|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" PyTorch Phi4Flash model.""" |
|
|
|
|
|
import inspect |
|
import math |
|
import warnings |
|
from typing import List, Optional, Tuple, Union, Dict, Any |
|
import copy |
|
import torch |
|
import torch.nn.functional as F |
|
import torch.utils.checkpoint |
|
from torch import nn |
|
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss |
|
from transformers.activations import ACT2FN |
|
from transformers.cache_utils import Cache, DynamicCache |
|
from transformers.utils import is_torchdynamo_compiling |
|
from transformers.modeling_outputs import ( |
|
BaseModelOutputWithPast, |
|
CausalLMOutputWithPast, |
|
SequenceClassifierOutputWithPast, |
|
TokenClassifierOutput, |
|
) |
|
from transformers.modeling_utils import PreTrainedModel |
|
from transformers.generation import GenerationMixin |
|
from transformers.utils import ( |
|
add_code_sample_docstrings, |
|
add_start_docstrings, |
|
add_start_docstrings_to_model_forward, |
|
is_flash_attn_greater_or_equal_2_10, |
|
logging, |
|
replace_return_docstrings, |
|
) |
|
from einops import rearrange, repeat |
|
|
|
from .configuration_phi4flash import Phi4FlashConfig |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
from flash_attn import flash_attn_func, flash_attn_varlen_func |
|
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input |
|
|
|
_flash_supports_window_size = "window_size" in list(inspect.signature(flash_attn_func).parameters) |
|
|
|
if not _flash_supports_window_size: |
|
raise ValueError("Please update flash-attention to support window size.") |
|
|
|
from causal_conv1d import causal_conv1d_fn, causal_conv1d_update |
|
import causal_conv1d_cuda |
|
from mamba_ssm.ops.triton.selective_state_update import selective_state_update |
|
|
|
from torch.amp import custom_bwd, custom_fwd |
|
import selective_scan_cuda |
|
|
|
_CHECKPOINT_FOR_DOC = "microsoft/Phi-4-mini-flash-reasoning" |
|
_CONFIG_FOR_DOC = "Phi4FlashConfig" |
|
|
|
|
|
def _prepare_cache_for_generation( |
|
self, |
|
generation_config, |
|
model_kwargs: Dict, |
|
assistant_model: "PreTrainedModel", |
|
batch_size: int, |
|
max_cache_length: int, |
|
device: torch.device, |
|
) -> bool: |
|
""" |
|
Prepares the cache for generation (if applicable), given `generate`'s parameterization. If a cache is |
|
instantiated, writes it to `model_kwargs`, under the name expected by the model. |
|
""" |
|
|
|
cache_name = "past_key_values" |
|
|
|
|
|
|
|
if generation_config.use_cache is False: |
|
return |
|
|
|
|
|
|
|
|
|
|
|
if assistant_model is not None: |
|
logger.warning_once( |
|
"An assistant model is provided, using a dynamic cache instead of a cache of type=" |
|
f"'{generation_config.cache_implementation}'." |
|
) |
|
model_kwargs[cache_name] = DynamicCache() |
|
return |
|
|
|
model_kwargs[cache_name] = self._get_cache( |
|
cache_implementation="sambay", |
|
batch_size=max(generation_config.num_beams, generation_config.num_return_sequences) * batch_size, |
|
max_cache_len=max_cache_length, |
|
device=device, |
|
model_kwargs=model_kwargs, |
|
) |
|
|
|
def _get_cache( |
|
self, cache_implementation: str, batch_size: int, max_cache_len: int, device: torch.device, model_kwargs |
|
) -> Cache: |
|
""" |
|
Sets a cache for `generate`, that will persist across calls. A new cache will only be initialized a |
|
new `generate` call requires a larger cache or uses a different batch size. |
|
|
|
Returns the resulting cache object. |
|
""" |
|
cache_cls: Cache = SambaYCache |
|
requires_cross_attention_cache = ( |
|
self.config.is_encoder_decoder or model_kwargs.get("encoder_outputs") is not None |
|
) |
|
|
|
if hasattr(self, "_cache"): |
|
cache_to_check = self._cache.self_attention_cache if requires_cross_attention_cache else self._cache |
|
|
|
if cache_implementation == "sliding_window": |
|
max_cache_len = min(self.config.sliding_window[1], max_cache_len) |
|
|
|
need_new_cache = ( |
|
not hasattr(self, "_cache") |
|
or (not isinstance(cache_to_check, cache_cls)) |
|
or cache_to_check.batch_size != batch_size |
|
) |
|
if cache_implementation != "mamba": |
|
need_new_cache = need_new_cache or cache_to_check.max_cache_len < max_cache_len |
|
|
|
if requires_cross_attention_cache and hasattr(self, "_cache"): |
|
need_new_cache = ( |
|
need_new_cache |
|
or self._cache.cross_attention_cache.max_cache_len != model_kwargs["encoder_outputs"][0].shape[1] |
|
) |
|
|
|
if need_new_cache: |
|
if hasattr(self.config, "_pre_quantization_dtype"): |
|
cache_dtype = self.config._pre_quantization_dtype |
|
else: |
|
if not is_torchdynamo_compiling(): |
|
cache_dtype = self.dtype |
|
else: |
|
|
|
|
|
|
|
cache_dtype = self.get_output_embeddings().weight.dtype |
|
|
|
def get_layer_device_map(execution_device_map: Optional[dict] = None): |
|
if execution_device_map is None: |
|
return None |
|
elif len(execution_device_map) == 1 and "" in execution_device_map: |
|
return {idx: execution_device_map[""] for idx in range(self.config.num_hidden_layers)} |
|
layer_device_map = {} |
|
for layer in execution_device_map: |
|
for idx in range(self.config.num_hidden_layers): |
|
if f".{idx}." in f"{layer}.": |
|
layer_device_map[idx] = execution_device_map[layer] |
|
break |
|
for idx in range(self.config.num_hidden_layers): |
|
if idx not in layer_device_map: |
|
raise RuntimeError(f"layer {idx} has not been mapped to a device.") |
|
return layer_device_map |
|
|
|
execution_device_map = None |
|
|
|
|
|
|
|
if hasattr(self, "hf_device_map"): |
|
main_device = [d for d in self.hf_device_map.values() if d not in ["cpu", "disk"]][0] |
|
execution_device_map = { |
|
name: main_device if device in ["cpu", "disk"] else device |
|
for name, device in self.hf_device_map.items() |
|
} |
|
layer_device_map = get_layer_device_map(execution_device_map) |
|
|
|
cache_kwargs = { |
|
"config": self.config.get_text_config(), |
|
"batch_size": batch_size, |
|
"max_cache_len": max_cache_len, |
|
"device": device, |
|
"dtype": cache_dtype, |
|
"layer_device_map": layer_device_map, |
|
} |
|
self._cache = cache_cls(**cache_kwargs) |
|
else: |
|
self._cache.reset() |
|
return self._cache |
|
|
|
GenerationMixin._prepare_cache_for_generation = _prepare_cache_for_generation |
|
GenerationMixin._get_cache = _get_cache |
|
|
|
class SambaYCache(Cache): |
|
""" |
|
A dynamic cache that can handle the sliding window attention cache, one layer of full attention cache and the mamba cache |
|
(which has a constant shape regardless of seq_len). |
|
|
|
""" |
|
|
|
def __init__(self, |
|
config: Phi4FlashConfig, |
|
batch_size: int = None, |
|
max_cache_len: int = None, |
|
device: Union[torch.device, str] = "cuda", |
|
dtype: torch.dtype = torch.float16, |
|
max_batch_size: Optional[int] = None, |
|
layer_device_map: Optional[Dict[int, Union[str, torch.device, int]]] = None, |
|
) -> None: |
|
super().__init__() |
|
self.dtype = dtype |
|
self.has_previous_state = False |
|
intermediate_size = config.mamba_expand * config.hidden_size |
|
ssm_state_size = config.mamba_d_state |
|
conv_kernel_size = config.mamba_d_conv |
|
self.conv_kernel_size = conv_kernel_size |
|
|
|
if batch_size is not None: |
|
logger.warning_once( |
|
f"The 'batch_size' argument of {self.__class__.__name__} is deprecated and will be removed in " |
|
"v4.49. Use the more precisely named 'max_batch_size' argument instead." |
|
) |
|
|
|
self.max_cache_len = max_cache_len |
|
self.max_batch_size = batch_size or max_batch_size |
|
|
|
self.head_dim = config.hidden_size // config.num_attention_heads |
|
self.num_key_value_heads = config.num_key_value_heads |
|
self.global_attn_idx = config.num_hidden_layers//2 + 1 |
|
self.key_cache: List[torch.Tensor] = [] |
|
self.value_cache: List[torch.Tensor] = [] |
|
global_cache_shape = (self.max_batch_size, self.num_key_value_heads, max_cache_len, self.head_dim) |
|
sliding_cache_shape = ( |
|
self.max_batch_size, |
|
self.num_key_value_heads, |
|
min(config.sliding_window[1], max_cache_len), |
|
self.head_dim, |
|
) |
|
conv_cache_shape = (self.max_batch_size, intermediate_size, conv_kernel_size) |
|
ssm_cache_shape = (self.max_batch_size, intermediate_size, ssm_state_size) |
|
for i in range(config.num_hidden_layers//2 + 2): |
|
if layer_device_map is not None: |
|
layer_device = layer_device_map[i] |
|
else: |
|
layer_device = device |
|
|
|
