Upload StyleTTS2 checkpoint epoch_2nd_00007.pth with all inference components
Browse files- .gitattributes +1 -34
- README.md +84 -0
- Utils/ASR/config.yml +29 -0
- Utils/ASR/epoch_00080.pth +3 -0
- Utils/ASR/layers.py +354 -0
- Utils/ASR/models.py +186 -0
- Utils/JDC/bst.t7 +3 -0
- Utils/JDC/model.py +190 -0
- Utils/PLBERT/config.yml +30 -0
- Utils/PLBERT/step_1000000.t7 +3 -0
- Utils/PLBERT/util.py +42 -0
- bert.pth +3 -0
- bert_encoder.pth +3 -0
- checkpoint.pth +3 -0
- config.json +162 -0
- config.yml +66 -0
- decoder.pth +3 -0
- diffusion.pth +3 -0
- models.py +713 -0
- mpd.pth +3 -0
- msd.pth +3 -0
- pitch_extractor.pth +3 -0
- predictor.pth +3 -0
- predictor_encoder.pth +3 -0
- style_encoder.pth +3 -0
- text_aligner.pth +3 -0
- text_encoder.pth +3 -0
- text_utils.py +26 -0
- training_metrics.png +0 -0
- utils.py +74 -0
- wd.pth +3 -0
.gitattributes
CHANGED
|
@@ -1,35 +1,2 @@
|
|
| 1 |
-
*.7z filter=lfs diff=lfs merge=lfs -text
|
| 2 |
-
*.arrow filter=lfs diff=lfs merge=lfs -text
|
| 3 |
-
*.bin filter=lfs diff=lfs merge=lfs -text
|
| 4 |
-
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
| 5 |
-
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
| 6 |
-
*.ftz filter=lfs diff=lfs merge=lfs -text
|
| 7 |
-
*.gz filter=lfs diff=lfs merge=lfs -text
|
| 8 |
-
*.h5 filter=lfs diff=lfs merge=lfs -text
|
| 9 |
-
*.joblib filter=lfs diff=lfs merge=lfs -text
|
| 10 |
-
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
| 11 |
-
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
| 12 |
-
*.model filter=lfs diff=lfs merge=lfs -text
|
| 13 |
-
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
| 14 |
-
*.npy filter=lfs diff=lfs merge=lfs -text
|
| 15 |
-
*.npz filter=lfs diff=lfs merge=lfs -text
|
| 16 |
-
*.onnx filter=lfs diff=lfs merge=lfs -text
|
| 17 |
-
*.ot filter=lfs diff=lfs merge=lfs -text
|
| 18 |
-
*.parquet filter=lfs diff=lfs merge=lfs -text
|
| 19 |
-
*.pb filter=lfs diff=lfs merge=lfs -text
|
| 20 |
-
*.pickle filter=lfs diff=lfs merge=lfs -text
|
| 21 |
-
*.pkl filter=lfs diff=lfs merge=lfs -text
|
| 22 |
-
*.pt filter=lfs diff=lfs merge=lfs -text
|
| 23 |
*.pth filter=lfs diff=lfs merge=lfs -text
|
| 24 |
-
*.
|
| 25 |
-
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 26 |
-
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
| 27 |
-
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
| 28 |
-
*.tar filter=lfs diff=lfs merge=lfs -text
|
| 29 |
-
*.tflite filter=lfs diff=lfs merge=lfs -text
|
| 30 |
-
*.tgz filter=lfs diff=lfs merge=lfs -text
|
| 31 |
-
*.wasm filter=lfs diff=lfs merge=lfs -text
|
| 32 |
-
*.xz filter=lfs diff=lfs merge=lfs -text
|
| 33 |
-
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
-
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
-
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
*.pth filter=lfs diff=lfs merge=lfs -text
|
| 2 |
+
*.t7 filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
README.md
ADDED
|
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language: en
|
| 3 |
+
tags:
|
| 4 |
+
- text-to-speech
|
| 5 |
+
- StyleTTS2
|
| 6 |
+
- speech-synthesis
|
| 7 |
+
license: mit
|
| 8 |
+
pipeline_tag: text-to-speech
|
| 9 |
+
---
|
| 10 |
+
|
| 11 |
+
# StyleTTS2 Fine-tuned Model
|
| 12 |
+
|
| 13 |
+
This model is a fine-tuned version of StyleTTS2, containing all necessary components for inference.
|
| 14 |
+
|
| 15 |
+
## Model Details
|
| 16 |
+
- **Base Model:** StyleTTS2-LibriTTS
|
| 17 |
+
- **Architecture:** StyleTTS2
|
| 18 |
+
- **Task:** Text-to-Speech
|
| 19 |
+
- **Last Checkpoint:** epoch_2nd_00007.pth
|
| 20 |
+
|
| 21 |
+
## Training Details
|
| 22 |
+
- **Total Epochs:** 8
|
| 23 |
+
- **Completed Epochs:** 7
|
| 24 |
+
- **Total Iterations:** 2064
|
| 25 |
+
- **Batch Size:** 2
|
| 26 |
+
- **Max Length:** 630
|
| 27 |
+
- **Learning Rate:** 0.0001
|
| 28 |
+
- **Final Validation Loss:** 0.513637
|
| 29 |
+
|
| 30 |
+
## Model Components
|
| 31 |
+
The repository includes all necessary components for inference:
|
| 32 |
+
|
| 33 |
+
### Main Model Components:
|
| 34 |
+
- bert.pth
|
| 35 |
+
- bert_encoder.pth
|
| 36 |
+
- predictor.pth
|
| 37 |
+
- decoder.pth
|
| 38 |
+
- text_encoder.pth
|
| 39 |
+
- predictor_encoder.pth
|
| 40 |
+
- style_encoder.pth
|
| 41 |
+
- diffusion.pth
|
| 42 |
+
- text_aligner.pth
|
| 43 |
+
- pitch_extractor.pth
|
| 44 |
+
- mpd.pth
|
| 45 |
+
- msd.pth
|
| 46 |
+
- wd.pth
|
| 47 |
+
|
| 48 |
+
### Utility Components:
|
| 49 |
+
- ASR (Automatic Speech Recognition)
|
| 50 |
+
- epoch_00080.pth
|
| 51 |
+
- config.yml
|
| 52 |
+
- models.py
|
| 53 |
+
- layers.py
|
| 54 |
+
- JDC (F0 Prediction)
|
| 55 |
+
- bst.t7
|
| 56 |
+
- model.py
|
| 57 |
+
- PLBERT
|
| 58 |
+
- step_1000000.t7
|
| 59 |
+
- config.yml
|
| 60 |
+
- util.py
|
| 61 |
+
|
| 62 |
+
### Additional Files:
|
| 63 |
+
- text_utils.py: Text preprocessing utilities
|
| 64 |
+
- models.py: Model architecture definitions
|
| 65 |
+
- utils.py: Utility functions
|
| 66 |
+
- config.yml: Model configuration
|
| 67 |
+
- config.json: Detailed configuration and training metrics
|
| 68 |
+
|
| 69 |
+
## Training Metrics
|
| 70 |
+
Training metrics visualization is available in training_metrics.png
|
| 71 |
+
|
| 72 |
+
## Directory Structure
|
| 73 |
+
├── Utils/
|
| 74 |
+
│ ├── ASR/
|
| 75 |
+
│ ├── JDC/
|
| 76 |
+
│ └── PLBERT/
|
| 77 |
+
├── model_components/
|
| 78 |
+
└── configs/
|
| 79 |
+
|
| 80 |
+
## Usage Instructions
|
| 81 |
+
1. Load the model using the provided config.yml
|
| 82 |
+
2. Ensure all utility components (ASR, JDC, PLBERT) are in their respective directories
|
| 83 |
+
3. Use text_utils.py for text preprocessing
|
| 84 |
+
4. Follow the inference example in the StyleTTS2 documentation
|
Utils/ASR/config.yml
ADDED
|
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
log_dir: "logs/20201006"
|
| 2 |
+
save_freq: 5
|
| 3 |
+
device: "cuda"
|
| 4 |
+
epochs: 180
|
| 5 |
+
batch_size: 64
|
| 6 |
+
pretrained_model: ""
|
| 7 |
+
train_data: "ASRDataset/train_list.txt"
|
| 8 |
+
val_data: "ASRDataset/val_list.txt"
|
| 9 |
+
|
| 10 |
+
dataset_params:
|
| 11 |
+
data_augmentation: false
|
| 12 |
+
|
| 13 |
+
preprocess_parasm:
|
| 14 |
+
sr: 24000
|
| 15 |
+
spect_params:
|
| 16 |
+
n_fft: 2048
|
| 17 |
+
win_length: 1200
|
| 18 |
+
hop_length: 300
|
| 19 |
+
mel_params:
|
| 20 |
+
n_mels: 80
|
| 21 |
+
|
| 22 |
+
model_params:
|
| 23 |
+
input_dim: 80
|
| 24 |
+
hidden_dim: 256
|
| 25 |
+
n_token: 178
|
| 26 |
+
token_embedding_dim: 512
|
| 27 |
+
|
| 28 |
+
optimizer_params:
|
| 29 |
+
lr: 0.0005
|
Utils/ASR/epoch_00080.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:fedd55a1234b0c56e1e8b509c74edf3a5e2f27106a66038a4a946047a775bd6c
|
| 3 |
+
size 94552811
|
Utils/ASR/layers.py
ADDED
|
@@ -0,0 +1,354 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import math
|
| 2 |
+
import torch
|
| 3 |
+
from torch import nn
|
| 4 |
+
from typing import Optional, Any
|
| 5 |
+
from torch import Tensor
|
| 6 |
+
import torch.nn.functional as F
|
| 7 |
+
import torchaudio
|
