File size: 9,894 Bytes
d3dbf03 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 |
# Copyright (c) OpenMMLab. All rights reserved.
import torch
import torch.nn as nn
import torch.nn.functional as F
class GradCAM:
"""GradCAM class helps create visualization results.
Visualization results are blended by heatmaps and input images.
This class is modified from
https://github.com/facebookresearch/SlowFast/blob/master/slowfast/visualization/gradcam_utils.py # noqa
For more information about GradCAM, please visit:
https://arxiv.org/pdf/1610.02391.pdf
Args:
model (nn.Module): the recognizer model to be used.
target_layer_name (str): name of convolutional layer to
be used to get gradients and feature maps from for creating
localization maps.
colormap (str): matplotlib colormap used to create
heatmap. Defaults to 'viridis'. For more information, please visit
https://matplotlib.org/3.3.0/tutorials/colors/colormaps.html
"""
def __init__(self,
model: nn.Module,
target_layer_name: str,
colormap: str = 'viridis') -> None:
from ..models.recognizers import Recognizer2D, Recognizer3D
if isinstance(model, Recognizer2D):
self.is_recognizer2d = True
elif isinstance(model, Recognizer3D):
self.is_recognizer2d = False
else:
raise ValueError(
'GradCAM utils only support Recognizer2D & Recognizer3D.')
self.model = model
self.model.eval()
self.target_gradients = None
self.target_activations = None
import matplotlib.pyplot as plt
self.colormap = plt.get_cmap(colormap)
self._register_hooks(target_layer_name)
def _register_hooks(self, layer_name: str) -> None:
"""Register forward and backward hook to a layer, given layer_name, to
obtain gradients and activations.
Args:
layer_name (str): name of the layer.
"""
def get_gradients(module, grad_input, grad_output):
self.target_gradients = grad_output[0].detach()
def get_activations(module, input, output):
self.target_activations = output.clone().detach()
layer_ls = layer_name.split('/')
prev_module = self.model
for layer in layer_ls:
prev_module = prev_module._modules[layer]
target_layer = prev_module
target_layer.register_forward_hook(get_activations)
target_layer.register_backward_hook(get_gradients)
def _calculate_localization_map(self,
data: dict,
use_labels: bool,
delta=1e-20) -> tuple:
"""Calculate localization map for all inputs with Grad-CAM.
Args:
data (dict): model inputs, generated by test pipeline,
use_labels (bool): Whether to use given labels to generate
localization map.
delta (float): used in localization map normalization,
must be small enough. Please make sure
`localization_map_max - localization_map_min >> delta`
Returns:
localization_map (torch.Tensor): the localization map for
input imgs.
preds (torch.Tensor): Model predictions with shape
(batch_size, num_classes).
"""
inputs = data['inputs']
# use score before softmax
self.model.cls_head.average_clips = 'score'
# model forward & backward
results = self.model.test_step(data)
preds = [result.pred_score for result in results]
preds = torch.stack(preds)
if use_labels:
labels = [result.gt_label for result in results]
labels = torch.stack(labels)
score = torch.gather(preds, dim=1, index=labels)
else:
score = torch.max(preds, dim=-1)[0]
self.model.zero_grad()
score = torch.sum(score)
score.backward()
imgs = torch.stack(inputs)
if self.is_recognizer2d:
# [batch_size, num_segments, 3, H, W]
b, t, _, h, w = imgs.size()
else:
# [batch_size, num_crops*num_clips, 3, clip_len, H, W]
b1, b2, _, t, h, w = imgs.size()
b = b1 * b2
gradients = self.target_gradients
activations = self.target_activations
if self.is_recognizer2d:
# [B*Tg, C', H', W']
b_tg, c, _, _ = gradients.size()
tg = b_tg // b
else:
# source shape: [B, C', Tg, H', W']
_, c, tg, _, _ = gradients.size()
# target shape: [B, Tg, C', H', W']
gradients = gradients.permute(0, 2, 1, 3, 4)
activations = activations.permute(0, 2, 1, 3, 4)
# calculate & resize to [B, 1, T, H, W]
weights = torch.mean(gradients.view(b, tg, c, -1), dim=3)
weights = weights.view(b, tg, c, 1, 1)
activations = activations.view([b, tg, c] +
list(activations.size()[-2:]))
localization_map = torch.sum(
weights * activations, dim=2, keepdim=True)
localization_map = F.relu(localization_map)
localization_map = localization_map.permute(0, 2, 1, 3, 4)
localization_map = F.interpolate(
localization_map,
size=(t, h, w),
mode='trilinear',
align_corners=False)