|
|
if i == self.global_attn_idx: |
|
key_cache_shape = value_cache_shape = global_cache_shape |
|
elif i % 2 == 0: |
|
key_cache_shape = conv_cache_shape |
|
value_cache_shape = ssm_cache_shape |
|
else: |
|
key_cache_shape = value_cache_shape = sliding_cache_shape |
|
new_layer_key_cache = torch.zeros(key_cache_shape, dtype=dtype, device=layer_device) |
|
new_layer_value_cache = torch.zeros(value_cache_shape, dtype=dtype, device=layer_device) |
|
torch._dynamo.mark_static_address(new_layer_key_cache) |
|
torch._dynamo.mark_static_address(new_layer_value_cache) |
|
self.key_cache.append(new_layer_key_cache) |
|
self.value_cache.append(new_layer_value_cache) |
|
|
|
def _sliding_update(self, cache_position, layer_idx, key_states, value_states, k_out, v_out, max_cache_len): |
|
if cache_position.shape[0] > max_cache_len: |
|
k_out = key_states[:, :, -max_cache_len:, :] |
|
v_out = value_states[:, :, -max_cache_len:, :] |
|
|
|
self.key_cache[layer_idx] += k_out |
|
self.value_cache[layer_idx] += v_out |
|
|
|
|
|
return key_states, value_states |
|
|
|
slicing = torch.ones(max_cache_len, dtype=torch.long, device=value_states.device).cumsum(0) |
|
cache_position = cache_position.clamp(0, max_cache_len - 1) |
|
to_shift = cache_position >= max_cache_len - 1 |
|
indices = (slicing + to_shift[-1].int() - 1) % max_cache_len |
|
k_out = k_out[:, :, indices] |
|
v_out = v_out[:, :, indices] |
|
|
|
k_out[:, :, cache_position] = key_states |
|
v_out[:, :, cache_position] = value_states |
|
|
|
self.key_cache[layer_idx].zero_() |
|
self.value_cache[layer_idx].zero_() |
|
|
|
self.key_cache[layer_idx] += k_out |
|
self.value_cache[layer_idx] += v_out |
|
return k_out, v_out |
|
|
|
def _static_update(self, cache_position, layer_idx, key_states, value_states, k_out, v_out, max_cache_len): |
|
k_out[:, :, cache_position] = key_states |
|
v_out[:, :, cache_position] = value_states |
|
|
|
self.key_cache[layer_idx] = k_out |
|
self.value_cache[layer_idx] = v_out |
|
return k_out, v_out |
|
|
|
def update( |
|
self, |
|
key_states: torch.Tensor, |
|
value_states: torch.Tensor, |
|
layer_idx: int, |
|
cache_kwargs: Optional[Dict[str, Any]] = None, |
|
) -> Tuple[torch.Tensor]: |
|
cache_position = cache_kwargs.get("cache_position") |
|
k_out = self.key_cache[layer_idx] |
|
v_out = self.value_cache[layer_idx] |
|
if layer_idx == self.global_attn_idx: |
|
update_fn = self._static_update |
|
elif layer_idx % 2 == 1: |
|
update_fn = self._sliding_update |
|
|
|
return update_fn( |
|
cache_position, |
|
layer_idx, |
|
key_states, |
|
value_states, |
|
k_out, |
|
v_out, |
|
k_out.shape[2], |
|
) |
|
|
|
def get_max_cache_shape(self) -> Optional[int]: |
|
return self.max_cache_len |
|
|
|
def get_seq_length(self, layer_idx: Optional[int] = 0): |
|
|
|
|
|
|
|
return (self.key_cache[self.global_attn_idx][0, 0].any(dim=-1)).sum() |
|
|
|
def reset(self): |
|
"""Resets the cache values while preserving the objects""" |
|
for layer_idx in range(len(self.key_cache)): |
|
|
|
self.key_cache[layer_idx].zero_() |
|
self.value_cache[layer_idx].zero_() |
|
|
|
@property |
|
def batch_size(self): |
|
logger.warning_once( |
|
f"The 'batch_size' attribute of {self.__class__.__name__} is deprecated and will be removed in " |
|
"v4.49. Use the more precisely named 'self.max_batch_size' attribute instead." |
|
) |
|
return self.max_batch_size |
|
|
|
|
|
|
|
|
|
swiglu_fwd_codestring = """ |
|
template <typename T> T swiglu_fwd(T x, T y) { |
|
return float(x) * float(y) / (1.0f + ::exp(-float(x))); |
|
} |
|
""" |
|
swiglu_bwd_codestring = """ |
|
template <typename T> T swiglu_bwd(T x, T y, T g, T& dx, T& dy) { |
|
float x_sigmoid = 1.0f / (1.0f + ::exp(-float(x))); |
|
dx = x_sigmoid * (1 + float(x) * (1.0f - x_sigmoid)) * float(g) * float(y); |
|
dy = float(x) * x_sigmoid * float(g); |
|
} |
|
""" |
|
swiglu_fwd = torch.cuda.jiterator._create_jit_fn(swiglu_fwd_codestring) |
|
swiglu_bwd = torch.cuda.jiterator._create_multi_output_jit_fn(swiglu_bwd_codestring, num_outputs=2) |
|
|
|
|
|
class SwiGLUFunction(torch.autograd.Function): |
|
|
|
@staticmethod |
|
def forward(ctx, x, y): |
|
ctx.save_for_backward(x, y) |
|
return swiglu_fwd(x, y) |
|
|
|
@staticmethod |
|
def backward(ctx, dout): |
|
x, y = ctx.saved_tensors |
|
return swiglu_bwd(x, y, dout) |
|
|
|
swiglu = SwiGLUFunction.apply |
|
|
|
|
|
|
|
class SambaYRMSNorm(nn.Module): |
|
def __init__(self, hidden_size, eps=1e-5): |
|
""" |
|
SambaYRMSNorm is equivalent to T5LayerNorm |
|
""" |
|
super().__init__() |
|
self.weight = nn.Parameter(torch.ones(hidden_size)) |
|
self.variance_epsilon = eps |
|
|
|
def forward(self, hidden_states): |
|
input_dtype = hidden_states.dtype |
|
hidden_states = hidden_states.to(torch.float32) |
|
variance = hidden_states.pow(2).mean(-1, keepdim=True) |
|
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) |
|
return self.weight * hidden_states.to(input_dtype) |
|
|
|
|
|
PHI_NORM_CLASS = nn.LayerNorm |
|
|
|
|
|
|
|
def _get_unpad_data(attention_mask): |
|
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32) |
|
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten() |
|
max_seqlen_in_batch = seqlens_in_batch.max().item() |
|
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0)) |
|
return ( |
|
indices, |
|
cu_seqlens, |
|
max_seqlen_in_batch, |
|
) |
|
|
|
|
|
class SambaYMLP(nn.Module): |
|
"""Gated Linear Unit. |
|
|
|
Reference: |
|
Language Modeling with Gated Convolutional Networks. |
|
https://arxiv.org/pdf/1612.08083v3.pdf. |
|
|
|
""" |
|
|
|
def __init__(self, config): |
|
super().__init__() |
|
|
|
self.config = config |
|
self.fc1 = nn.Linear(config.hidden_size, 2 * config.intermediate_size, bias=False) |
|
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size, bias=False) |
|
|
|
self.activation_fn = ACT2FN[config.hidden_act] |
|
|
|
def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor: |
|
y = self.fc1(hidden_states) |
|
|
|
|
|
if self.config.hidden_act == "silu" and swiglu is not None: |
|
gate, y = y.chunk(2, dim=-1) |
|
y = swiglu(gate, y) |
|
else: |
|
gate, y = y.chunk(2, dim=-1) |
|
y = y * self.activation_fn(gate) |
|
|
|
return self.fc2(y) |
|
|
|
|
|
class SambaYAttention(nn.Module): |
|
"""Multi-headed attention from 'Attention Is All You Need' paper""" |
|
|
|
def __init__(self, config: Phi4FlashConfig, layer_idx: Optional[int] = None, yoco_cross: bool = False): |
|
super().__init__() |
|
self.config = config |
|
self.layer_idx = layer_idx |
|
if layer_idx is None: |
|
logger.warning_once( |
|
f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will " |
|
"lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` " |
|
"when creating this class." |
|
) |
|
|
|
self.attention_dropout = config.attention_dropout |
|
self.hidden_size = config.hidden_size |
|
self.num_heads = config.num_attention_heads |
|
self.head_dim = self.hidden_size // self.num_heads |
|
self.num_key_value_heads = config.num_key_value_heads |
|
self.num_key_value_groups = self.num_heads // self.num_key_value_heads |
|
self.max_position_embeddings = config.max_position_embeddings |
|
self.is_causal = True |
|
self.yoco_cross = yoco_cross |
|
|
|
if (self.head_dim * self.num_heads) != self.hidden_size: |
|
raise ValueError( |
|
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}" |
|
f" and `num_heads`: {self.num_heads})." |
|
) |
|
|
|
op_size = self.num_heads * self.head_dim + 2 * (self.num_key_value_heads * self.head_dim) |
|
self.out_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=True) |
|
if yoco_cross: |
|
self.Wqkv = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=True) |
|
else: |
|
self.Wqkv = nn.Linear(self.hidden_size, op_size, bias=True) |
|
|
|
self.inner_cross_attn = FlashDiffCustomAttention(self.head_dim, self.layer_idx,) |
|
|
|
|
|
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): |
|
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional[Cache] = None, |
|
output_attentions: bool = False, |
|
use_cache: bool = False, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
raise NotImplementedError("SambaYAttention only support flash attention") |
|
|
|
|
|
class SambaYFlashAttention2(SambaYAttention): |
|
""" |
|
SambaY flash attention module. This module inherits from `SambaYAttention` as the weights of the module stays |
|
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of |