| 8 |
+
import torchaudio.functional as audio_F
|
| 9 |
+
|
| 10 |
+
import random
|
| 11 |
+
random.seed(0)
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
def _get_activation_fn(activ):
|
| 15 |
+
if activ == 'relu':
|
| 16 |
+
return nn.ReLU()
|
| 17 |
+
elif activ == 'lrelu':
|
| 18 |
+
return nn.LeakyReLU(0.2)
|
| 19 |
+
elif activ == 'swish':
|
| 20 |
+
return lambda x: x*torch.sigmoid(x)
|
| 21 |
+
else:
|
| 22 |
+
raise RuntimeError('Unexpected activ type %s, expected [relu, lrelu, swish]' % activ)
|
| 23 |
+
|
| 24 |
+
class LinearNorm(torch.nn.Module):
|
| 25 |
+
def __init__(self, in_dim, out_dim, bias=True, w_init_gain='linear'):
|
| 26 |
+
super(LinearNorm, self).__init__()
|
| 27 |
+
self.linear_layer = torch.nn.Linear(in_dim, out_dim, bias=bias)
|
| 28 |
+
|
| 29 |
+
torch.nn.init.xavier_uniform_(
|
| 30 |
+
self.linear_layer.weight,
|
| 31 |
+
gain=torch.nn.init.calculate_gain(w_init_gain))
|
| 32 |
+
|
| 33 |
+
def forward(self, x):
|
| 34 |
+
return self.linear_layer(x)
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
class ConvNorm(torch.nn.Module):
|
| 38 |
+
def __init__(self, in_channels, out_channels, kernel_size=1, stride=1,
|
| 39 |
+
padding=None, dilation=1, bias=True, w_init_gain='linear', param=None):
|
| 40 |
+
super(ConvNorm, self).__init__()
|
| 41 |
+
if padding is None:
|
| 42 |
+
assert(kernel_size % 2 == 1)
|
| 43 |
+
padding = int(dilation * (kernel_size - 1) / 2)
|
| 44 |
+
|
| 45 |
+
self.conv = torch.nn.Conv1d(in_channels, out_channels,
|
| 46 |
+
kernel_size=kernel_size, stride=stride,
|
| 47 |
+
padding=padding, dilation=dilation,
|
| 48 |
+
bias=bias)
|
| 49 |
+
|
| 50 |
+
torch.nn.init.xavier_uniform_(
|
| 51 |
+
self.conv.weight, gain=torch.nn.init.calculate_gain(w_init_gain, param=param))
|
| 52 |
+
|
| 53 |
+
def forward(self, signal):
|
| 54 |
+
conv_signal = self.conv(signal)
|
| 55 |
+
return conv_signal
|
| 56 |
+
|
| 57 |
+
class CausualConv(nn.Module):
|
| 58 |
+
def __init__(self, in_channels, out_channels, kernel_size=1, stride=1, padding=1, dilation=1, bias=True, w_init_gain='linear', param=None):
|
| 59 |
+
super(CausualConv, self).__init__()
|
| 60 |
+
if padding is None:
|
| 61 |
+
assert(kernel_size % 2 == 1)
|
| 62 |
+
padding = int(dilation * (kernel_size - 1) / 2) * 2
|
| 63 |
+
else:
|
| 64 |
+
self.padding = padding * 2
|
| 65 |
+
self.conv = nn.Conv1d(in_channels, out_channels,
|
| 66 |
+
kernel_size=kernel_size, stride=stride,
|
| 67 |
+
padding=self.padding,
|
| 68 |
+
dilation=dilation,
|
| 69 |
+
bias=bias)
|
| 70 |
+
|
| 71 |
+
torch.nn.init.xavier_uniform_(
|
| 72 |
+
self.conv.weight, gain=torch.nn.init.calculate_gain(w_init_gain, param=param))
|
| 73 |
+
|
| 74 |
+
def forward(self, x):
|
| 75 |
+
x = self.conv(x)
|
| 76 |
+
x = x[:, :, :-self.padding]
|
| 77 |
+
return x
|
| 78 |
+
|
| 79 |
+
class CausualBlock(nn.Module):
|
| 80 |
+
def __init__(self, hidden_dim, n_conv=3, dropout_p=0.2, activ='lrelu'):
|
| 81 |
+
super(CausualBlock, self).__init__()
|
| 82 |
+
self.blocks = nn.ModuleList([
|
| 83 |
+
self._get_conv(hidden_dim, dilation=3**i, activ=activ, dropout_p=dropout_p)
|
| 84 |
+
for i in range(n_conv)])
|
| 85 |
+
|
| 86 |
+
def forward(self, x):
|
| 87 |
+
for block in self.blocks:
|
| 88 |
+
res = x
|
| 89 |
+
x = block(x)
|
| 90 |
+
x += res
|
| 91 |
+
return x
|
| 92 |
+
|
| 93 |
+
def _get_conv(self, hidden_dim, dilation, activ='lrelu', dropout_p=0.2):
|
| 94 |
+
layers = [
|
| 95 |
+
CausualConv(hidden_dim, hidden_dim, kernel_size=3, padding=dilation, dilation=dilation),
|
| 96 |
+
_get_activation_fn(activ),
|
| 97 |
+
nn.BatchNorm1d(hidden_dim),
|
| 98 |
+
nn.Dropout(p=dropout_p),
|
| 99 |
+
CausualConv(hidden_dim, hidden_dim, kernel_size=3, padding=1, dilation=1),
|
| 100 |
+
_get_activation_fn(activ),
|
| 101 |
+
nn.Dropout(p=dropout_p)
|
| 102 |
+
]
|
| 103 |
+
return nn.Sequential(*layers)
|
| 104 |
+
|
| 105 |
+
class ConvBlock(nn.Module):
|
| 106 |
+
def __init__(self, hidden_dim, n_conv=3, dropout_p=0.2, activ='relu'):
|
| 107 |
+
super().__init__()
|
| 108 |
+
self._n_groups = 8
|
| 109 |
+
self.blocks = nn.ModuleList([
|
| 110 |
+
self._get_conv(hidden_dim, dilation=3**i, activ=activ, dropout_p=dropout_p)
|
| 111 |
+
for i in range(n_conv)])
|
| 112 |
+
|
| 113 |
+
|
| 114 |
+
def forward(self, x):
|
| 115 |
+
for block in self.blocks:
|
| 116 |
+
res = x
|
| 117 |
+
x = block(x)
|
| 118 |
+
x += res
|
| 119 |
+
return x
|
| 120 |
+
|
| 121 |
+
def _get_conv(self, hidden_dim, dilation, activ='relu', dropout_p=0.2):
|
| 122 |
+
layers = [
|
| 123 |
+
ConvNorm(hidden_dim, hidden_dim, kernel_size=3, padding=dilation, dilation=dilation),
|
| 124 |
+
_get_activation_fn(activ),
|
| 125 |
+
nn.GroupNorm(num_groups=self._n_groups, num_channels=hidden_dim),
|
| 126 |
+
nn.Dropout(p=dropout_p),
|
| 127 |
+
ConvNorm(hidden_dim, hidden_dim, kernel_size=3, padding=1, dilation=1),
|
| 128 |
+
_get_activation_fn(activ),
|
| 129 |
+
nn.Dropout(p=dropout_p)
|
| 130 |
+
]
|
| 131 |
+
return nn.Sequential(*layers)
|
| 132 |
+
|
| 133 |
+
class LocationLayer(nn.Module):
|
| 134 |
+
def __init__(self, attention_n_filters, attention_kernel_size,
|
| 135 |
+
attention_dim):
|
| 136 |
+
super(LocationLayer, self).__init__()
|
| 137 |
+
padding = int((attention_kernel_size - 1) / 2)
|
| 138 |
+
self.location_conv = ConvNorm(2, attention_n_filters,
|
| 139 |
+
kernel_size=attention_kernel_size,
|
| 140 |
+
padding=padding, bias=False, stride=1,
|
| 141 |
+
dilation=1)
|
| 142 |
+
self.location_dense = LinearNorm(attention_n_filters, attention_dim,
|
| 143 |
+
bias=False, w_init_gain='tanh')
|
| 144 |
+
|
| 145 |
+
def forward(self, attention_weights_cat):
|
| 146 |
+
processed_attention = self.location_conv(attention_weights_cat)
|
| 147 |
+
processed_attention = processed_attention.transpose(1, 2)
|
| 148 |
+
processed_attention = self.location_dense(processed_attention)
|
| 149 |
+
return processed_attention
|
| 150 |
+
|
| 151 |
+
|
| 152 |
+
class Attention(nn.Module):
|
| 153 |
+
def __init__(self, attention_rnn_dim, embedding_dim, attention_dim,
|
| 154 |
+
attention_location_n_filters, attention_location_kernel_size):
|
| 155 |
+
super(Attention, self).__init__()
|
| 156 |
+
self.query_layer = LinearNorm(attention_rnn_dim, attention_dim,
|
| 157 |
+
bias=False, w_init_gain='tanh')
|
| 158 |
+
self.memory_layer = LinearNorm(embedding_dim, attention_dim, bias=False,
|
| 159 |
+
w_init_gain='tanh')
|
| 160 |
+
self.v = LinearNorm(attention_dim, 1, bias=False)
|
| 161 |
+
self.location_layer = LocationLayer(attention_location_n_filters,
|
| 162 |
+
attention_location_kernel_size,
|
| 163 |
+
attention_dim)
|
| 164 |
+
self.score_mask_value = -float("inf")
|
| 165 |
+
|
| 166 |
+
def get_alignment_energies(self, query, processed_memory,
|
| 167 |
+
attention_weights_cat):
|
| 168 |
+
"""
|
| 169 |
+
PARAMS
|
| 170 |
+
------
|
| 171 |
+
query: decoder output (batch, n_mel_channels * n_frames_per_step)
|
| 172 |
+
processed_memory: processed encoder outputs (B, T_in, attention_dim)
|
| 173 |
+