# Normalize the localization map.
localization_map_min, localization_map_max = (
torch.min(localization_map.view(b, -1), dim=-1, keepdim=True)[0],
torch.max(localization_map.view(b, -1), dim=-1, keepdim=True)[0])
localization_map_min = torch.reshape(
localization_map_min, shape=(b, 1, 1, 1, 1))
localization_map_max = torch.reshape(
localization_map_max, shape=(b, 1, 1, 1, 1))
localization_map = (localization_map - localization_map_min) / (
localization_map_max - localization_map_min + delta)
localization_map = localization_map.data
return localization_map.squeeze(dim=1), preds
def _alpha_blending(self, localization_map: torch.Tensor,
input_imgs: torch.Tensor,
alpha: float) -> torch.Tensor:
"""Blend heatmaps and model input images and get visulization results.
Args:
localization_map (torch.Tensor): localization map for all inputs,
generated with Grad-CAM.
input_imgs (torch.Tensor): model inputs, raw images.
alpha (float): transparency level of the heatmap,
in the range [0, 1].
Returns:
torch.Tensor: blending results for localization map and input
images, with shape [B, T, H, W, 3] and pixel values in
RGB order within range [0, 1].
"""
# localization_map shape [B, T, H, W]
localization_map = localization_map.cpu()
# heatmap shape [B, T, H, W, 3] in RGB order
heatmap = self.colormap(localization_map.detach().numpy())
heatmap = heatmap[..., :3]
heatmap = torch.from_numpy(heatmap)
input_imgs = torch.stack(input_imgs)
# Permute input imgs to [B, T, H, W, 3], like heatmap
if self.is_recognizer2d:
# Recognizer2D input (B, T, C, H, W)
curr_inp = input_imgs.permute(0, 1, 3, 4, 2)
else:
# Recognizer3D input (B', num_clips*num_crops, C, T, H, W)
# B = B' * num_clips * num_crops
curr_inp = input_imgs.view([-1] + list(input_imgs.size()[2:]))
curr_inp = curr_inp.permute(0, 2, 3, 4, 1)
# renormalize input imgs to [0, 1]
curr_inp = curr_inp.cpu().float()
curr_inp /= 255.
# alpha blending
blended_imgs = alpha * heatmap + (1 - alpha) * curr_inp
return blended_imgs
def __call__(self,
data: dict,
use_labels: bool = False,
alpha: float = 0.5) -> tuple:
"""Visualize the localization maps on their corresponding inputs as
heatmap, using Grad-CAM.
Generate visualization results for **ALL CROPS**.
For example, for I3D model, if `clip_len=32, num_clips=10` and
use `ThreeCrop` in test pipeline, then for every model inputs,
there are 960(32*10*3) images generated.
Args:
data (dict): model inputs, generated by test pipeline.
use_labels (bool): Whether to use given labels to generate
localization map.
alpha (float): transparency level of the heatmap,
in the range [0, 1].
Returns:
blended_imgs (torch.Tensor): Visualization results, blended by
localization maps and model inputs.
preds (torch.Tensor): Model predictions for inputs.
"""
# localization_map shape [B, T, H, W]
# preds shape [batch_size, num_classes]
localization_map, preds = self._calculate_localization_map(
data, use_labels=use_labels)
# blended_imgs shape [B, T, H, W, 3]
blended_imgs = self._alpha_blending(localization_map, data['inputs'],
alpha)
# blended_imgs shape [B, T, H, W, 3]
# preds shape [batch_size, num_classes]
# Recognizer2D: B = batch_size, T = num_segments
# Recognizer3D: B = batch_size * num_crops * num_clips, T = clip_len
return blended_imgs, preds
|