|
flash attention and deal with padding tokens in case the input contains any of them. |
|
""" |
|
|
|
|
|
def __init__(self, *args, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
|
|
|
|
|
|
|
|
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10() |
|
|
|
|
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.LongTensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional[Cache] = None, |
|
output_attentions: bool = False, |
|
use_cache: bool = False, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
yoco_key_values: Optional[torch.Tensor] = None, |
|
**kwargs, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
|
|
|
|
output_attentions = False |
|
if "padding_mask" in kwargs: |
|
warnings.warn( |
|
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`" |
|
) |
|
|
|
|
|
attention_mask = kwargs.pop("padding_mask") |
|
|
|
bsz, q_len, _ = hidden_states.size() |
|
if self.yoco_cross: |
|
q = self.Wqkv(hidden_states) |
|
q = rearrange(q, "... (h d) -> ... h d", d=self.head_dim).transpose(1,2) |
|
key_states, value_states = yoco_key_values |
|
query_states = q |
|
|
|
use_sliding_windows = False |
|
else: |
|
|
|
qkv = self.Wqkv(hidden_states) |
|
query_pos = self.num_heads * self.head_dim |
|
query_states = qkv[..., :query_pos] |
|
key_states = qkv[..., query_pos : query_pos + self.num_key_value_heads * self.head_dim] |
|
value_states = qkv[..., query_pos + self.num_key_value_heads * self.head_dim :] |
|
|
|
|
|
|
|
|
|
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) |
|
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) |
|
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) |
|
|
|
use_sliding_windows = self.config.sliding_window is not None and self.config.sliding_window[self.layer_idx] is not None |
|
|
|
if past_key_value is not None: |
|
|
|
cache_kwargs = {"cache_position": cache_position} |
|
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) |
|
|
|
|
|
yoco_key_values = key_states, value_states |
|
|
|
attn_dropout = self.attention_dropout if self.training else 0.0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if query_states.dtype == torch.float32: |
|
if torch.is_autocast_enabled(): |
|
target_dtype = torch.get_autocast_gpu_dtype() |
|
|
|
elif hasattr(self.config, "_pre_quantization_dtype"): |
|
target_dtype = self.config._pre_quantization_dtype |
|
else: |
|
target_dtype = self.Wqkv.weight.dtype |
|
|
|
logger.warning_once( |
|
f"The input hidden states seems to be silently casted in float32, this might be related to" |
|
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in" |
|
f" {target_dtype}." |
|
) |
|
|
|
query_states = query_states.to(target_dtype) |
|
key_states = key_states.to(target_dtype) |
|
value_states = value_states.to(target_dtype) |
|
|
|
|
|
|
|
query_states = query_states.transpose(1, 2) |
|
key_states = key_states.transpose(1, 2) |
|
value_states = value_states.transpose(1, 2) |
|
if attention_mask is not None: |
|
key_states = key_states[:, :attention_mask.shape[-1]] |
|
value_states = value_states[:, :attention_mask.shape[-1]] |
|
attn_output = self._flash_attention_forward( |
|
query_states, |
|
key_states, |
|
value_states, |
|
attention_mask, |
|
q_len, |
|
dropout=attn_dropout, |
|
use_sliding_windows=use_sliding_windows, |
|
) |
|
|
|
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous() |
|
attn_output = self.out_proj(attn_output) |
|
|
|
if not output_attentions: |
|
attn_weights = None |
|
|
|
return attn_output, attn_weights, yoco_key_values |
|
|
|
def _flash_attention_forward( |
|
self, |
|
query_states, |
|
key_states, |
|
value_states, |
|
attention_mask, |
|
query_length, |
|
dropout=0.0, |
|
softmax_scale=None, |
|
use_sliding_windows=False, |
|
): |
|
""" |
|
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token |
|
first unpad the input, then computes the attention scores and pad the final attention scores. |
|
|
|
Args: |
|
query_states (`torch.Tensor`): |
|
Input query states to be passed to Flash Attention API |
|
key_states (`torch.Tensor`): |
|
Input key states to be passed to Flash Attention API |
|
value_states (`torch.Tensor`): |
|
Input value states to be passed to Flash Attention API |
|
attention_mask (`torch.Tensor`): |
|
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the |
|
position of padding tokens and 1 for the position of non-padding tokens. |
|
dropout (`float`): |
|
Attention dropout |
|
softmax_scale (`float`, *optional*): |
|
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim) |
|
use_sliding_windows (`bool`, *optional*): |
|
Whether to activate sliding window attention. |
|
""" |
|
causal = self.is_causal |
|
|
|
if attention_mask is not None: |
|
batch_size = query_states.shape[0] |
|
( |
|
query_states, |
|
key_states, |
|
value_states, |
|
indices_q, |
|
cu_seq_lens, |
|
max_seq_lens, |
|
) = self._upad_input(query_states, key_states, value_states, attention_mask, query_length) |
|
|
|
cu_seqlens_q, cu_seqlens_k = cu_seq_lens |
|
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens |
|
|
|
if not use_sliding_windows: |
|
attn_output_unpad = self.inner_cross_attn( |
|
query_states, |
|
key_states, |
|
value_states, |
|
cu_seqlens_q=cu_seqlens_q, |
|
cu_seqlens_k=cu_seqlens_k, |
|
max_seqlen_q=max_seqlen_in_batch_q, |
|
max_seqlen_k=max_seqlen_in_batch_k, |
|
dropout_p=dropout, |
|
softmax_scale=softmax_scale, |
|
causal=causal, |
|
) |
|
else: |
|
attn_output_unpad = self.inner_cross_attn( |
|
query_states, |
|
key_states, |
|
value_states, |
|
cu_seqlens_q=cu_seqlens_q, |
|
cu_seqlens_k=cu_seqlens_k, |
|
max_seqlen_q=max_seqlen_in_batch_q, |
|
max_seqlen_k=max_seqlen_in_batch_k, |
|
dropout_p=dropout, |
|
softmax_scale=softmax_scale, |
|
causal=causal, |
|
window_size=( |
|
self.config.sliding_window[self.layer_idx] -1, |
|
self.config.sliding_window[self.layer_idx] -1, |
|
), |
|
) |
|
|
|
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length) |
|
else: |
|
if not use_sliding_windows: |
|
attn_output = self.inner_cross_attn( |
|
query_states, |
|
key_states, |
|
value_states, |
|
dropout_p=dropout, |
|
softmax_scale=softmax_scale, |
|
causal=causal, |
|
) |
|
else: |
|
attn_output = self.inner_cross_attn( |
|
query_states, |
|
key_states, |
|
value_states, |
|
dropout_p=dropout, |
|
softmax_scale=softmax_scale, |
|
causal=causal, |
|
window_size=( |
|
self.config.sliding_window[self.layer_idx] -1, |
|
self.config.sliding_window[self.layer_idx] -1, |
|
), |
|
) |
|
|
|
return attn_output |
|
|
|
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length): |
|
batch_size, kv_seq_len, num_heads, head_dim = key_layer.shape |
|
|
|
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask) |
|
|
|
key_layer = index_first_axis(key_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k) |
|
value_layer = index_first_axis(value_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k) |
|
|
|
if query_length == kv_seq_len: |
|
query_layer = index_first_axis( |
|
query_layer.reshape(batch_size * kv_seq_len, -1, head_dim), |
|
indices_k, |
|
) |
|
cu_seqlens_q = cu_seqlens_k |
|
max_seqlen_in_batch_q = max_seqlen_in_batch_k |
|
indices_q = indices_k |
|
elif query_length == 1: |
|
max_seqlen_in_batch_q = 1 |
|
cu_seqlens_q = torch.arange( |
|
batch_size + 1, dtype=torch.int32, device=query_layer.device |
|
) |
|
indices_q = cu_seqlens_q[:-1] |
|
query_layer = query_layer.squeeze(1) |
|
else: |
|
|
|
attention_mask = attention_mask[:, -query_length:] |
|
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask) |
|
|
|
return ( |
|
query_layer, |
|
key_layer, |
|
value_layer, |
|
indices_q, |
|
(cu_seqlens_q, cu_seqlens_k), |
|
(max_seqlen_in_batch_q, max_seqlen_in_batch_k), |
|
) |
|
|
|
|
|
|
|
class Phi3Mamba(nn.Module): |
|
def __init__( |
|
self, |
|
d_model, |
|
d_state=16, |
|
d_conv=4, |
|
expand=2, |
|
dt_rank="auto", |
|
conv_bias=True, |
|
bias=False, |
|
use_fast_path=True, |
|
layer_idx=None, |
|
yoco_cross=False, |
|
yoco_kv=False, |
|
dtype=None, |
|
): |
|
factory_kwargs = {"dtype": dtype} |
|
super().__init__() |
|
self.d_model = d_model |
|
self.d_state = d_state |
|
self.d_conv = d_conv |
|
self.expand = expand |
|
self.d_inner = int(self.expand * self.d_model) |
|
self.dt_rank = math.ceil(self.d_model / 16) if dt_rank == "auto" else dt_rank |
|
self.use_fast_path = use_fast_path |
|
self.layer_idx = layer_idx |
|
|
|