attention_weights_cat: cumulative and prev. att weights (B, 2, max_time)
|
| 174 |
+
RETURNS
|
| 175 |
+
-------
|
| 176 |
+
alignment (batch, max_time)
|
| 177 |
+
"""
|
| 178 |
+
|
| 179 |
+
processed_query = self.query_layer(query.unsqueeze(1))
|
| 180 |
+
processed_attention_weights = self.location_layer(attention_weights_cat)
|
| 181 |
+
energies = self.v(torch.tanh(
|
| 182 |
+
processed_query + processed_attention_weights + processed_memory))
|
| 183 |
+
|
| 184 |
+
energies = energies.squeeze(-1)
|
| 185 |
+
return energies
|
| 186 |
+
|
| 187 |
+
def forward(self, attention_hidden_state, memory, processed_memory,
|
| 188 |
+
attention_weights_cat, mask):
|
| 189 |
+
"""
|
| 190 |
+
PARAMS
|
| 191 |
+
------
|
| 192 |
+
attention_hidden_state: attention rnn last output
|
| 193 |
+
memory: encoder outputs
|
| 194 |
+
processed_memory: processed encoder outputs
|
| 195 |
+
attention_weights_cat: previous and cummulative attention weights
|
| 196 |
+
mask: binary mask for padded data
|
| 197 |
+
"""
|
| 198 |
+
alignment = self.get_alignment_energies(
|
| 199 |
+
attention_hidden_state, processed_memory, attention_weights_cat)
|
| 200 |
+
|
| 201 |
+
if mask is not None:
|
| 202 |
+
alignment.data.masked_fill_(mask, self.score_mask_value)
|
| 203 |
+
|
| 204 |
+
attention_weights = F.softmax(alignment, dim=1)
|
| 205 |
+
attention_context = torch.bmm(attention_weights.unsqueeze(1), memory)
|
| 206 |
+
attention_context = attention_context.squeeze(1)
|
| 207 |
+
|
| 208 |
+
return attention_context, attention_weights
|
| 209 |
+
|
| 210 |
+
|
| 211 |
+
class ForwardAttentionV2(nn.Module):
|
| 212 |
+
def __init__(self, attention_rnn_dim, embedding_dim, attention_dim,
|
| 213 |
+
attention_location_n_filters, attention_location_kernel_size):
|
| 214 |
+
super(ForwardAttentionV2, self).__init__()
|
| 215 |
+
self.query_layer = LinearNorm(attention_rnn_dim, attention_dim,
|
| 216 |
+
bias=False, w_init_gain='tanh')
|
| 217 |
+
self.memory_layer = LinearNorm(embedding_dim, attention_dim, bias=False,
|
| 218 |
+
w_init_gain='tanh')
|
| 219 |
+
self.v = LinearNorm(attention_dim, 1, bias=False)
|
| 220 |
+
self.location_layer = LocationLayer(attention_location_n_filters,
|
| 221 |
+
attention_location_kernel_size,
|
| 222 |
+
attention_dim)
|
| 223 |
+
self.score_mask_value = -float(1e20)
|
| 224 |
+
|
| 225 |
+
def get_alignment_energies(self, query, processed_memory,
|
| 226 |
+
attention_weights_cat):
|
| 227 |
+
"""
|
| 228 |
+
PARAMS
|
| 229 |
+
------
|
| 230 |
+
query: decoder output (batch, n_mel_channels * n_frames_per_step)
|
| 231 |
+
processed_memory: processed encoder outputs (B, T_in, attention_dim)
|
| 232 |
+
attention_weights_cat: prev. and cumulative att weights (B, 2, max_time)
|
| 233 |
+
RETURNS
|
| 234 |
+
-------
|
| 235 |
+
alignment (batch, max_time)
|
| 236 |
+
"""
|
| 237 |
+
|
| 238 |
+
processed_query = self.query_layer(query.unsqueeze(1))
|
| 239 |
+
processed_attention_weights = self.location_layer(attention_weights_cat)
|
| 240 |
+
energies = self.v(torch.tanh(
|
| 241 |
+
processed_query + processed_attention_weights + processed_memory))
|
| 242 |
+
|
| 243 |
+
energies = energies.squeeze(-1)
|
| 244 |
+
return energies
|
| 245 |
+
|
| 246 |
+
def forward(self, attention_hidden_state, memory, processed_memory,
|
| 247 |
+
attention_weights_cat, mask, log_alpha):
|
| 248 |
+
"""
|
| 249 |
+
PARAMS
|
| 250 |
+
------
|
| 251 |
+
attention_hidden_state: attention rnn last output
|
| 252 |
+
memory: encoder outputs
|
| 253 |
+
processed_memory: processed encoder outputs
|
| 254 |
+
attention_weights_cat: previous and cummulative attention weights
|
| 255 |
+
mask: binary mask for padded data
|
| 256 |
+
"""
|
| 257 |
+
log_energy = self.get_alignment_energies(
|
| 258 |
+
attention_hidden_state, processed_memory, attention_weights_cat)
|
| 259 |
+
|
| 260 |
+
#log_energy =
|
| 261 |
+
|
| 262 |
+
if mask is not None:
|
| 263 |
+
log_energy.data.masked_fill_(mask, self.score_mask_value)
|
| 264 |
+
|
| 265 |
+
#attention_weights = F.softmax(alignment, dim=1)
|
| 266 |
+
|
| 267 |
+
#content_score = log_energy.unsqueeze(1) #[B, MAX_TIME] -> [B, 1, MAX_TIME]
|
| 268 |
+
#log_alpha = log_alpha.unsqueeze(2) #[B, MAX_TIME] -> [B, MAX_TIME, 1]
|
| 269 |
+
|
| 270 |
+
#log_total_score = log_alpha + content_score
|
| 271 |
+
|
| 272 |
+
#previous_attention_weights = attention_weights_cat[:,0,:]
|
| 273 |
+
|
| 274 |
+
log_alpha_shift_padded = []
|
| 275 |
+
max_time = log_energy.size(1)
|
| 276 |
+
for sft in range(2):
|
| 277 |
+
shifted = log_alpha[:,:max_time-sft]
|
| 278 |
+
shift_padded = F.pad(shifted, (sft,0), 'constant', self.score_mask_value)
|
| 279 |
+
log_alpha_shift_padded.append(shift_padded.unsqueeze(2))
|
| 280 |
+
|
| 281 |
+
biased = torch.logsumexp(torch.cat(log_alpha_shift_padded,2), 2)
|
| 282 |
+
|
| 283 |
+
log_alpha_new = biased + log_energy
|
| 284 |
+
|
| 285 |
+
attention_weights = F.softmax(log_alpha_new, dim=1)
|
| 286 |
+
|
| 287 |
+
attention_context = torch.bmm(attention_weights.unsqueeze(1), memory)
|
| 288 |
+
attention_context = attention_context.squeeze(1)
|
| 289 |
+
|
| 290 |
+
return attention_context, attention_weights, log_alpha_new
|
| 291 |
+
|
| 292 |
+
|
| 293 |
+
class PhaseShuffle2d(nn.Module):
|
| 294 |
+
def __init__(self, n=2):
|
| 295 |
+
super(PhaseShuffle2d, self).__init__()
|
| 296 |
+
self.n = n
|
| 297 |
+
self.random = random.Random(1)
|
| 298 |
+
|
| 299 |
+
def forward(self, x, move=None):
|
| 300 |
+
# x.size = (B, C, M, L)
|
| 301 |
+
if move is None:
|
| 302 |
+
move = self.random.randint(-self.n, self.n)
|
| 303 |
+
|
| 304 |
+
if move == 0:
|
| 305 |
+
return x
|
| 306 |
+
else:
|
| 307 |
+
left = x[:, :, :, :move]
|
| 308 |
+
right = x[:, :, :, move:]
|
| 309 |
+
shuffled = torch.cat([right, left], dim=3)
|
| 310 |
+
return shuffled
|
| 311 |
+
|
| 312 |
+
class PhaseShuffle1d(nn.Module):
|
| 313 |
+
def __init__(self, n=2):
|
| 314 |
+
super(PhaseShuffle1d, self).__init__()
|
| 315 |
+
self.n = n
|
| 316 |
+
self.random = random.Random(1)
|
| 317 |
+
|
| 318 |
+
def forward(self, x, move=None):
|
| 319 |
+
# x.size = (B, C, M, L)
|
| 320 |
+
if move is None:
|
| 321 |
+
move = self.random.randint(-self.n, self.n)
|
| 322 |
+
|
| 323 |
+
if move == 0:
|
| 324 |
+
return x
|
| 325 |
+
else:
|
| 326 |
+
left = x[:, :, :move]
|
| 327 |
+
right = x[:, :, move:]
|
| 328 |
+
shuffled = torch.cat([right, left], dim=2)
|
| 329 |
+
|
| 330 |
+
return shuffled
|
| 331 |
+
|
| 332 |
+
class MFCC(nn.Module):
|
| 333 |
+
def __init__(self, n_mfcc=40, n_mels=80):
|
| 334 |
+
super(MFCC, self).__init__()
|
| 335 |
+
self.n_mfcc = n_mfcc
|
| 336 |
+
self.n_mels = n_mels
|
| 337 |
+
self.norm = 'ortho'
|
| 338 |
+
dct_mat = audio_F.create_dct(self.n_mfcc, self.n_mels, self.norm)
|
| 339 |
+
self.register_buffer('dct_mat', dct_mat)
|
| 340 |
+
|
| 341 |
+
def forward(self, mel_specgram):
|
| 342 |
+
if len(mel_specgram.shape) == 2:
|
| 343 |
+
mel_specgram = mel_specgram.unsqueeze(0)
|
| 344 |
+
unsqueezed = True
|
| 345 |
+
else:
