File size: 10,882 Bytes
d3dbf03 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 |
# Finetuning Models
This tutorial provides instructions for users to use the pre-trained models
to finetune them on other datasets, so that better performance can be achieved.
- [Finetuning Models](#finetuning-models)
- [Outline](#outline)
- [Choose Template Config](#choose-template-config)
- [Modify Head](#modify-head)
- [Modify Dataset](#modify-dataset)
- [Modify Training Schedule](#modify-training-schedule)
- [Use Pre-Trained Model](#use-pre-trained-model)
- [Start Training](#start-training)
## Outline
There are two steps to finetune a model on a new dataset.
1. Add support for the new dataset. See [Prepare Dataset](prepare_dataset.md) and [Customize Dataset](../advanced_guides/customize_dataset.md).
2. Modify the configs. This will be discussed in this tutorial.
## Choose Template Config
Here, we would like to take `configs/recognition/tsn/tsn_imagenet-pretrained-r50_8xb32-1x1x3-100e_kinetics400-rgb.py` as an example. We first copy this config file to the same folder and rename it to `tsn_ucf101.py`, then four parts in the config need attention, specifically, add new keys for non-existing keys and modify the original keys for existing keys.
## Modify Head
The `num_classes` in the `cls_head` need to be changed to the class number of the new dataset.
The weights of the pre-trained models are reused except for the final prediction layer.
So it is safe to change the class number.
In our case, UCF101 has 101 classes.
So we change it from 400 (class number of Kinetics-400) to 101.
```python
# model settings
model = dict(
cls_head=dict(
type='TSNHead',
num_classes=101 # change from 400 to 101
))
```
## Modify Dataset
MMAction2 supports UCF101, Kinetics-400, Moments in Time, Multi-Moments in Time, THUMOS14,
Something-Something V1&V2, ActivityNet Dataset.
The users may need to adapt one of the above datasets to fit their special datasets.
You could refer to [Prepare Dataset](prepare_dataset.md) and [Customize Dataset](../advanced_guides/customize_dataset.md) for more details.
In our case, UCF101 is already supported by various dataset types, like `VideoDataset`,
so we change the config as follows.
```python
# dataset settings
dataset_type = 'VideoDataset'
data_root = 'data/ucf101/videos_train/'
data_root_val = 'data/ucf101/videos_val/'
ann_file_train = 'data/ucf101/ucf101_train_list.txt'
ann_file_val = 'data/ucf101/ucf101_val_list.txt'
```
## Modify Training Schedule
Finetuning usually requires a smaller learning rate and fewer training epochs.
```python
train_cfg = dict(
type='EpochBasedTrainLoop',
max_epochs=50, # change from 100 to 50
val_begin=1,
val_interval=1)
val_cfg = dict(type='ValLoop')
test_cfg = dict(type='TestLoop')
# learning policy
param_scheduler = [
dict(
type='MultiStepLR',
begin=0,
end=50, # change from 100 to 50
by_epoch=True,
milestones=[20, 40], # change milestones
gamma=0.1)
]
# optimizer
optim_wrapper = dict(
optimizer=dict(
type='SGD',
lr=0.005, # change from 0.01 to 0.005
momentum=0.9,
weight_decay=0.0001),
clip_grad=dict(max_norm=40, norm_type=2))
```
## Use Pre-Trained Model
To use the pre-trained model for the whole network, the new config adds the link of pre-trained models in the `load_from`.
We set `load_from=None` as default in `configs/_base_/default_runtime.py` and owing to [inheritance design](config.md), users can directly change it by setting `load_from` in their configs.
```python
# use the pre-trained model for the whole TSN network
load_from = 'https://download.openmmlab.com/mmaction/v1.0/recognition/tsn/tsn_imagenet-pretrained-r50_8xb32-1x1x3-100e_kinetics400-rgb/tsn_imagenet-pretrained-r50_8xb32-1x1x3-100e_kinetics400-rgb_20220906-cd10898e.pth' # model path can be found in model zoo
```
## Start Training
Now, we have finished the fine-tuning config file as follows:
```python
_base_ = [
'../../_base_/models/tsn_r50.py', '../../_base_/schedules/sgd_100e.py',
'../../_base_/default_runtime.py'
]
# model settings
model = dict(
cls_head=dict(
type='TSNHead',
num_classes=101 # change from 400 to 101
))
# dataset settings
dataset_type = 'VideoDataset'
data_root = 'data/ucf101/videos_train/'
data_root_val = 'data/ucf101/videos_val/'
ann_file_train = 'data/ucf101/ucf101_train_list.txt'
ann_file_val = 'data/ucf101/ucf101_val_list.txt'
file_client_args = dict(io_backend='disk')
train_pipeline = [
dict(type='DecordInit', **file_client_args),
dict(type='SampleFrames', clip_len=1, frame_interval=1, num_clips=3),
dict(type='DecordDecode'),
dict(type='Resize', scale=(-1, 256)),
dict(
type='MultiScaleCrop',
input_size=224,
scales=(1, 0.875, 0.75, 0.66),
random_crop=False,
max_wh_scale_gap=1),
dict(type='Resize', scale=(224, 224), keep_ratio=False),
dict(type='Flip', flip_ratio=0.5),
dict(type='FormatShape', input_format='NCHW'),