self.yoco_cross = yoco_cross |
|
self.yoco_kv = yoco_kv |
|
if self.yoco_cross: |
|
self.in_proj = nn.Linear(self.d_model, self.d_inner, bias=bias, **factory_kwargs) |
|
self.out_proj = nn.Linear(self.d_inner, self.d_model, bias=bias, **factory_kwargs) |
|
else: |
|
self.in_proj = nn.Linear(self.d_model, self.d_inner * 2, bias=bias, **factory_kwargs) |
|
|
|
self.conv1d = nn.Conv1d( |
|
in_channels=self.d_inner, |
|
out_channels=self.d_inner, |
|
bias=conv_bias, |
|
kernel_size=d_conv, |
|
groups=self.d_inner, |
|
padding=d_conv - 1, |
|
**factory_kwargs, |
|
) |
|
|
|
self.activation = "silu" |
|
self.act = nn.SiLU() |
|
|
|
self.x_proj = nn.Linear( |
|
self.d_inner, self.dt_rank + self.d_state * 2, bias=False, **factory_kwargs |
|
) |
|
self.dt_proj = nn.Linear(self.dt_rank, self.d_inner, bias=True, **factory_kwargs) |
|
|
|
|
|
A = repeat( |
|
torch.arange(1, self.d_state + 1, dtype=torch.float32), |
|
"n -> d n", |
|
d=self.d_inner, |
|
).contiguous() |
|
A_log = torch.log(A) |
|
self.A_log = nn.Parameter(A_log) |
|
|
|
|
|
self.D = nn.Parameter(torch.ones(self.d_inner)) |
|
|
|
self.out_proj = nn.Linear(self.d_inner, self.d_model, bias=bias, **factory_kwargs) |
|
|
|
def forward(self, hidden_states, inference_params=None, mask= None, yoco_key_values = None, cache_position = None): |
|
""" |
|
hidden_states: (B, L, D) |
|
Returns: same shape as hidden_states |
|
""" |
|
|
|
if self.yoco_cross: |
|
out = self.in_proj(hidden_states) |
|
out = swiglu(out, yoco_key_values) |
|
out = self.out_proj(out) |
|
return out, yoco_key_values |
|
|
|
batch, seqlen, _ = hidden_states.shape |
|
conv_state, ssm_state = None, None |
|
if inference_params is not None: |
|
conv_state, ssm_state = self._get_states_from_cache(inference_params) |
|
if cache_position[0] > 0: |
|
|
|
out, _, _, yoco_key_values = self.step(hidden_states, conv_state, ssm_state, yoco_key_values) |
|
return out, yoco_key_values |
|
|
|
|
|
xz = rearrange( |
|
self.in_proj.weight @ rearrange(hidden_states.to(dtype = self.in_proj.weight.dtype), "b l d -> d (b l)"), |
|
"d (b l) -> b d l", |
|
l=seqlen, |
|
) |
|
if self.in_proj.bias is not None: |
|
xz = xz + rearrange(self.in_proj.bias.to(dtype=xz.dtype), "d -> d 1") |
|
|
|
|
|
A = -torch.exp(self.A_log.float()) |
|
|
|
if (not self.yoco_kv) and self.use_fast_path and inference_params is None: |
|
out = mamba_inner_fn( |
|
xz, |
|
self.conv1d.weight, |
|
self.conv1d.bias, |
|
self.x_proj.weight, |
|
self.dt_proj.weight, |
|
self.out_proj.weight, |
|
self.out_proj.bias, |
|
A, |
|
None, |
|
None, |
|
self.D.float(), |
|
delta_bias=self.dt_proj.bias.float(), |
|
mask=mask, |
|
delta_softplus=True, |
|
) |
|
else: |
|
x, z = xz.chunk(2, dim=1) |
|
if self.yoco_kv: |
|
z = z.transpose(-1,-2).contiguous() |
|
if mask is not None: |
|
x = x * mask.unsqueeze(1) |
|
|
|
if conv_state is not None: |
|
|
|
|
|
conv_state.copy_(F.pad(x, (self.d_conv - x.shape[-1], 0))) |
|
if causal_conv1d_fn is None: |
|
x = self.act(self.conv1d(x)[..., :seqlen]) |
|
else: |
|
assert self.activation in ["silu", "swish"] |
|
x = causal_conv1d_fn( |
|
x=x, |
|
weight=rearrange(self.conv1d.weight, "d 1 w -> d w"), |
|
bias=self.conv1d.bias, |
|
activation=self.activation, |
|
) |
|
if mask is not None: |
|
x = x * mask.unsqueeze(1) |
|
|
|
|
|
|
|
x_dbl = self.x_proj(rearrange(x, "b d l -> (b l) d")) |
|
dt, B, C = torch.split(x_dbl, [self.dt_rank, self.d_state, self.d_state], dim=-1) |
|
dt = self.dt_proj.weight @ dt.t() |
|
dt = rearrange(dt, "d (b l) -> b d l", l=seqlen) |
|
B = rearrange(B, "(b l) dstate -> b dstate l", l=seqlen).contiguous() |
|
C = rearrange(C, "(b l) dstate -> b dstate l", l=seqlen).contiguous() |
|
assert self.activation in ["silu", "swish"] |
|
y = selective_scan_fn( |
|
x, |
|
dt, |
|
A, |
|
B, |
|
C, |
|
self.D.float(), |
|
z= None if self.yoco_kv else z, |
|
delta_bias=self.dt_proj.bias.float(), |
|
delta_softplus=True, |
|
return_last_state=ssm_state is not None, |
|
) |
|
if ssm_state is not None: |
|
y, last_state = y |
|
ssm_state.copy_(last_state) |
|
y = rearrange(y, "b d l -> b l d") |
|
if self.yoco_kv: |
|
yoco_key_values = y |
|
y = swiglu(z, y) |
|
out = self.out_proj(y) |
|
return out, yoco_key_values |
|
|
|
def step(self, hidden_states, conv_state, ssm_state, yoco_key_values): |
|
dtype = hidden_states.dtype |
|
assert hidden_states.shape[1] == 1, "Only support decoding with 1 token at a time for now" |
|
xz = self.in_proj(hidden_states.to(dtype = self.in_proj.weight.dtype).squeeze(1)) |
|
x, z = xz.chunk(2, dim=-1) |
|
|
|
|
|
if causal_conv1d_update is None: |
|
conv_state.copy_(torch.roll(conv_state, shifts=-1, dims=-1)) |
|
conv_state[:, :, -1] = x |
|
x = torch.sum(conv_state * rearrange(self.conv1d.weight, "d 1 w -> d w"), dim=-1) |
|
if self.conv1d.bias is not None: |
|
x = x + self.conv1d.bias |
|
x = self.act(x).to(dtype=dtype) |
|
else: |
|
x = causal_conv1d_update( |
|
x, |
|
conv_state, |
|
rearrange(self.conv1d.weight, "d 1 w -> d w"), |
|
self.conv1d.bias, |
|
self.activation, |
|
) |
|
|
|
x_db = self.x_proj(x) |
|
dt, B, C = torch.split(x_db, [self.dt_rank, self.d_state, self.d_state], dim=-1) |
|
|
|
dt = F.linear(dt, self.dt_proj.weight) |
|
A = -torch.exp(self.A_log.float()) |
|
|
|
|
|
if selective_state_update is None: |
|
|
|
dt = F.softplus(dt + self.dt_proj.bias.to(dtype=dt.dtype)) |
|
dA = torch.exp(torch.einsum("bd,dn->bdn", dt, A)) |
|
dB = torch.einsum("bd,bn->bdn", dt, B) |
|
ssm_state.copy_(ssm_state * dA + rearrange(x, "b d -> b d 1") * dB) |
|
y = torch.einsum("bdn,bn->bd", ssm_state.to(dtype), C) |
|
y = y + self.D.to(dtype) * x |
|
y = y * self.act(z) |
|
else: |
|
y = selective_state_update( |
|
ssm_state, x, dt, A, B, C, self.D, z= None if self.yoco_kv else z, dt_bias=self.dt_proj.bias, dt_softplus=True |
|
) |
|
if self.yoco_kv: |
|
yoco_key_values = y.unsqueeze(1) |
|
y = swiglu(z, y) |
|
out = self.out_proj(y) |
|
return out.unsqueeze(1), conv_state, ssm_state, yoco_key_values |
|
|
|
def _get_states_from_cache(self, inference_params): |
|
conv_state, ssm_state = inference_params.key_cache[self.layer_idx], inference_params.value_cache[self.layer_idx] |
|
return conv_state, ssm_state |
|
|
|
|
|
|
|
|
|
class SambaYDecoderLayer(nn.Module): |
|
def __init__(self, config: Phi4FlashConfig, layer_idx: int): |
|
super().__init__() |
|
|
|
self.mlp = SambaYMLP(config) |
|
self.input_layernorm = PHI_NORM_CLASS(config.hidden_size, eps=config.layer_norm_eps) |
|
|
|
self.yoco_kv = False |
|
self.yoco_cross = False |
|
self.yoco_mb = False |
|
self.layer_idx = layer_idx |
|
assert config.num_hidden_layers % 4 == 0, 'n_layer should be divisible by 4 for SambaY ' |
|
if layer_idx >= config.num_hidden_layers//2: |
|
self.yoco_mb = True |
|
self.yoco_kv = (layer_idx >= (config.num_hidden_layers//2 +1)) |
|
self.yoco_cross = (layer_idx >= (config.num_hidden_layers//2 +2)) |
|
if (layer_idx >= (config.num_hidden_layers//2 +1)): |
|
config = copy.deepcopy(config) |
|
config.sliding_window = None |
|
self.config= config |
|
|
|
self.use_mamba = config.mb_per_layer > 0 and layer_idx % config.mb_per_layer == 0 |
|
if self.use_mamba: |
|
factory_kwargs = {"d_conv": config.mamba_d_conv, "d_state": config.mamba_d_state, "expand": config.mamba_expand , "dtype": None} |
|
self.attn = Phi3Mamba(config.hidden_size, layer_idx=layer_idx, yoco_cross=self.yoco_cross, yoco_kv=self.yoco_mb, **factory_kwargs) |
|
else: |
|
self.attn = SambaYFlashAttention2(config, layer_idx=layer_idx, yoco_cross=self.yoco_cross) |
|
|
|
self.resid_attn_dropout = nn.Dropout(config.resid_pdrop) |
|
self.resid_mlp_dropout = nn.Dropout(config.resid_pdrop) |
|
self.post_attention_layernorm = PHI_NORM_CLASS(config.hidden_size, eps=config.layer_norm_eps) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional[Tuple[torch.Tensor]] = None, |
|
output_attentions: Optional[bool] = False, |
|
use_cache: Optional[bool] = False, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
ssm_output: Optional[torch.Tensor] = None, |
|
yoco_key_values: Optional[torch.Tensor] = None, |
|
**kwargs, |
|
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: |
|
""" |
|
Args: |
|
hidden_states (`torch.FloatTensor`): |
|
input to the layer of shape `(batch, seq_len, embed_dim)` |
|
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size |
|
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. |
|