|
| 346 |
+
unsqueezed = False
|
| 347 |
+
# (channel, n_mels, time).tranpose(...) dot (n_mels, n_mfcc)
|
| 348 |
+
# -> (channel, time, n_mfcc).tranpose(...)
|
| 349 |
+
mfcc = torch.matmul(mel_specgram.transpose(1, 2), self.dct_mat).transpose(1, 2)
|
| 350 |
+
|
| 351 |
+
# unpack batch
|
| 352 |
+
if unsqueezed:
|
| 353 |
+
mfcc = mfcc.squeeze(0)
|
| 354 |
+
return mfcc
|
Utils/ASR/models.py
ADDED
|
@@ -0,0 +1,186 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import math
|
| 2 |
+
import torch
|
| 3 |
+
from torch import nn
|
| 4 |
+
from torch.nn import TransformerEncoder
|
| 5 |
+
import torch.nn.functional as F
|
| 6 |
+
from .layers import MFCC, Attention, LinearNorm, ConvNorm, ConvBlock
|
| 7 |
+
|
| 8 |
+
class ASRCNN(nn.Module):
|
| 9 |
+
def __init__(self,
|
| 10 |
+
input_dim=80,
|
| 11 |
+
hidden_dim=256,
|
| 12 |
+
n_token=35,
|
| 13 |
+
n_layers=6,
|
| 14 |
+
token_embedding_dim=256,
|
| 15 |
+
|
| 16 |
+
):
|
| 17 |
+
super().__init__()
|
| 18 |
+
self.n_token = n_token
|
| 19 |
+
self.n_down = 1
|
| 20 |
+
self.to_mfcc = MFCC()
|
| 21 |
+
self.init_cnn = ConvNorm(input_dim//2, hidden_dim, kernel_size=7, padding=3, stride=2)
|
| 22 |
+
self.cnns = nn.Sequential(
|
| 23 |
+
*[nn.Sequential(
|
| 24 |
+
ConvBlock(hidden_dim),
|
| 25 |
+
nn.GroupNorm(num_groups=1, num_channels=hidden_dim)
|
| 26 |
+
) for n in range(n_layers)])
|
| 27 |
+
self.projection = ConvNorm(hidden_dim, hidden_dim // 2)
|
| 28 |
+
self.ctc_linear = nn.Sequential(
|
| 29 |
+
LinearNorm(hidden_dim//2, hidden_dim),
|
| 30 |
+
nn.ReLU(),
|
| 31 |
+
LinearNorm(hidden_dim, n_token))
|
| 32 |
+
self.asr_s2s = ASRS2S(
|
| 33 |
+
embedding_dim=token_embedding_dim,
|
| 34 |
+
hidden_dim=hidden_dim//2,
|
| 35 |
+
n_token=n_token)
|
| 36 |
+
|
| 37 |
+
def forward(self, x, src_key_padding_mask=None, text_input=None):
|
| 38 |
+
x = self.to_mfcc(x)
|
| 39 |
+
x = self.init_cnn(x)
|
| 40 |
+
x = self.cnns(x)
|
| 41 |
+
x = self.projection(x)
|
| 42 |
+
x = x.transpose(1, 2)
|
| 43 |
+
ctc_logit = self.ctc_linear(x)
|
| 44 |
+
if text_input is not None:
|
| 45 |
+
_, s2s_logit, s2s_attn = self.asr_s2s(x, src_key_padding_mask, text_input)
|
| 46 |
+
return ctc_logit, s2s_logit, s2s_attn
|
| 47 |
+
else:
|
| 48 |
+
return ctc_logit
|
| 49 |
+
|
| 50 |
+
def get_feature(self, x):
|
| 51 |
+
x = self.to_mfcc(x.squeeze(1))
|
| 52 |
+
x = self.init_cnn(x)
|
| 53 |
+
x = self.cnns(x)
|
| 54 |
+
x = self.projection(x)
|
| 55 |
+
return x
|
| 56 |
+
|
| 57 |
+
def length_to_mask(self, lengths):
|
| 58 |
+
mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
|
| 59 |
+
mask = torch.gt(mask+1, lengths.unsqueeze(1)).to(lengths.device)
|
| 60 |
+
return mask
|
| 61 |
+
|
| 62 |
+
def get_future_mask(self, out_length, unmask_future_steps=0):
|
| 63 |
+
"""
|
| 64 |
+
Args:
|
| 65 |
+
out_length (int): returned mask shape is (out_length, out_length).
|
| 66 |
+
unmask_futre_steps (int): unmasking future step size.
