|
|
|
from argparse import ArgumentParser
|
|
|
|
from mmaction.apis.inferencers import MMAction2Inferencer
|
|
|
|
|
|
def parse_args():
|
|
parser = ArgumentParser()
|
|
parser.add_argument(
|
|
'inputs', type=str, help='Input video file or rawframes folder path.')
|
|
parser.add_argument(
|
|
'--vid-out-dir',
|
|
type=str,
|
|
default='',
|
|
help='Output directory of videos.')
|
|
parser.add_argument(
|
|
'--rec',
|
|
type=str,
|
|
default=None,
|
|
help='Pretrained action recognition algorithm. It\'s the path to the '
|
|
'config file or the model name defined in metafile.')
|
|
parser.add_argument(
|
|
'--rec-weights',
|
|
type=str,
|
|
default=None,
|
|
help='Path to the custom checkpoint file of the selected recog model. '
|
|
'If it is not specified and "rec" is a model name of metafile, the '
|
|
'weights will be loaded from metafile.')
|
|
parser.add_argument(
|
|
'--label-file', type=str, default=None, help='label file for dataset.')
|
|
parser.add_argument(
|
|
'--device',
|
|
type=str,
|
|
default=None,
|
|
help='Device used for inference. '
|
|
'If not specified, the available device will be automatically used.')
|
|
parser.add_argument(
|
|
'--batch-size', type=int, default=1, help='Inference batch size.')
|
|
parser.add_argument(
|
|
'--show',
|
|
action='store_true',
|
|
help='Display the video in a popup window.')
|
|
parser.add_argument(
|
|
'--print-result',
|
|
action='store_true',
|
|
help='Whether to print the results.')
|
|
parser.add_argument(
|
|
'--pred-out-file',
|
|
type=str,
|
|
default='',
|
|
help='File to save the inference results.')
|
|
|
|
call_args = vars(parser.parse_args())
|
|
|
|
init_kws = ['rec', 'rec_weights', 'device', 'label_file']
|
|
init_args = {}
|
|
for init_kw in init_kws:
|
|
init_args[init_kw] = call_args.pop(init_kw)
|
|
|
|
return init_args, call_args
|
|
|
|
|
|
def main():
|
|
init_args, call_args = parse_args()
|
|
mmaction2 = MMAction2Inferencer(**init_args)
|
|
mmaction2(**call_args)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|
|
|