position_ids (`torch.LongTensor` of shape `({0})`, *optional*): |
|
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range |
|
`[0, config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids) |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under |
|
returned tensors for more detail. |
|
use_cache (`bool`, *optional*): |
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding |
|
(see `past_key_values`). |
|
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states |
|
""" |
|
|
|
residual = hidden_states |
|
|
|
hidden_states = self.input_layernorm(hidden_states.to(dtype=self.input_layernorm.weight.dtype)) |
|
|
|
if self.use_mamba: |
|
attn_outputs, ssm_output = self.attn( |
|
hidden_states, inference_params=past_key_value, |
|
mask = attention_mask, yoco_key_values = ssm_output, |
|
cache_position=cache_position, |
|
) |
|
residual = residual.to(torch.float32) |
|
self_attn_weights = None |
|
else: |
|
if self.config.sliding_window is not None and self.config.sliding_window[self.layer_idx] is not None and attention_mask is not None: |
|
if past_key_value is not None and cache_position[0] > 0: |
|
attention_mask = attention_mask[:, -self.config.sliding_window[self.layer_idx]:] |
|
|
|
|
|
attn_outputs, self_attn_weights, yoco_key_values = self.attn( |
|
hidden_states=hidden_states, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_value=past_key_value, |
|
output_attentions=output_attentions, |
|
use_cache=use_cache, |
|
cache_position=cache_position, |
|
yoco_key_values = yoco_key_values, |
|
) |
|
|
|
hidden_states = residual + self.resid_attn_dropout(attn_outputs) |
|
|
|
residual = hidden_states |
|
hidden_states = self.post_attention_layernorm(hidden_states.to(dtype=self.post_attention_layernorm.weight.dtype)) |
|
hidden_states = self.mlp(hidden_states) |
|
hidden_states = residual + self.resid_mlp_dropout(hidden_states) |
|
|
|
outputs = (hidden_states,) |
|
outputs += (ssm_output,) |
|
outputs += (yoco_key_values,) |
|
if output_attentions: |
|
outputs += (self_attn_weights,) |
|
|
|
return outputs |
|
|
|
|
|
PHI_START_DOCSTRING = r""" |
|
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the |
|
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads |
|
etc.) |
|
|
|
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. |
|
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage |
|
and behavior. |
|
|
|
Parameters: |
|
config ([`Phi4FlashConfig`]): |
|
Model configuration class with all the parameters of the model. Initializing with a config file does not |
|
load the weights associated with the model, only the configuration. Check out the |
|
[`~PreTrainedModel.from_pretrained`] method to load the model weights. |
|
""" |
|
|
|
|
|
@add_start_docstrings( |
|
"The bare Phi4Flash Model outputting raw hidden-states without any specific head on top.", |
|
PHI_START_DOCSTRING, |
|
) |
|
class Phi4FlashPreTrainedModel(PreTrainedModel): |
|
config_class = Phi4FlashConfig |
|
base_model_prefix = "model" |
|
supports_gradient_checkpointing = True |
|
_no_split_modules = ["SambaYDecoderLayer"] |
|
_skip_keys_device_placement = "past_key_values" |
|
_supports_flash_attn_2 = True |
|
_supports_sdpa = False |
|
_supports_cache_class = True |
|
|
|
def _init_weights(self, module): |
|
std = self.config.initializer_range |
|
if isinstance(module, nn.Linear): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
elif isinstance(module, nn.Embedding): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.padding_idx is not None: |
|
module.weight.data[module.padding_idx].zero_() |
|
|
|
|
|
PHI_INPUTS_DOCSTRING = r""" |
|
Args: |
|
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): |
|
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide |
|
it. |
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and |
|
[`PreTrainedTokenizer.__call__`] for details. |
|
|
|
[What are input IDs?](../glossary#input-ids) |
|
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: |
|
|
|
- 1 for tokens that are **not masked**, |
|
- 0 for tokens that are **masked**. |
|
|
|
[What are attention masks?](../glossary#attention-mask) |
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and |
|
[`PreTrainedTokenizer.__call__`] for details. |
|
|
|
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see |
|
`past_key_values`). |
|
|
|
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] |
|
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more |
|
information on the default strategy. |
|
|
|
- 1 indicates the head is **not masked**, |
|
- 0 indicates the head is **masked**. |
|
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, |
|
config.n_positions - 1]`. |
|
|
|
[What are position IDs?](../glossary#position-ids) |
|
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*): |
|
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention |
|
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values` |
|
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`. |
|
|
|
Two formats are allowed: |
|
- a [`~cache_utils.Cache`] instance; |
|
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of |
|
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy |
|
cache format. |
|
|
|
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the |
|
legacy cache format will be returned. |
|
|
|
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't |
|
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids` |
|
of shape `(batch_size, sequence_length)`. |
|
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): |
|
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This |
|
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the |
|
model's internal embedding lookup matrix. |
|
use_cache (`bool`, *optional*): |
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see |
|
`past_key_values`). |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned |
|
tensors for more detail. |
|
output_hidden_states (`bool`, *optional*): |
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for |
|
more detail. |
|
return_dict (`bool`, *optional*): |
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. |
|
""" |
|
|
|
|
|
@add_start_docstrings( |
|
"The bare Phi4Flash Model outputting raw hidden-states without any specific head on top.", |
|
PHI_START_DOCSTRING, |
|
) |
|
class Phi4FlashModel(Phi4FlashPreTrainedModel): |
|
""" |
|
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`SambaYDecoderLayer`] |
|
|
|
Args: |
|
config: Phi4FlashConfig |
|
""" |
|
|
|
def __init__(self, config: Phi4FlashConfig): |
|
super().__init__(config) |
|
self.padding_idx = config.pad_token_id |
|
self.vocab_size = config.vocab_size |
|
|
|
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) |
|
self.embed_dropout = nn.Dropout(config.embd_pdrop) |
|
self.layers = nn.ModuleList( |
|
[SambaYDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] |
|
) |
|
self.final_layernorm = PHI_NORM_CLASS(config.hidden_size, eps=config.layer_norm_eps) |
|
|
|
self._attn_implementation = config._attn_implementation |
|
|
|
self.gradient_checkpointing = False |
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.embed_tokens |
|
|
|
def set_input_embeddings(self, value): |
|
self.embed_tokens = value |
|
|
|
@add_start_docstrings_to_model_forward(PHI_INPUTS_DOCSTRING) |
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
) -> Union[Tuple, BaseModelOutputWithPast]: |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
if input_ids is not None and inputs_embeds is not None: |
|
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") |
|
elif input_ids is not None: |
|
batch_size, seq_length = input_ids.shape[:2] |
|
elif inputs_embeds is not None: |
|
batch_size, seq_length = inputs_embeds.shape[:2] |
|
else: |
|
raise ValueError("You have to specify either input_ids or inputs_embeds") |
|
|
|
|
|
if self.gradient_checkpointing and self.training: |
|
if use_cache: |
|
logger.warning_once( |
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." |
|
) |
|
use_cache = False |
|
|
|
if inputs_embeds is None: |
|
inputs_embeds = self.embed_tokens(input_ids) |
|
|
|
if use_cache and past_key_values is None and not self.training: |
|
batch_size, seq_len, _ = inputs_embeds.shape |
|
past_key_values = SambaYCache( |
|
self.config, |
|
max_batch_size=batch_size, |
|
max_cache_len=seq_len, |
|
device=self.device, |
|