|
| 67 |
+
Return:
|
| 68 |
+
mask (torch.BoolTensor): mask future timesteps mask[i, j] = True if i > j + unmask_future_steps else False
|
| 69 |
+
"""
|
| 70 |
+
index_tensor = torch.arange(out_length).unsqueeze(0).expand(out_length, -1)
|
| 71 |
+
mask = torch.gt(index_tensor, index_tensor.T + unmask_future_steps)
|
| 72 |
+
return mask
|
| 73 |
+
|
| 74 |
+
class ASRS2S(nn.Module):
|
| 75 |
+
def __init__(self,
|
| 76 |
+
embedding_dim=256,
|
| 77 |
+
hidden_dim=512,
|
| 78 |
+
n_location_filters=32,
|
| 79 |
+
location_kernel_size=63,
|
| 80 |
+
n_token=40):
|
| 81 |
+
super(ASRS2S, self).__init__()
|
| 82 |
+
self.embedding = nn.Embedding(n_token, embedding_dim)
|
| 83 |
+
val_range = math.sqrt(6 / hidden_dim)
|
| 84 |
+
self.embedding.weight.data.uniform_(-val_range, val_range)
|
| 85 |
+
|
| 86 |
+
self.decoder_rnn_dim = hidden_dim
|
| 87 |
+
self.project_to_n_symbols = nn.Linear(self.decoder_rnn_dim, n_token)
|
| 88 |
+
self.attention_layer = Attention(
|
| 89 |
+
self.decoder_rnn_dim,
|
| 90 |
+
hidden_dim,
|
| 91 |
+
hidden_dim,
|
| 92 |
+
n_location_filters,
|
| 93 |
+
location_kernel_size
|
| 94 |
+
)
|
| 95 |
+
self.decoder_rnn = nn.LSTMCell(self.decoder_rnn_dim + embedding_dim, self.decoder_rnn_dim)
|
| 96 |
+
self.project_to_hidden = nn.Sequential(
|
| 97 |
+
LinearNorm(self.decoder_rnn_dim * 2, hidden_dim),
|
| 98 |
+
nn.Tanh())
|
| 99 |
+
self.sos = 1
|
| 100 |
+
self.eos = 2
|
| 101 |
+
|
| 102 |
+
def initialize_decoder_states(self, memory, mask):
|
| 103 |
+
"""
|
| 104 |
+
moemory.shape = (B, L, H) = (Batchsize, Maxtimestep, Hiddendim)
|
| 105 |
+
"""
|
| 106 |
+
B, L, H = memory.shape
|
| 107 |
+
self.decoder_hidden = torch.zeros((B, self.decoder_rnn_dim)).type_as(memory)
|
| 108 |
+
self.decoder_cell = torch.zeros((B, self.decoder_rnn_dim)).type_as(memory)
|
| 109 |
+
self.attention_weights = torch.zeros((B, L)).type_as(memory)
|
| 110 |
+
self.attention_weights_cum = torch.zeros((B, L)).type_as(memory)
|
| 111 |
+
self.attention_context = torch.zeros((B, H)).type_as(memory)
|
| 112 |
+
self.memory = memory
|
| 113 |
+
self.processed_memory = self.attention_layer.memory_layer(memory)
|
| 114 |
+
self.mask = mask
|
| 115 |
+
self.unk_index = 3
|
| 116 |
+
self.random_mask = 0.1
|
| 117 |
+
|
| 118 |
+
def forward(self, memory, memory_mask, text_input):
|
| 119 |
+
"""
|
| 120 |
+
moemory.shape = (B, L, H) = (Batchsize, Maxtimestep, Hiddendim)
|
| 121 |
+
moemory_mask.shape = (B, L, )
|
| 122 |
+
texts_input.shape = (B, T)
|
| 123 |
+
"""
|
| 124 |
+
self.initialize_decoder_states(memory, memory_mask)
|
| 125 |
+
# text random mask
|
| 126 |
+
random_mask = (torch.rand(text_input.shape) < self.random_mask).to(text_input.device)
|
| 127 |
+
_text_input = text_input.clone()
|
| 128 |
+
_text_input.masked_fill_(random_mask, self.unk_index)
|
| 129 |
+
decoder_inputs = self.embedding(_text_input).transpose(0, 1) # -> [T, B, channel]
|
| 130 |
+
start_embedding = self.embedding(
|
| 131 |
+
torch.LongTensor([self.sos]*decoder_inputs.size(1)).to(decoder_inputs.device))
|
| 132 |
+
decoder_inputs = torch.cat((start_embedding.unsqueeze(0), decoder_inputs), dim=0)
|
| 133 |
+
|
| 134 |
+
hidden_outputs, logit_outputs, alignments = [], [], []
|
| 135 |
+
while len(hidden_outputs) < decoder_inputs.size(0):
|
| 136 |
+
|
| 137 |
+
decoder_input = decoder_inputs[len(hidden_outputs)]
|
| 138 |
+
hidden, logit, attention_weights = self.decode(decoder_input)
|
| 139 |
+
hidden_outputs += [hidden]
|
| 140 |
+
logit_outputs += [logit]
|
| 141 |
+
alignments += [attention_weights]
|
| 142 |
+
|
| 143 |
+
hidden_outputs, logit_outputs, alignments = \
|
| 144 |
+
self.parse_decoder_outputs(
|
| 145 |
+
hidden_outputs, logit_outputs, alignments)
|
| 146 |
+
|
| 147 |
+
return hidden_outputs, logit_outputs, alignments
|
| 148 |
+
|
| 149 |
+
|
| 150 |
+
def decode(self, decoder_input):
|
| 151 |
+
|
| 152 |
+
cell_input = torch.cat((decoder_input, self.attention_context), -1)
|
| 153 |
+
self.decoder_hidden, self.decoder_cell = self.decoder_rnn(
|
| 154 |
+
cell_input,
|
| 155 |
+
(self.decoder_hidden, self.decoder_cell))
|
| 156 |
+
|
| 157 |
+
attention_weights_cat = torch.cat(
|
| 158 |
+
(self.attention_weights.unsqueeze(1),
|
| 159 |
+
self.attention_weights_cum.unsqueeze(1)),dim=1)
|
| 160 |
+
|
| 161 |
+
self.attention_context, self.attention_weights = self.attention_layer(
|
| 162 |
+
self.decoder_hidden,
|
| 163 |
+
self.memory,
|
| 164 |
+
self.processed_memory,
|
| 165 |
+
attention_weights_cat,
|
| 166 |
+
self.mask)
|
| 167 |
+
|
| 168 |
+
self.attention_weights_cum += self.attention_weights
|
| 169 |
+
|
| 170 |
+
hidden_and_context = torch.cat((self.decoder_hidden, self.attention_context), -1)
|
| 171 |
+
hidden = self.project_to_hidden(hidden_and_context)
|
| 172 |
+
|
| 173 |
+
# dropout to increasing g
|
| 174 |
+
logit = self.project_to_n_symbols(F.dropout(hidden, 0.5, self.training))
|
| 175 |
+
|
| 176 |
+
return hidden, logit, self.attention_weights
|
| 177 |
+
|
| 178 |
+
def parse_decoder_outputs(self, hidden, logit, alignments):
|
| 179 |
+
|
| 180 |
+
# -> [B, T_out + 1, max_time]
|
| 181 |
+
alignments = torch.stack(alignments).transpose(0,1)
|
| 182 |
+
# [T_out + 1, B, n_symbols] -> [B, T_out + 1, n_symbols]
|
| 183 |
+
logit = torch.stack(logit).transpose(0, 1).contiguous()
|
| 184 |
+
hidden = torch.stack(hidden).transpose(0, 1).contiguous()
|
| 185 |
+
|
| 186 |
+
return hidden, logit, alignments
|
Utils/JDC/bst.t7
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:54dc94364b97e18ac1dfa6287714ed121248cfaac4cfd39d061c6e0a089ef169
|
| 3 |
+
size 21029926
|
Utils/JDC/model.py
ADDED
|
@@ -0,0 +1,190 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Implementation of model from:
|
| 3 |
+
Kum et al. - "Joint Detection and Classification of Singing Voice Melody Using
|
| 4 |
+
Convolutional Recurrent Neural Networks" (2019)
|
| 5 |
+
Link: https://www.semanticscholar.org/paper/Joint-Detection-and-Classification-of-Singing-Voice-Kum-Nam/60a2ad4c7db43bace75805054603747fcd062c0d
|
| 6 |
+
"""
|
| 7 |
+
import torch
|
| 8 |
+
from torch import nn
|
| 9 |
+
|
| 10 |
+
class JDCNet(nn.Module):
|
| 11 |
+
"""
|
| 12 |
+
Joint Detection and Classification Network model for singing voice melody.
