action Localization',
)