dtype=inputs_embeds.dtype, |
|
) |
|
|
|
|
|
if cache_position is None: |
|
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 |
|
cache_position = torch.arange( |
|
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device |
|
) |
|
|
|
if attention_mask is not None and self._attn_implementation == "flash_attention_2" and use_cache and not self.training: |
|
is_padding_right = attention_mask[:, -1].sum().item() != batch_size |
|
if is_padding_right: |
|
raise ValueError( |
|
"You are attempting to perform batched generation with padding_side='right'" |
|
" this may lead to unexpected behaviour for Flash Attention version of Phi4Flash. Make sure to " |
|
" call `tokenizer.padding_side = 'left'` before tokenizing the input. " |
|
) |
|
|
|
hidden_states = inputs_embeds |
|
|
|
|
|
all_hidden_states = () if output_hidden_states else None |
|
all_self_attns = () if output_attentions else None |
|
ssm_output = None |
|
yoco_key_values = None |
|
for decoder_layer in self.layers: |
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states,) |
|
|
|
if self.gradient_checkpointing and self.training: |
|
layer_outputs = self._gradient_checkpointing_func( |
|
decoder_layer.__call__, |
|
hidden_states, |
|
attention_mask, |
|
position_ids, |
|
past_key_values, |
|
output_attentions, |
|
use_cache, |
|
cache_position, |
|
ssm_output, |
|
yoco_key_values, |
|
) |
|
else: |
|
layer_outputs = decoder_layer( |
|
hidden_states, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_value=past_key_values, |
|
output_attentions=output_attentions, |
|
use_cache=use_cache, |
|
cache_position = cache_position, |
|
ssm_output = ssm_output, |
|
yoco_key_values = yoco_key_values, |
|
) |
|
|
|
hidden_states = layer_outputs[0] |
|
ssm_output = layer_outputs[1] |
|
yoco_key_values = layer_outputs[2] |
|
|
|
if output_attentions: |
|
all_self_attns += (layer_outputs[3],) |
|
|
|
hidden_states = self.final_layernorm(hidden_states.to(dtype=self.final_layernorm.weight.dtype)) |
|
|
|
|
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states,) |
|
|
|
output = BaseModelOutputWithPast( |
|
last_hidden_state=hidden_states, |
|
past_key_values=past_key_values, |
|
hidden_states=all_hidden_states, |
|
attentions=all_self_attns, |
|
) |
|
return output if return_dict else output.to_tuple() |
|
|
|
|
|
|
|
class Phi4FlashForCausalLM(Phi4FlashPreTrainedModel, GenerationMixin): |
|
_tied_weights_keys = ["lm_head.weight"] |
|
|
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.model = Phi4FlashModel(config) |
|
self.vocab_size = config.vocab_size |
|
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) |
|
|
|
|
|
self.post_init() |
|
|
|
|
|
def get_input_embeddings(self): |
|
return self.model.embed_tokens |
|
|
|
|
|
def set_input_embeddings(self, value): |
|
self.model.embed_tokens = value |
|
|
|
|
|
def get_output_embeddings(self): |
|
return self.lm_head |
|
|
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
self.lm_head = new_embeddings |
|
|
|
|
|
def set_decoder(self, decoder): |
|
self.model = decoder |
|
|
|
|
|
def get_decoder(self): |
|
return self.model |
|
|
|
@add_start_docstrings_to_model_forward(PHI_INPUTS_DOCSTRING) |
|
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) |
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
num_logits_to_keep: int = 0, |
|
**loss_kwargs, |
|
) -> Union[Tuple, CausalLMOutputWithPast]: |
|
r""" |
|
Args: |
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., |
|
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored |
|
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. |
|
|
|
Returns: |
|
|
|
Example: |
|
|
|
```python |
|
>>> from transformers import AutoTokenizer, Phi4FlashForCausalLM |
|
|
|
>>> model = Phi4FlashForCausalLM.from_pretrained("microsoft/Phi4-mini-flash-reasoning") |
|
>>> tokenizer = AutoTokenizer.from_pretrained("microsoft/Phi4-mini-flash-reasoning") |
|
|
|
>>> prompt = "This is an example script ." |
|
>>> inputs = tokenizer(prompt, return_tensors="pt") |
|
|
|
>>> # Generate |
|
>>> generate_ids = model.generate(inputs.input_ids, max_length=30) |
|
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] |
|
'This is an example script .\n\n\n\nfrom typing import List\n\ndef find_most_common_letter(words: List[str' |
|
```""" |
|
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
outputs = self.model( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
cache_position = cache_position, |
|
) |
|
|
|
hidden_states = outputs[0] |
|
logits = self.lm_head(hidden_states[:, -num_logits_to_keep:, :]) |
|
|
|
loss = None |
|
if labels is not None: |
|
loss = self.loss_function(logits, labels, self.vocab_size, **loss_kwargs) |
|
|
|
if not return_dict: |
|
output = (logits,) + outputs[1:] |
|
return (loss,) + output if loss is not None else output |
|
|
|
return CausalLMOutputWithPast( |
|
loss=loss, |
|
logits=logits, |
|
past_key_values=outputs.past_key_values, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
|
|
@add_start_docstrings( |
|
""" |
|
The Phi4FlashModel with a sequence classification head on top (linear layer). |
|
|
|
[`Phi4FlashForSequenceClassification`] uses the last token in order to do the classification, as other causal models |
|
(e.g. GPT-2) do. |
|
|
|
Since it does classification on the last token, it requires to know the position of the last token. If a |
|
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If |
|
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the |
|
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in |
|
each row of the batch). |
|
""", |
|
PHI_START_DOCSTRING, |
|
) |
|
|
|
class Phi4FlashForSequenceClassification(Phi4FlashPreTrainedModel): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.num_labels = config.num_labels |
|
self.model = Phi4FlashModel(config) |
|
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False) |
|
|
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.model.embed_tokens |
|
|
|
def set_input_embeddings(self, value): |
|
self.model.embed_tokens = value |
|
|
|
@add_start_docstrings_to_model_forward(PHI_INPUTS_DOCSTRING) |
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, SequenceClassifierOutputWithPast]: |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): |
|
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., |
|
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If |
|
`config.num_labels > 1` a classification loss is computed (Cross-Entropy). |
|
""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
model_outputs = self.model( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
hidden_states = model_outputs[0] |
|
logits = self.score(hidden_states) |
|
|
|
if input_ids is not None: |
|
batch_size = input_ids.shape[0] |
|
else: |
|
batch_size = inputs_embeds.shape[0] |
|
|
|
if self.config.pad_token_id is None and batch_size != 1: |
|
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.") |
|
if self.config.pad_token_id is None: |
|
sequence_lengths = -1 |
|
else: |
|
if input_ids is not None: |
|
|
|
sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1 |
|
sequence_lengths = sequence_lengths % input_ids.shape[-1] |
|
sequence_lengths = sequence_lengths.to(logits.device) |
|
else: |
|
sequence_lengths = -1 |
|
|
|
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths] |
|
|
|
loss = None |
|
if labels is not None: |
|
labels = labels.to(logits.device) |
|
if self.config.problem_type is None: |
|
if self.num_labels == 1: |
|
self.config.problem_type = "regression" |
|
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): |
|
self.config.problem_type = "single_label_classification" |
|
else: |
|
self.config.problem_type = "multi_label_classification" |
|
|
|
if self.config.problem_type == "regression": |
|
loss_fct = MSELoss() |
|
if self.num_labels == 1: |
|
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze()) |
|
else: |
|
loss = loss_fct(pooled_logits, labels) |
|
elif self.config.problem_type == "single_label_classification": |
|
loss_fct = CrossEntropyLoss() |
|
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1)) |
|
elif self.config.problem_type == "multi_label_classification": |
|
loss_fct = BCEWithLogitsLoss() |
|
loss = loss_fct(pooled_logits, labels) |
|
if not return_dict: |
|
output = (pooled_logits,) + model_outputs[1:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return SequenceClassifierOutputWithPast( |