|
| 13 |
+
"""
|
| 14 |
+
def __init__(self, num_class=722, seq_len=31, leaky_relu_slope=0.01):
|
| 15 |
+
super().__init__()
|
| 16 |
+
self.num_class = num_class
|
| 17 |
+
|
| 18 |
+
# input = (b, 1, 31, 513), b = batch size
|
| 19 |
+
self.conv_block = nn.Sequential(
|
| 20 |
+
nn.Conv2d(in_channels=1, out_channels=64, kernel_size=3, padding=1, bias=False), # out: (b, 64, 31, 513)
|
| 21 |
+
nn.BatchNorm2d(num_features=64),
|
| 22 |
+
nn.LeakyReLU(leaky_relu_slope, inplace=True),
|
| 23 |
+
nn.Conv2d(64, 64, 3, padding=1, bias=False), # (b, 64, 31, 513)
|
| 24 |
+
)
|
| 25 |
+
|
| 26 |
+
# res blocks
|
| 27 |
+
self.res_block1 = ResBlock(in_channels=64, out_channels=128) # (b, 128, 31, 128)
|
| 28 |
+
self.res_block2 = ResBlock(in_channels=128, out_channels=192) # (b, 192, 31, 32)
|
| 29 |
+
self.res_block3 = ResBlock(in_channels=192, out_channels=256) # (b, 256, 31, 8)
|
| 30 |
+
|
| 31 |
+
# pool block
|
| 32 |
+
self.pool_block = nn.Sequential(
|
| 33 |
+
nn.BatchNorm2d(num_features=256),
|
| 34 |
+
nn.LeakyReLU(leaky_relu_slope, inplace=True),
|
| 35 |
+
nn.MaxPool2d(kernel_size=(1, 4)), # (b, 256, 31, 2)
|
| 36 |
+
nn.Dropout(p=0.2),
|
| 37 |
+
)
|
| 38 |
+
|
| 39 |
+
# maxpool layers (for auxiliary network inputs)
|
| 40 |
+
# in = (b, 128, 31, 513) from conv_block, out = (b, 128, 31, 2)
|
| 41 |
+
self.maxpool1 = nn.MaxPool2d(kernel_size=(1, 40))
|
| 42 |
+
# in = (b, 128, 31, 128) from res_block1, out = (b, 128, 31, 2)
|
| 43 |
+
self.maxpool2 = nn.MaxPool2d(kernel_size=(1, 20))
|
| 44 |
+
# in = (b, 128, 31, 32) from res_block2, out = (b, 128, 31, 2)
|
| 45 |
+
self.maxpool3 = nn.MaxPool2d(kernel_size=(1, 10))
|
| 46 |
+
|
| 47 |
+
# in = (b, 640, 31, 2), out = (b, 256, 31, 2)
|
| 48 |
+
self.detector_conv = nn.Sequential(
|
| 49 |
+
nn.Conv2d(640, 256, 1, bias=False),
|
| 50 |
+
nn.BatchNorm2d(256),
|
| 51 |
+
nn.LeakyReLU(leaky_relu_slope, inplace=True),
|
| 52 |
+
nn.Dropout(p=0.2),
|
| 53 |
+
)
|
| 54 |
+
|
| 55 |
+
# input: (b, 31, 512) - resized from (b, 256, 31, 2)
|
| 56 |
+
self.bilstm_classifier = nn.LSTM(
|
| 57 |
+
input_size=512, hidden_size=256,
|
| 58 |
+
batch_first=True, bidirectional=True) # (b, 31, 512)
|
| 59 |
+
|
| 60 |
+
# input: (b, 31, 512) - resized from (b, 256, 31, 2)
|
| 61 |
+
self.bilstm_detector = nn.LSTM(
|
| 62 |
+
input_size=512, hidden_size=256,
|
| 63 |
+
batch_first=True, bidirectional=True) # (b, 31, 512)
|
| 64 |
+
|
| 65 |
+
# input: (b * 31, 512)
|
| 66 |
+
self.classifier = nn.Linear(in_features=512, out_features=self.num_class) # (b * 31, num_class)
|
| 67 |
+
|
| 68 |
+
# input: (b * 31, 512)
|
| 69 |
+
self.detector = nn.Linear(in_features=512, out_features=2) # (b * 31, 2) - binary classifier
|
| 70 |
+
|
| 71 |
+
# initialize weights
|
| 72 |
+
self.apply(self.init_weights)
|
| 73 |
+
|
| 74 |
+
def get_feature_GAN(self, x):
|
| 75 |
+
seq_len = x.shape[-2]
|
| 76 |
+
x = x.float().transpose(-1, -2)
|
| 77 |
+
|
| 78 |
+
convblock_out = self.conv_block(x)
|
| 79 |
+
|
| 80 |
+
resblock1_out = self.res_block1(convblock_out)
|
| 81 |
+
resblock2_out = self.res_block2(resblock1_out)
|
| 82 |
+
resblock3_out = self.res_block3(resblock2_out)
|
| 83 |
+
poolblock_out = self.pool_block[0](resblock3_out)
|
| 84 |
+
poolblock_out = self.pool_block[1](poolblock_out)
|
| 85 |
+
|
| 86 |
+
return poolblock_out.transpose(-1, -2)
|
| 87 |
+
|
| 88 |
+
def get_feature(self, x):
|
| 89 |
+
seq_len = x.shape[-2]
|
| 90 |
+
x = x.float().transpose(-1, -2)
|
| 91 |
+
|
| 92 |
+
convblock_out = self.conv_block(x)
|
| 93 |
+
|
| 94 |
+
resblock1_out = self.res_block1(convblock_out)
|
| 95 |
+
resblock2_out = self.res_block2(resblock1_out)
|
| 96 |
+
resblock3_out = self.res_block3(resblock2_out)
|
| 97 |
+
poolblock_out = self.pool_block[0](resblock3_out)
|
| 98 |
+
poolblock_out = self.pool_block[1](poolblock_out)
|
| 99 |
+
|
| 100 |
+
return self.pool_block[2](poolblock_out)
|
| 101 |
+
|
| 102 |
+
def forward(self, x):
|
| 103 |
+
"""
|
| 104 |
+
Returns:
|
| 105 |
+
classification_prediction, detection_prediction
|
| 106 |
+
sizes: (b, 31, 722), (b, 31, 2)
|
| 107 |
+
"""
|
| 108 |
+
###############################
|
| 109 |
+
# forward pass for classifier #
|
| 110 |
+
###############################
|
| 111 |
+
seq_len = x.shape[-1]
|
| 112 |
+
x = x.float().transpose(-1, -2)
|
| 113 |
+
|
| 114 |
+
convblock_out = self.conv_block(x)
|
| 115 |
+
|
| 116 |
+
resblock1_out = self.res_block1(convblock_out)
|
| 117 |
+
resblock2_out = self.res_block2(resblock1_out)
|
| 118 |
+
resblock3_out = self.res_block3(resblock2_out)
|
| 119 |
+
|
| 120 |
+
|
| 121 |
+
poolblock_out = self.pool_block[0](resblock3_out)
|
| 122 |
+
poolblock_out = self.pool_block[1](poolblock_out)
|
| 123 |
+
GAN_feature = poolblock_out.transpose(-1, -2)
|
| 124 |
+
poolblock_out = self.pool_block[2](poolblock_out)
|
| 125 |
+
|
| 126 |
+
# (b, 256, 31, 2) => (b, 31, 256, 2) => (b, 31, 512)
|
| 127 |
+
classifier_out = poolblock_out.permute(0, 2, 1, 3).contiguous().view((-1, seq_len, 512))
|
| 128 |
+
classifier_out, _ = self.bilstm_classifier(classifier_out) # ignore the hidden states
|
| 129 |
+
|
| 130 |
+
classifier_out = classifier_out.contiguous().view((-1, 512)) # (b * 31, 512)
|
| 131 |
+
classifier_out = self.classifier(classifier_out)
|
| 132 |
+
classifier_out = classifier_out.view((-1, seq_len, self.num_class)) # (b, 31, num_class)
|
| 133 |
+
|
| 134 |
+
# sizes: (b, 31, 722), (b, 31, 2)
|
| 135 |
+
# classifier output consists of predicted pitch classes per frame
|
| 136 |
+
# detector output consists of: (isvoice, notvoice) estimates per frame
|
| 137 |
+
return torch.abs(classifier_out.squeeze()), GAN_feature, poolblock_out
|
| 138 |
+
|
| 139 |
+
@staticmethod
|
| 140 |
+
def init_weights(m):
|
| 141 |
+
if isinstance(m, nn.Linear):
|
| 142 |
+
nn.init.kaiming_uniform_(m.weight)
|
| 143 |
+
if m.bias is not None:
|
| 144 |
+
nn.init.constant_(m.bias, 0)
|
| 145 |
+
elif isinstance(m, nn.Conv2d):
|
| 146 |
+
nn.init.xavier_normal_(m.weight)
|
| 147 |
+
elif isinstance(m, nn.LSTM) or isinstance(m, nn.LSTMCell):
|
| 148 |
+
for p in m.parameters():
|
| 149 |
+
if p.data is None:
|
| 150 |
+
continue
|
| 151 |
+
|
| 152 |
+
if len(p.shape) >= 2:
|
| 153 |
+
nn.init.orthogonal_(p.data)
|
| 154 |
+
else:
|
| 155 |
+
nn.init.normal_(p.data)
|
| 156 |
+
|
| 157 |
+
|
| 158 |
+
class ResBlock(nn.Module):
|
| 159 |
+
def __init__(self, in_channels: int, out_channels: int, leaky_relu_slope=0.01):
|
| 160 |
+
super().__init__()
|
| 161 |
+
self.downsample = in_channels != out_channels
