|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" Phi4Flash model configuration""" |
|
|
|
|
|
from transformers.configuration_utils import PretrainedConfig |
|
from transformers.utils import logging |
|
import math |
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
class Phi4FlashConfig(PretrainedConfig): |
|
r""" |
|
This is the configuration class to store the configuration of a [`Phi4FlashModel`]. It is used to instantiate an Phi4Flash |
|
model according to the specified arguments, defining the model architecture. |
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the |
|
documentation from [`PretrainedConfig`] for more information. |
|
|
|
Args: |
|
vocab_size (`int`, *optional*, defaults to 51200): |
|
Vocabulary size of the Phi4Flash model. Defines the number of different tokens that can be represented by the |
|
`inputs_ids` passed when calling [`Phi4FlashModel`]. |
|
hidden_size (`int`, *optional*, defaults to 2048): |
|
Dimension of the hidden representations. |
|
intermediate_size (`int`, *optional*, defaults to 8192): |
|
Dimension of the MLP representations. |
|
num_hidden_layers (`int`, *optional*, defaults to 24): |
|
Number of hidden layers in the Transformer decoder. |
|
num_attention_heads (`int`, *optional*, defaults to 32): |
|
Number of attention heads for each attention layer in the Transformer decoder. |
|
num_key_value_heads (`int`, *optional*): |
|
This is the number of key_value heads that should be used to implement Grouped Query Attention. If |
|
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if |
|
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When |
|
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed |
|
by meanpooling all the original heads within that group. For more details checkout [this |
|
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to |
|
`num_attention_heads`. |
|
resid_pdrop (`float`, *optional*, defaults to 0.0): |
|
Dropout probability for mlp outputs. |
|
embd_pdrop (`int`, *optional*, defaults to 0.0): |
|
The dropout ratio for the embeddings. |
|
attention_dropout (`float`, *optional*, defaults to 0.0): |
|
The dropout ratio after computing the attention scores. |
|
hidden_act (`str` or `function`, *optional*, defaults to `"gelu_new"`): |
|
The non-linear activation function (function or string) in the decoder. |
|
max_position_embeddings (`int`, *optional*, defaults to 2048): |
|
The maximum sequence length that this model might ever be used with. Phi-1 and Phi-1.5 supports up to 2048 |
|
tokens. |
|
initializer_range (`float`, *optional*, defaults to 0.02): |
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. |
|
layer_norm_eps (`float`, *optional*, defaults to 1e-05): |
|
The epsilon used by the rms normalization layers. |
|
use_cache (`bool`, *optional*, defaults to `True`): |
|
Whether or not the model should return the last key/values attentions (not used by all models). Only |
|
relevant if `config.is_decoder=True`. Whether to tie weight embeddings or not. |
|
tie_word_embeddings (`bool`, *optional*, defaults to `False`): |
|
Whether to tie weight embeddings |
|
rope_theta (`float`, *optional*, defaults to 10000.0): |
|
The base period of the RoPE embeddings. |
|
|
|
Example: |
|
|
|
```python |
|
>>> from transformers import Phi4FlashModel, Phi4FlashConfig |
|
|
|
>>> # Initializing a Phi4Flash style configuration |
|
>>> configuration = Phi4FlashConfig.from_pretrained("microsoft/Phi4-mini-flash-reasoning") |
|
|
|
>>> # Initializing a model from the configuration |
|
>>> model = Phi4FlashModel(configuration) |
|
|
|
>>> # Accessing the model configuration |
|
>>> configuration = model.config |
|
```""" |
|
|
|
model_type = "phi4flash" |
|
keys_to_ignore_at_inference = ["past_key_values"] |
|
|
|
def __init__( |
|
self, |
|
vocab_size=51200, |
|
hidden_size=2560, |
|
intermediate_size=9216, |
|
num_hidden_layers=32, |
|
num_attention_heads=40, |
|
num_key_value_heads=4, |
|
resid_pdrop=0.0, |
|
embd_pdrop=0.0, |
|
attention_dropout=0.0, |
|
hidden_act="silu", |
|
max_position_embeddings=4096, |
|
initializer_range=0.02, |
|
layer_norm_eps=1e-5, |
|
use_cache=True, |
|
tie_word_embeddings=True, |
|
rope_theta=10000.0, |
|
bos_token_id=1, |
|
eos_token_id=2, |
|
sliding_window=2047, |
|
mb_per_layer= 2, |
|
mamba_d_state=16, |
|
mamba_d_conv=4, |
|
mamba_expand=2, |
|
mamba_dt_rank="auto", |
|
mamba_conv_bias=True, |
|
mamba_proj_bias=False, |
|
**kwargs, |
|
): |
|
self.vocab_size = vocab_size |
|
self.hidden_size = hidden_size |
|
self.intermediate_size = intermediate_size |
|
self.num_hidden_layers = num_hidden_layers |
|
self.num_attention_heads = num_attention_heads |
|
|
|
if num_key_value_heads is None: |
|
num_key_value_heads = num_attention_heads |
|
|
|
self.num_key_value_heads = num_key_value_heads |
|
self.resid_pdrop = resid_pdrop |
|
self.embd_pdrop = embd_pdrop |
|
self.attention_dropout = attention_dropout |
|
self.hidden_act = hidden_act |
|
self.max_position_embeddings = max_position_embeddings |
|
self.initializer_range = initializer_range |
|
self.layer_norm_eps = layer_norm_eps |
|
self.use_cache = use_cache |
|
self.rope_theta = rope_theta |
|
self.mb_per_layer = mb_per_layer |
|
self.sliding_window = [ |
|
sliding_window if layer_idx < num_hidden_layers // 2 and layer_idx % 2 == 1 else None |
|
for layer_idx in range(num_hidden_layers) |
|
] |
|
|
|
self.mamba_d_state = mamba_d_state |
|
self.mamba_d_conv = mamba_d_conv |
|
self.mamba_expand = mamba_expand |
|
self.mamba_dt_rank = math.ceil(self.hidden_size / 16) if mamba_dt_rank == "auto" else mamba_dt_rank |
|
self.mamba_conv_bias = mamba_conv_bias |
|
self.mamba_proj_bias = mamba_proj_bias |
|
|
|
super().__init__( |
|
bos_token_id=bos_token_id, |
|
eos_token_id=eos_token_id, |
|
tie_word_embeddings=tie_word_embeddings, |
|
**kwargs, |
|
) |
|
|
|
|
|
@property |
|
def layers_block_type(self): |
|
layer_block_types = [] |
|
for i in range(self.num_hidden_layers): |
|
if i % 2 == 1: |
|
layer_block_type = "attention" if i <= (self.num_hidden_layers //2 +1) else "shared_attention" |
|
else: |
|
layer_block_type = "mamba" |
|
layer_block_types.append(layer_block_type) |
|
return layer_block_types |