|
loss=loss, |
|
logits=pooled_logits, |
|
past_key_values=model_outputs.past_key_values, |
|
hidden_states=model_outputs.hidden_states, |
|
attentions=model_outputs.attentions, |
|
) |
|
|
|
|
|
@add_start_docstrings( |
|
""" |
|
Phi4FlashModel with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for |
|
Named-Entity-Recognition (NER) tasks. |
|
""", |
|
PHI_START_DOCSTRING, |
|
) |
|
|
|
class Phi4FlashForTokenClassification(Phi4FlashPreTrainedModel): |
|
def __init__(self, config: Phi4FlashConfig): |
|
super().__init__(config) |
|
self.num_labels = config.num_labels |
|
|
|
self.model = Phi4FlashModel(config) |
|
if hasattr(config, "classifier_dropout") and config.classifier_dropout is not None: |
|
classifier_dropout = config.classifier_dropout |
|
elif hasattr(config, "hidden_dropout") and config.hidden_dropout is not None: |
|
classifier_dropout = config.hidden_dropout |
|
else: |
|
classifier_dropout = 0.1 |
|
self.dropout = nn.Dropout(classifier_dropout) |
|
self.classifier = nn.Linear(config.hidden_size, config.num_labels) |
|
|
|
|
|
self.post_init() |
|
|
|
@add_start_docstrings_to_model_forward(PHI_INPUTS_DOCSTRING) |
|
@add_code_sample_docstrings( |
|
checkpoint=_CHECKPOINT_FOR_DOC, |
|
output_type=TokenClassifierOutput, |
|
config_class=_CONFIG_FOR_DOC, |
|
) |
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
labels: Optional[torch.Tensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
**deprecated_arguments, |
|
) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]: |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): |
|
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., |
|
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If |
|
`config.num_labels > 1` a classification loss is computed (Cross-Entropy). |
|
""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
model_outputs = self.model( |
|
input_ids, |
|
past_key_values=past_key_values, |
|
attention_mask=attention_mask, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
hidden_states = model_outputs[0] |
|
hidden_states = self.dropout(hidden_states) |
|
logits = self.classifier(hidden_states) |
|
|
|
loss = None |
|
if labels is not None: |
|
|
|
labels = labels.to(logits.device) |
|
batch_size, seq_length = labels.shape |
|
loss_fct = CrossEntropyLoss() |
|
loss = loss_fct(logits.view(batch_size * seq_length, self.num_labels), labels.view(batch_size * seq_length)) |
|
|
|
if not return_dict: |
|
output = (logits,) + model_outputs[2:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return TokenClassifierOutput( |
|
loss=loss, |
|
logits=logits, |
|
hidden_states=model_outputs.hidden_states, |
|
attentions=model_outputs.attentions, |
|
) |
|
|
|
|
|
|
|
class SelectiveScanFn(torch.autograd.Function): |
|
|
|
@staticmethod |
|
def forward(ctx, u, delta, A, B, C, D=None, z=None, delta_bias=None, delta_softplus=False, |
|
return_last_state=False): |
|
if u.stride(-1) != 1: |
|
u = u.contiguous() |
|
if delta.stride(-1) != 1: |
|
delta = delta.contiguous() |
|
if D is not None: |
|
D = D.contiguous() |
|
if B.stride(-1) != 1: |
|
B = B.contiguous() |
|
if C.stride(-1) != 1: |
|
C = C.contiguous() |
|
if z is not None and z.stride(-1) != 1: |
|
z = z.contiguous() |
|
if B.dim() == 3: |
|
B = rearrange(B, "b dstate l -> b 1 dstate l") |
|
ctx.squeeze_B = True |
|
if C.dim() == 3: |
|
C = rearrange(C, "b dstate l -> b 1 dstate l") |
|
ctx.squeeze_C = True |
|
out, x, *rest = selective_scan_cuda.fwd(u, delta, A, B, C, D, z, delta_bias, delta_softplus) |
|
ctx.delta_softplus = delta_softplus |
|
ctx.has_z = z is not None |
|
last_state = x[:, :, -1, 1::2] |
|
if not ctx.has_z: |
|
ctx.save_for_backward(u, delta, A, B, C, D, delta_bias, x) |
|
return out if not return_last_state else (out, last_state) |
|
else: |
|
ctx.save_for_backward(u, delta, A, B, C, D, z, delta_bias, x, out) |
|
out_z = rest[0] |
|
return out_z if not return_last_state else (out_z, last_state) |
|
|
|
@staticmethod |
|
def backward(ctx, dout, *args): |
|
if not ctx.has_z: |
|
u, delta, A, B, C, D, delta_bias, x = ctx.saved_tensors |
|
z = None |
|
out = None |
|
else: |
|
u, delta, A, B, C, D, z, delta_bias, x, out = ctx.saved_tensors |
|
if dout.stride(-1) != 1: |
|
dout = dout.contiguous() |
|
|
|
|
|
|
|
du, ddelta, dA, dB, dC, dD, ddelta_bias, *rest = selective_scan_cuda.bwd( |
|
u, delta, A, B, C, D, z, delta_bias, dout, x, out, None, ctx.delta_softplus, |
|
False |
|
) |
|
dz = rest[0] if ctx.has_z else None |
|
dB = dB.squeeze(1) if getattr(ctx, "squeeze_B", False) else dB |
|
dC = dC.squeeze(1) if getattr(ctx, "squeeze_C", False) else dC |
|
return (du, ddelta, dA, dB, dC, |
|
dD if D is not None else None, |
|
dz, |
|
ddelta_bias if delta_bias is not None else None, |
|
None, |
|
None) |
|
|
|
|
|
def selective_scan_fn(u, delta, A, B, C, D=None, z=None, delta_bias=None, delta_softplus=False, |
|
return_last_state=False): |
|
"""if return_last_state is True, returns (out, last_state) |
|
last_state has shape (batch, dim, dstate). Note that the gradient of the last state is |
|
not considered in the backward pass. |
|
""" |
|
return SelectiveScanFn.apply(u, delta, A, B, C, D, z, delta_bias, delta_softplus, return_last_state) |
|
|
|
|
|
class MambaInnerFn(torch.autograd.Function): |
|
|
|
@staticmethod |
|
@custom_fwd(device_type="cuda") |
|
def forward(ctx, xz, conv1d_weight, conv1d_bias, x_proj_weight, delta_proj_weight, |
|
out_proj_weight, out_proj_bias, |
|
A, B=None, C=None, D=None, delta_bias=None, B_proj_bias=None, |
|
C_proj_bias=None, mask=None, delta_softplus=True, checkpoint_lvl=1,): |
|
""" |
|
xz: (batch, dim, seqlen) |
|
""" |
|
assert causal_conv1d_cuda is not None, "causal_conv1d_cuda is not available. Please install causal-conv1d." |
|
assert checkpoint_lvl in [0, 1] |
|
L = xz.shape[-1] |
|
delta_rank = delta_proj_weight.shape[1] |
|
d_state = A.shape[-1] * (1 if not A.is_complex() else 2) |
|
if torch.is_autocast_enabled(): |
|
x_proj_weight = x_proj_weight.to(dtype=torch.get_autocast_gpu_dtype()) |
|
delta_proj_weight = delta_proj_weight.to(dtype=torch.get_autocast_gpu_dtype()) |
|
out_proj_weight = out_proj_weight.to(dtype=torch.get_autocast_gpu_dtype()) |
|
out_proj_bias = (out_proj_bias.to(dtype=torch.get_autocast_gpu_dtype()) |
|
if out_proj_bias is not None else None) |
|
if xz.stride(-1) != 1: |
|
xz = xz.contiguous() |
|
conv1d_weight = rearrange(conv1d_weight, "d 1 w -> d w") |
|
x, z = xz.chunk(2, dim=1) |
|
if mask is not None: |
|
x = x * mask.unsqueeze(1) |
|
conv1d_bias = conv1d_bias.contiguous() if conv1d_bias is not None else None |
|
conv1d_out = causal_conv1d_cuda.causal_conv1d_fwd( |
|
x, conv1d_weight, conv1d_bias, None, None, None, True |
|
) |
|
if mask is not None: |
|
conv1d_out = conv1d_out * mask.unsqueeze(1) |
|
|
|
|
|
|
|
x_dbl = F.linear(rearrange(conv1d_out, 'b d l -> (b l) d'), x_proj_weight) |
|
delta = rearrange(delta_proj_weight @ x_dbl[:, :delta_rank].t(), "d (b l) -> b d l", l = L) |
|
ctx.is_variable_B = B is None |
|
ctx.is_variable_C = C is None |
|
ctx.B_proj_bias_is_None = B_proj_bias is None |
|
ctx.C_proj_bias_is_None = C_proj_bias is None |
|
if B is None: |
|
B = x_dbl[:, delta_rank:delta_rank + d_state] |
|
if B_proj_bias is not None: |
|
B = B + B_proj_bias.to(dtype=B.dtype) |
|
if not A.is_complex(): |
|
|
|
B = rearrange(B, "(b l) dstate -> b 1 dstate l", l=L).contiguous() |
|
else: |
|
B = rearrange(B, "(b l) (dstate two) -> b 1 dstate (l two)", l=L, two=2).contiguous() |
|
else: |
|
if B.stride(-1) != 1: |
|
B = B.contiguous() |
|
if C is None: |
|
C = x_dbl[:, -d_state:] |
|
if C_proj_bias is not None: |
|
C = C + C_proj_bias.to(dtype=C.dtype) |
|
if not A.is_complex(): |
|
|
|
C = rearrange(C, "(b l) dstate -> b 1 dstate l", l=L).contiguous() |
|
else: |
|
C = rearrange(C, "(b l) (dstate two) -> b 1 dstate (l two)", l=L, two=2).contiguous() |
|
else: |
|
if C.stride(-1) != 1: |
|
C = C.contiguous() |
|
if D is not None: |
|
D = D.contiguous() |
|
out, scan_intermediates, out_z = selective_scan_cuda.fwd( |
|
conv1d_out, delta, A, B, C, D, z, delta_bias, delta_softplus |
|
) |
|
ctx.delta_softplus = delta_softplus |
|
ctx.out_proj_bias_is_None = out_proj_bias is None |
|
ctx.checkpoint_lvl = checkpoint_lvl |
|
if checkpoint_lvl >= 1: |
|
conv1d_out, delta = None, None |
|
ctx.save_for_backward(xz, conv1d_weight, conv1d_bias, x_dbl, x_proj_weight, |