|
| 162 |
+
|
| 163 |
+
# BN / LReLU / MaxPool layer before the conv layer - see Figure 1b in the paper
|
| 164 |
+
self.pre_conv = nn.Sequential(
|
| 165 |
+
nn.BatchNorm2d(num_features=in_channels),
|
| 166 |
+
nn.LeakyReLU(leaky_relu_slope, inplace=True),
|
| 167 |
+
nn.MaxPool2d(kernel_size=(1, 2)), # apply downsampling on the y axis only
|
| 168 |
+
)
|
| 169 |
+
|
| 170 |
+
# conv layers
|
| 171 |
+
self.conv = nn.Sequential(
|
| 172 |
+
nn.Conv2d(in_channels=in_channels, out_channels=out_channels,
|
| 173 |
+
kernel_size=3, padding=1, bias=False),
|
| 174 |
+
nn.BatchNorm2d(out_channels),
|
| 175 |
+
nn.LeakyReLU(leaky_relu_slope, inplace=True),
|
| 176 |
+
nn.Conv2d(out_channels, out_channels, 3, padding=1, bias=False),
|
| 177 |
+
)
|
| 178 |
+
|
| 179 |
+
# 1 x 1 convolution layer to match the feature dimensions
|
| 180 |
+
self.conv1by1 = None
|
| 181 |
+
if self.downsample:
|
| 182 |
+
self.conv1by1 = nn.Conv2d(in_channels, out_channels, 1, bias=False)
|
| 183 |
+
|
| 184 |
+
def forward(self, x):
|
| 185 |
+
x = self.pre_conv(x)
|
| 186 |
+
if self.downsample:
|
| 187 |
+
x = self.conv(x) + self.conv1by1(x)
|
| 188 |
+
else:
|
| 189 |
+
x = self.conv(x) + x
|
| 190 |
+
return x
|
Utils/PLBERT/config.yml
ADDED
|
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
log_dir: "Checkpoint"
|
| 2 |
+
mixed_precision: "fp16"
|
| 3 |
+
data_folder: "wikipedia_20220301.en.processed"
|
| 4 |
+
batch_size: 192
|
| 5 |
+
save_interval: 5000
|
| 6 |
+
log_interval: 10
|
| 7 |
+
num_process: 1 # number of GPUs
|
| 8 |
+
num_steps: 1000000
|
| 9 |
+
|
| 10 |
+
dataset_params:
|
| 11 |
+
tokenizer: "transfo-xl-wt103"
|
| 12 |
+
token_separator: " " # token used for phoneme separator (space)
|
| 13 |
+
token_mask: "M" # token used for phoneme mask (M)
|
| 14 |
+
word_separator: 3039 # token used for word separator (<formula>)
|
| 15 |
+
token_maps: "token_maps.pkl" # token map path
|
| 16 |
+
|
| 17 |
+
max_mel_length: 512 # max phoneme length
|
| 18 |
+
|
| 19 |
+
word_mask_prob: 0.15 # probability to mask the entire word
|
| 20 |
+
phoneme_mask_prob: 0.1 # probability to mask each phoneme
|
| 21 |
+
replace_prob: 0.2 # probablity to replace phonemes
|
| 22 |
+
|
| 23 |
+
model_params:
|
| 24 |
+
vocab_size: 178
|
| 25 |
+
hidden_size: 768
|
| 26 |
+
num_attention_heads: 12
|
| 27 |
+
intermediate_size: 2048
|
| 28 |
+
max_position_embeddings: 512
|
| 29 |
+
num_hidden_layers: 12
|
| 30 |
+
dropout: 0.1
|
Utils/PLBERT/step_1000000.t7
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:0714ff85804db43e06b3b0ac5749bf90cf206257c6c5916e8a98c5933b4c21e0
|
| 3 |
+
size 25185187
|
Utils/PLBERT/util.py
ADDED
|
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import yaml
|
| 3 |
+
import torch
|
| 4 |
+
from transformers import AlbertConfig, AlbertModel
|
| 5 |
+
|
| 6 |
+
class CustomAlbert(AlbertModel):
|
| 7 |
+
def forward(self, *args, **kwargs):
|
| 8 |
+
# Call the original forward method
|
| 9 |
+
outputs = super().forward(*args, **kwargs)
|
| 10 |
+
|
| 11 |
+
# Only return the last_hidden_state
|
| 12 |
+
return outputs.last_hidden_state
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
def load_plbert(log_dir):
|
| 16 |
+
config_path = os.path.join(log_dir, "config.yml")
|
| 17 |
+
plbert_config = yaml.safe_load(open(config_path))
|
| 18 |
+
|
| 19 |
+
albert_base_configuration = AlbertConfig(**plbert_config['model_params'])
|
| 20 |
+
bert = CustomAlbert(albert_base_configuration)
|
| 21 |
+
|
| 22 |
+
files = os.listdir(log_dir)
|
| 23 |
+
ckpts = []
|
| 24 |
+
for f in os.listdir(log_dir):
|
| 25 |
+
if f.startswith("step_"): ckpts.append(f)
|
| 26 |
+
|
| 27 |
+
iters = [int(f.split('_')[-1].split('.')[0]) for f in ckpts if os.path.isfile(os.path.join(log_dir, f))]
|
| 28 |
+
iters = sorted(iters)[-1]
|
| 29 |
+
|
| 30 |
+
checkpoint = torch.load(log_dir + "/step_" + str(iters) + ".t7", map_location='cpu')
|
| 31 |
+
state_dict = checkpoint['net']
|
| 32 |
+
from collections import OrderedDict
|
| 33 |
+
new_state_dict = OrderedDict()
|
| 34 |
+
for k, v in state_dict.items():
|
| 35 |
+
name = k[7:] # remove `module.`
|
| 36 |
+
if name.startswith('encoder.'):
|
| 37 |
+
name = name[8:] # remove `encoder.`
|
| 38 |
+
new_state_dict[name] = v
|
| 39 |
+
del new_state_dict["embeddings.position_ids"]
|
| 40 |
+
bert.load_state_dict(new_state_dict, strict=False)
|
| 41 |
+
|
| 42 |
+
return bert
|
bert.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:be40abe9ace47bdcee074ef99f2b635f2346bc7af5e4c2b8ab0bde376735683d
|
| 3 |
+
size 25178740
|
bert_encoder.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4b5272d2d29305288299e231c4587af0e929a4b32a66e4bf73e33294ead044df
|
| 3 |
+
size 1576502
|
checkpoint.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4026371ecd0cb55547a015017623339a49608ada0d677cd64b36f349705d8b28
|
| 3 |
+
size 2201837262
|
config.json
ADDED
|
@@ -0,0 +1,162 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"model_params": {
|
| 3 |
+
"decoder": {
|
| 4 |
+
"resblock_dilation_sizes": [
|
| 5 |
+
[
|
| 6 |
+
1,
|
| 7 |
+
3,
|
| 8 |
+
5
|
| 9 |
+
],
|
| 10 |
+
[
|
| 11 |
+
1,
|
| 12 |
+
3,
|
| 13 |
+
5
|
| 14 |
+
],
|
| 15 |
+
[
|
| 16 |
+
1,
|
| 17 |
+
3,
|
| 18 |
+
5
|
| 19 |
+
]
|
| 20 |
+
],
|
| 21 |
+
"resblock_kernel_sizes": [
|
| 22 |
+
3,
|
| 23 |
+
7,
|
| 24 |
+
11
|
| 25 |
+
],
|
| 26 |
+
"type": "hifigan",
|
| 27 |
+
"upsample_initial_channel": 512,
|
| 28 |
+
"upsample_kernel_sizes": [
|
| 29 |
+
20,
|
| 30 |
+
10,
|
| 31 |
+
6,
|
| 32 |
+
4
|
| 33 |
+
],
|
| 34 |
+
"upsample_rates": [
|
| 35 |
+
10,
|
| 36 |
+
5,
|
| 37 |
+
3,
|
| 38 |
+
2
|
| 39 |
+
]
|
| 40 |
+
},
|
| 41 |
+
"diffusion": {
|
| 42 |
+
"dist": {
|
| 43 |
+
"estimate_sigma_data": true,
|
| 44 |
+
"mean": -3.0,
|
| 45 |
+
"sigma_data": 0.2,
|
| 46 |
+
"std": 1.0
|
| 47 |
+
},
|
| 48 |
+
"embedding_mask_proba": 0.1,
|
| 49 |
+
"transformer": {
|
| 50 |
+
"head_features": 64,
|
| 51 |
+
"multiplier": 2,
|
| 52 |
+
"num_heads": 8,
|
| 53 |
+
"num_layers": 3
|
| 54 |
+
}
|
| 55 |
+
},
|
| 56 |
+
"dim_in": 64,
|
| 57 |
+
"dropout": 0.2,
|
| 58 |
+
"hidden_dim": 512,
|
| 59 |
+
"max_conv_dim": 512,
|
| 60 |
+
"max_dur": 50,
|
| 61 |
+
"multispeaker": false,
|
| 62 |
+
"n_layer": 3,
|
| 63 |
+
"n_mels": 80,
|
| 64 |
+
"n_token": 178,
|
| 65 |
+
"slm": {
|
| 66 |
+
"hidden": 768,
|
| 67 |
+
"initial_channel": 64,
|
| 68 |
+
"model": "microsoft/wavlm-base-plus",
|
| 69 |
+
"nlayers": 13,
|
| 70 |
+
"sr": 16000
|
| 71 |
+
},
|
| 72 |
+
"style_dim": 128
|
| 73 |
+
},
|
| 74 |