dict(type='PackActionInputs')
]
val_pipeline = [
dict(type='DecordInit', **file_client_args),
dict(
type='SampleFrames',
clip_len=1,
frame_interval=1,
num_clips=3,
test_mode=True),
dict(type='DecordDecode'),
dict(type='Resize', scale=(-1, 256)),
dict(type='CenterCrop', crop_size=224),
dict(type='FormatShape', input_format='NCHW'),
dict(type='PackActionInputs')
]
test_pipeline = [
dict(type='DecordInit', **file_client_args),
dict(
type='SampleFrames',
clip_len=1,
frame_interval=1,
num_clips=25,
test_mode=True),
dict(type='DecordDecode'),
dict(type='Resize', scale=(-1, 256)),
dict(type='TenCrop', crop_size=224),
dict(type='FormatShape', input_format='NCHW'),
dict(type='PackActionInputs')
]
train_dataloader = dict(
batch_size=32,
num_workers=8,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=True),
dataset=dict(
type=dataset_type,
ann_file=ann_file_train,
data_prefix=dict(video=data_root),
pipeline=train_pipeline))
val_dataloader = dict(
batch_size=32,
num_workers=8,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=dict(
type=dataset_type,
ann_file=ann_file_val,
data_prefix=dict(video=data_root_val),
pipeline=val_pipeline,
test_mode=True))
test_dataloader = dict(
batch_size=1,
num_workers=8,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=dict(
type=dataset_type,
ann_file=ann_file_val,
data_prefix=dict(video=data_root_val),
pipeline=test_pipeline,
test_mode=True))
train_cfg = dict(
type='EpochBasedTrainLoop',
max_epochs=50, # change from 100 to 50
val_begin=1,
val_interval=1)
val_cfg = dict(type='ValLoop')
test_cfg = dict(type='TestLoop')
# learning policy
param_scheduler = [
dict(
type='MultiStepLR',
begin=0,
end=50, # change from 100 to 50
by_epoch=True,
milestones=[20, 40], # change milestones
gamma=0.1)
]
# optimizer
optim_wrapper = dict(
optimizer=dict(
type='SGD',
lr=0.005, # change from 0.01 to 0.005
momentum=0.9,
weight_decay=0.0001),
clip_grad=dict(max_norm=40, norm_type=2))
val_evaluator = dict(type='AccMetric')
test_evaluator = val_evaluator
default_hooks = dict(checkpoint=dict(interval=3, max_keep_ckpts=3))
# Default setting for scaling LR automatically
# - `enable` means enable scaling LR automatically
# or not by default.
# - `base_batch_size` = (8 GPUs) x (32 samples per GPU).
auto_scale_lr = dict(enable=False, base_batch_size=256)
# use the pre-trained model for the whole TSN network
load_from = 'https://download.openmmlab.com/mmaction/v1.0/recognition/tsn/tsn_imagenet-pretrained-r50_8xb32-1x1x3-100e_kinetics400-rgb/tsn_imagenet-pretrained-r50_8xb32-1x1x3-100e_kinetics400-rgb_20220906-cd10898e.pth'
```
An easier way is to inherit the kinetics400 config and only specify the modified keys. Please make sure that the custom config is in the same folder with `configs/recognition/tsn/tsn_imagenet-pretrained-r50_8xb32-1x1x3-100e_kinetics400-rgb.py`.
```python
_base_ = [
'tsn_imagenet-pretrained-r50_8xb32-1x1x3-100e_kinetics400-rgb.py' # inherit template config
]
# model settings
model = dict(
cls_head=dict(
type='TSNHead',
num_classes=101)) # change from 400 to 101
# dataset settings
dataset_type = 'VideoDataset'
data_root = 'data/ucf101/videos_train/'
data_root_val = 'data/ucf101/videos_val/'
ann_file_train = 'data/ucf101/ucf101_train_list.txt'
ann_file_val = 'data/ucf101/ucf101_val_list.txt'
train_dataloader = dict(
dataset=dict(
ann_file=ann_file_train,
data_prefix=dict(video=data_root)))
val_dataloader = dict(
dataset=dict(
ann_file=ann_file_val,
data_prefix=dict(video=data_root_val)))
test_dataloader = dict(
dataset=dict(
ann_file=ann_file_val,
data_prefix=dict(video=data_root_val)))
train_cfg = dict(
type='EpochBasedTrainLoop',
max_epochs=50, # change from 100 to 50
val_begin=1,
val_interval=1)
val_cfg = dict(type='ValLoop')
test_cfg = dict(type='TestLoop')
param_scheduler = [
dict(
type='MultiStepLR',
begin=0,
end=50, # change from 100 to 50
by_epoch=True,
milestones=[20, 40], # change milestones
gamma=0.1)
]
optim_wrapper = dict(
optimizer=dict(
type='SGD',
lr=0.005, # change from 0.01 to 0.005
momentum=0.9,
weight_decay=0.0001),
clip_grad=dict(max_norm=40, norm_type=2))
# use the pre-trained model for the whole TSN network
load_from = 'https://download.openmmlab.com/mmaction/v1.0/recognition/tsn/tsn_imagenet-pretrained-r50_8xb32-1x1x3-100e_kinetics400-rgb/tsn_imagenet-pretrained-r50_8xb32-1x1x3-100e_kinetics400-rgb_20220906-cd10898e.pth'
```
You can use the following command to finetune a model on your dataset.
```shell
python tools/train.py ${CONFIG_FILE} [optional arguments]
```
Example: train the TSN model on Kinetics-400 dataset in a deterministic option.
```shell
python tools/train.py configs/recognition/tsn/tsn_ucf101.py \
--seed=0 --deterministic
```
For more details, you can refer to the **Training** part in the [Training and Test Tutorial](train_test.md).
|