|
delta_proj_weight, out_proj_weight, conv1d_out, delta, |
|
A, B, C, D, delta_bias, scan_intermediates, out) |
|
return F.linear(rearrange(out_z, "b d l -> b l d"), out_proj_weight, out_proj_bias) |
|
|
|
@staticmethod |
|
@custom_bwd(device_type="cuda") |
|
def backward(ctx, dout): |
|
|
|
assert causal_conv1d_cuda is not None, "causal_conv1d_cuda is not available. Please install causal-conv1d." |
|
(xz, conv1d_weight, conv1d_bias, x_dbl, x_proj_weight, delta_proj_weight, out_proj_weight, |
|
conv1d_out, delta, A, B, C, D, delta_bias, scan_intermediates, out) = ctx.saved_tensors |
|
L = xz.shape[-1] |
|
delta_rank = delta_proj_weight.shape[1] |
|
d_state = A.shape[-1] * (1 if not A.is_complex() else 2) |
|
x, z = xz.chunk(2, dim=1) |
|
if dout.stride(-1) != 1: |
|
dout = dout.contiguous() |
|
if ctx.checkpoint_lvl == 1: |
|
conv1d_out = causal_conv1d_cuda.causal_conv1d_fwd( |
|
x, conv1d_weight, conv1d_bias, None, None, None, True |
|
) |
|
delta = rearrange(delta_proj_weight @ x_dbl[:, :delta_rank].t(), |
|
"d (b l) -> b d l", l = L) |
|
|
|
|
|
dxz = torch.empty_like(xz) |
|
dx, dz = dxz.chunk(2, dim=1) |
|
dout = rearrange(dout, "b l e -> e (b l)") |
|
dout_y = rearrange(out_proj_weight.t() @ dout, "d (b l) -> b d l", l=L) |
|
dconv1d_out, ddelta, dA, dB, dC, dD, ddelta_bias, dz, out_z = selective_scan_cuda.bwd( |
|
conv1d_out, delta, A, B, C, D, z, delta_bias, dout_y, scan_intermediates, out, dz, |
|
ctx.delta_softplus, |
|
True |
|
) |
|
dout_proj_weight = torch.einsum("eB,dB->ed", dout, rearrange(out_z, "b d l -> d (b l)")) |
|
dout_proj_bias = dout.sum(dim=(0, 1)) if not ctx.out_proj_bias_is_None else None |
|
dD = dD if D is not None else None |
|
dx_dbl = torch.empty_like(x_dbl) |
|
dB_proj_bias = None |
|
if ctx.is_variable_B: |
|
if not A.is_complex(): |
|
dB = rearrange(dB, "b 1 dstate l -> (b l) dstate").contiguous() |
|
else: |
|
dB = rearrange(dB, "b 1 dstate (l two) -> (b l) (dstate two)", two=2).contiguous() |
|
dB_proj_bias = dB.sum(0) if not ctx.B_proj_bias_is_None else None |
|
dx_dbl[:, delta_rank:delta_rank + d_state] = dB |
|
dB = None |
|
dC_proj_bias = None |
|
if ctx.is_variable_C: |
|
if not A.is_complex(): |
|
dC = rearrange(dC, "b 1 dstate l -> (b l) dstate").contiguous() |
|
else: |
|
dC = rearrange(dC, "b 1 dstate (l two) -> (b l) (dstate two)", two=2).contiguous() |
|
dC_proj_bias = dC.sum(0) if not ctx.C_proj_bias_is_None else None |
|
dx_dbl[:, -d_state:] = dC |
|
dC = None |
|
ddelta = rearrange(ddelta, "b d l -> d (b l)") |
|
ddelta_proj_weight = torch.einsum("dB,Br->dr", ddelta, x_dbl[:, :delta_rank]) |
|
dx_dbl[:, :delta_rank] = torch.einsum("dB,dr->Br", ddelta, delta_proj_weight) |
|
dconv1d_out = rearrange(dconv1d_out, "b d l -> d (b l)") |
|
dx_proj_weight = torch.einsum("Br,Bd->rd", dx_dbl, rearrange(conv1d_out, "b d l -> (b l) d")) |
|
dconv1d_out = torch.addmm(dconv1d_out, x_proj_weight.t(), dx_dbl.t(), out=dconv1d_out) |
|
dconv1d_out = rearrange(dconv1d_out, "d (b l) -> b d l", b=x.shape[0], l=x.shape[-1]) |
|
|
|
|
|
dx, dconv1d_weight, dconv1d_bias, *_ = causal_conv1d_cuda.causal_conv1d_bwd( |
|
x, conv1d_weight, conv1d_bias, dconv1d_out, None, None, None, dx, False, True |
|
) |
|
dconv1d_bias = dconv1d_bias if conv1d_bias is not None else None |
|
dconv1d_weight = rearrange(dconv1d_weight, "d w -> d 1 w") |
|
return (dxz, dconv1d_weight, dconv1d_bias, dx_proj_weight, ddelta_proj_weight, |
|
dout_proj_weight, dout_proj_bias, |
|
dA, dB, dC, dD, |
|
ddelta_bias if delta_bias is not None else None, |
|
dB_proj_bias, dC_proj_bias, None, None) |
|
|
|
|
|
def mamba_inner_fn( |
|
xz, conv1d_weight, conv1d_bias, x_proj_weight, delta_proj_weight, |
|
out_proj_weight, out_proj_bias, |
|
A, B=None, C=None, D=None, delta_bias=None, B_proj_bias=None, |
|
C_proj_bias=None, mask=None, delta_softplus=True |
|
): |
|
return MambaInnerFn.apply(xz, conv1d_weight, conv1d_bias, x_proj_weight, delta_proj_weight, |
|
out_proj_weight, out_proj_bias, |
|
A, B, C, D, delta_bias, B_proj_bias, C_proj_bias, mask, delta_softplus) |
|
|
|
|
|
def lambda_init_fn(depth): |
|
return 0.8 - 0.6 * math.exp(-0.3 * depth) |
|
|
|
|
|
def split_heads(x): |
|
|
|
x = rearrange(x, "... (H two) D -> ... H two D", two=2) |
|
x1 = x[..., 0, :] |
|
x2 = x[..., 1, :] |
|
return x1, x2 |
|
|
|
class FlashDiffCustomAttention(nn.Module): |
|
"""Implement the scaled dot product attention with softmax. |
|
Arguments |
|
--------- |
|
head_dim: The dimension of the heads. |
|
depth: The layer id, starting from 0. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
head_dim, |
|
depth, |
|
fa_og = True, |
|
): |
|
super().__init__() |
|
assert flash_attn_varlen_func is not None, "FlashAttention is not installed" |
|
assert flash_attn_func is not None, "FlashAttention is not installed" |
|
self.head_dim = head_dim |
|
self.fa_og = fa_og |
|
self.lambda_init = lambda_init_fn(depth) |
|
self.lambda_q1 = nn.Parameter(torch.zeros(self.head_dim, dtype=torch.float32).normal_(mean=0,std=0.1)) |
|
self.lambda_k1 = nn.Parameter(torch.zeros(self.head_dim, dtype=torch.float32).normal_(mean=0,std=0.1)) |
|
self.lambda_q2 = nn.Parameter(torch.zeros(self.head_dim, dtype=torch.float32).normal_(mean=0,std=0.1)) |
|
self.lambda_k2 = nn.Parameter(torch.zeros(self.head_dim, dtype=torch.float32).normal_(mean=0,std=0.1)) |
|
|
|
self.subln = SambaYRMSNorm(2 * self.head_dim, eps=1e-5) |
|
|
|
def forward( |
|
self, |
|
q, |
|
k, |
|
v, |
|
dropout_p = 0.0, |
|
cu_seqlens_q=None, |
|
max_seqlen_q=None, |
|
cu_seqlens_k=None, |
|
max_seqlen_k=None, |
|
softmax_scale=None, |
|
window_size=(-1, -1), |
|
causal=None, |
|
): |
|
"""Implements the multihead softmax attention. |
|
Arguments |
|
--------- |
|
q, k, v: The tensors containing the query, key, and value. |
|
If cu_seqlens is None and max_seqlen is None, then each has shape (B, S, H, D). |
|
If cu_seqlens is not None and max_seqlen is not None, then each has shape |
|
(total, H, D), where total is the sum of the sequence lengths in the batch. |
|
causal: if passed, will override self.causal |
|
cu_seqlens: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths |
|
of the sequences in the batch, used to index into qkv. |
|
max_seqlen: int. Maximum sequence length in the batch. |
|
Returns: |
|
-------- |
|
out: (total, H, D) if cu_seqlens is not None and max_seqlen is not None, |
|
else (B, S, H, D). |
|
""" |
|
q = q.to(torch.bfloat16) |
|
k = k.to(torch.bfloat16) |
|
v = v.to(torch.bfloat16) |
|
|
|
assert q.dtype in [torch.float16, torch.bfloat16] |
|
assert q.is_cuda and k.is_cuda and v.is_cuda |
|
|
|
unpadded = cu_seqlens_q is not None |
|
q1, q2 = split_heads(q) |
|
k1, k2 = split_heads(k) |
|
if self.fa_og: |
|
v1, v2 = split_heads(v) |
|
else: |
|
v = rearrange(v, "... (H two) D -> ... H (two D)", two=2) |
|
|
|
kwargs = { |
|
"dropout_p": dropout_p, |
|
"softmax_scale": softmax_scale, |
|
"causal": causal, |
|
"window_size": window_size, |
|
} |
|
|
|
if unpadded: |
|
assert cu_seqlens_q.dtype == torch.int32 |
|
assert max_seqlen_q is not None |
|
assert isinstance(max_seqlen_q, int) |
|
assert cu_seqlens_k is not None |
|
assert cu_seqlens_k.dtype == torch.int32 |
|
assert max_seqlen_k is not None |
|
assert isinstance(max_seqlen_k, int) |
|
|
|
kwargs.update({ |
|
"cu_seqlens_q": cu_seqlens_q, |
|
"max_seqlen_q": max_seqlen_q, |
|
"cu_seqlens_k": cu_seqlens_k, |
|
"max_seqlen_k": max_seqlen_k, |
|
}) |
|
attn_func = flash_attn_varlen_func |
|
else: |
|
attn_func = flash_attn_func |
|
|
|
if self.fa_og: |
|
attn11 = attn_func(q1, k1, v1, **kwargs) |
|
attn12 = attn_func(q1, k1, v2, **kwargs) |
|
attn1 = torch.cat([attn11, attn12], dim=-1) |
|
attn21 = attn_func(q2, k2, v1, **kwargs) |
|
attn22 = attn_func(q2, k2, v2, **kwargs) |
|
attn2 = torch.cat([attn21, attn22], dim=-1) |
|
else: |
|
attn1 = attn_func(q1, k1, v, **kwargs) |
|
attn2 = attn_func(q2, k2, v, **kwargs) |
|
|
|
lambda_1 = torch.exp(torch.sum(self.lambda_q1 * self.lambda_k1, dim=-1).float()).type_as(q) |
|
lambda_2 = torch.exp(torch.sum(self.lambda_q2 * self.lambda_k2, dim=-1).float()).type_as(q) |
|
lambda_full = lambda_1 - lambda_2 + self.lambda_init |
|
|
|
attn = attn1 - lambda_full * attn2 |
|
attn = self.subln(attn) |
|
attn = attn * (1 - self.lambda_init) |
|
|
|
attn = rearrange(attn, "... H (two D) -> ... (H two) D", two=2) |
|
return attn |
|
|