+
"training_config": {
|
| 75 |
+
"epochs": 8,
|
| 76 |
+
"batch_size": 2,
|
| 77 |
+
"max_len": 630,
|
| 78 |
+
"optimizer": {
|
| 79 |
+
"bert_lr": 1e-05,
|
| 80 |
+
"ft_lr": 0.0001,
|
| 81 |
+
"lr": 0.0001
|
| 82 |
+
},
|
| 83 |
+
"loss_params": {
|
| 84 |
+
"diff_epoch": 2,
|
| 85 |
+
"joint_epoch": 110,
|
| 86 |
+
"lambda_F0": 1.0,
|
| 87 |
+
"lambda_ce": 20.0,
|
| 88 |
+
"lambda_diff": 1.0,
|
| 89 |
+
"lambda_dur": 1.0,
|
| 90 |
+
"lambda_gen": 1.0,
|
| 91 |
+
"lambda_mel": 5.0,
|
| 92 |
+
"lambda_mono": 1.0,
|
| 93 |
+
"lambda_norm": 1.0,
|
| 94 |
+
"lambda_s2s": 1.0,
|
| 95 |
+
"lambda_slm": 1.0,
|
| 96 |
+
"lambda_sty": 1.0
|
| 97 |
+
}
|
| 98 |
+
},
|
| 99 |
+
"preprocess_params": {
|
| 100 |
+
"spect_params": {
|
| 101 |
+
"hop_length": 300,
|
| 102 |
+
"n_fft": 2048,
|
| 103 |
+
"win_length": 1200
|
| 104 |
+
},
|
| 105 |
+
"sr": 24000
|
| 106 |
+
},
|
| 107 |
+
"data_params": {
|
| 108 |
+
"OOD_data": "Data/OOD_texts.txt",
|
| 109 |
+
"min_length": 50,
|
| 110 |
+
"root_path": "Data/wavs",
|
| 111 |
+
"train_data": "Data/train_list.txt",
|
| 112 |
+
"val_data": "Data/val_list.txt"
|
| 113 |
+
},
|
| 114 |
+
"model_state": {
|
| 115 |
+
"epoch": 7,
|
| 116 |
+
"iterations": 2064,
|
| 117 |
+
"val_loss": 0.5136370658874512
|
| 118 |
+
},
|
| 119 |
+
"training_metrics": {
|
| 120 |
+
"train_loss": [],
|
| 121 |
+
"val_loss": [
|
| 122 |
+
25.0,
|
| 123 |
+
30.0,
|
| 124 |
+
24.0,
|
| 125 |
+
32.0,
|
| 126 |
+
42.0,
|
| 127 |
+
47.0,
|
| 128 |
+
51.0,
|
| 129 |
+
11.0
|
| 130 |
+
],
|
| 131 |
+
"dur_loss": [
|
| 132 |
+
0.533,
|
| 133 |
+
0.513,
|
| 134 |
+
0.5,
|
| 135 |
+
0.512,
|
| 136 |
+
0.499,
|
| 137 |
+
0.502,
|
| 138 |
+
0.494,
|
| 139 |
+
0.514
|
| 140 |
+
],
|
| 141 |
+
"F0_loss": [
|
| 142 |
+
1.565,
|
| 143 |
+
1.65,
|
| 144 |
+
1.545,
|
| 145 |
+
1.569,
|
| 146 |
+
1.563,
|
| 147 |
+
1.549,
|
| 148 |
+
1.578,
|
| 149 |
+
1.598
|
| 150 |
+
],
|
| 151 |
+
"epochs": [
|
| 152 |
+
1,
|
| 153 |
+
2,
|
| 154 |
+
3,
|
| 155 |
+
4,
|
| 156 |
+
5,
|
| 157 |
+
6,
|
| 158 |
+
7,
|
| 159 |
+
8
|
| 160 |
+
]
|
| 161 |
+
}
|
| 162 |
+
}
|
config.yml
ADDED
|
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
ASR_config: Utils/ASR/config.yml
|
| 2 |
+
ASR_path: Utils/ASR/epoch_00080.pth
|
| 3 |
+
F0_path: Utils/JDC/bst.t7
|
| 4 |
+
PLBERT_dir: Utils/PLBERT/
|
| 5 |
+
model_params:
|
| 6 |
+
decoder:
|
| 7 |
+
resblock_dilation_sizes:
|
| 8 |
+
- - 1
|
| 9 |
+
- 3
|
| 10 |
+
- 5
|
| 11 |
+
- - 1
|
| 12 |
+
- 3
|
| 13 |
+
- 5
|
| 14 |
+
- - 1
|
| 15 |
+
- 3
|
| 16 |
+
- 5
|
| 17 |
+
resblock_kernel_sizes:
|
| 18 |
+
- 3
|
| 19 |
+
- 7
|
| 20 |
+
- 11
|
| 21 |
+
type: hifigan
|
| 22 |
+
upsample_initial_channel: 512
|
| 23 |
+
upsample_kernel_sizes:
|
| 24 |
+
- 20
|
| 25 |
+
- 10
|
| 26 |
+
- 6
|
| 27 |
+
- 4
|
| 28 |
+
upsample_rates:
|
| 29 |
+
- 10
|
| 30 |
+
- 5
|
| 31 |
+
- 3
|
| 32 |
+
- 2
|
| 33 |
+
diffusion:
|
| 34 |
+
dist:
|
| 35 |
+
estimate_sigma_data: true
|
| 36 |
+
mean: -3.0
|
| 37 |
+
sigma_data: 0.2
|
| 38 |
+
std: 1.0
|
| 39 |
+
embedding_mask_proba: 0.1
|
| 40 |
+
transformer:
|
| 41 |
+
head_features: 64
|
| 42 |
+
multiplier: 2
|
| 43 |
+
num_heads: 8
|
| 44 |
+
num_layers: 3
|
| 45 |
+
dim_in: 64
|
| 46 |
+
dropout: 0.2
|
| 47 |
+
hidden_dim: 512
|
| 48 |
+
max_conv_dim: 512
|
| 49 |
+
max_dur: 50
|
| 50 |
+
multispeaker: false
|
| 51 |
+
n_layer: 3
|
| 52 |
+
n_mels: 80
|
| 53 |
+
n_token: 178
|
| 54 |
+
slm:
|
| 55 |
+
hidden: 768
|
| 56 |
+
initial_channel: 64
|
| 57 |
+
model: microsoft/wavlm-base-plus
|
| 58 |
+
nlayers: 13
|
| 59 |
+
sr: 16000
|
| 60 |
+
style_dim: 128
|
| 61 |
+
preprocess_params:
|
| 62 |
+
spect_params:
|
| 63 |
+
hop_length: 300
|
| 64 |
+
n_fft: 2048
|
| 65 |
+
win_length: 1200
|
| 66 |
+
sr: 24000
|
decoder.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c357457371353f7805fa7e4d51a189af8a0a81cbd59041250448ff2ee6125286
|
| 3 |
+
size 217409318
|
diffusion.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a05047635e3243cdcea50e037268473435026c1b2dee8e2168fbc8c0ff6ea3f0
|
| 3 |
+
size 87699504
|
models.py
ADDED
|
@@ -0,0 +1,713 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#coding:utf-8
|
| 2 |
+
|
| 3 |
+
import os
|
| 4 |
+
import os.path as osp
|
| 5 |
+
|
| 6 |
+
import copy
|
| 7 |
+
import math
|
| 8 |
+
|
| 9 |
+
import numpy as np
|
| 10 |
+
import torch
|
| 11 |
+
import torch.nn as nn
|
| 12 |
+
import torch.nn.functional as F
|
| 13 |
+
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
|
| 14 |
+
|
| 15 |
+
from Utils.ASR.models import ASRCNN
|
| 16 |
+
from Utils.JDC.model import JDCNet
|
| 17 |
+
|
| 18 |
+
from Modules.diffusion.sampler import KDiffusion, LogNormalDistribution
|
| 19 |
+
from Modules.diffusion.modules import Transformer1d, StyleTransformer1d
|
| 20 |
+
from Modules.diffusion.diffusion import AudioDiffusionConditional
|
| 21 |
+
|
| 22 |
+
from Modules.discriminators import MultiPeriodDiscriminator, MultiResSpecDiscriminator, WavLMDiscriminator
|
| 23 |
+
|
| 24 |
+
from munch import Munch
|
| 25 |
+
import yaml
|
| 26 |
+
|
| 27 |
+
class LearnedDownSample(nn.Module):
|
| 28 |
+
def __init__(self, layer_type, dim_in):
|
| 29 |
+
super().__init__()
|
| 30 |
+
self.layer_type = layer_type
|
| 31 |
+
|
| 32 |
+
if self.layer_type == 'none':
|
| 33 |
+
self.conv = nn.Identity()
|
| 34 |
+
elif self.layer_type == 'timepreserve':
|
| 35 |
+
self.conv = spectral_norm(nn.Conv2d(dim_in, dim_in, kernel_size=(3, 1), stride=(2, 1), groups=dim_in, padding=(1, 0)))
|
| 36 |
+
elif self.layer_type == 'half':
|
| 37 |
+
self.conv = spectral_norm(nn.Conv2d(dim_in, dim_in, kernel_size=(3, 3), stride=(2, 2), groups=dim_in, padding=1))
|
| 38 |
+
else:
|
| 39 |
+
raise RuntimeError('Got unexpected donwsampletype %s, expected is [none, timepreserve, half]' % self.layer_type)
|
| 40 |
+
|
| 41 |
+
def forward(self, x):
|
| 42 |
+
return self.conv(x)
|
| 43 |
+
|
| 44 |
+
class LearnedUpSample(nn.Module):
|
| 45 |
+
def __init__(self, layer_type, dim_in):
|
| 46 |
+
super().__init__()
|
| 47 |
+
self.layer_type = layer_type
|
| 48 |
+
|
| 49 |
+
if self.layer_type == 'none':
|
| 50 |
+
self.conv = nn.Identity()
|
| 51 |
+
elif self.layer_type == 'timepreserve':
|
| 52 |
+
self.conv = nn.ConvTranspose2d(dim_in, dim_in, kernel_size=(3, 1), stride=(2, 1), groups=dim_in, output_padding=(1, 0), padding=(1, 0))
|
| 53 |
+
elif self.layer_type == 'half':
|
| 54 |
+
self.conv = nn.ConvTranspose2d(dim_in, dim_in, kernel_size=(3, 3), stride=(2, 2), groups=dim_in, output_padding=1, padding=1)
|
| 55 |
+
else:
|
| 56 |
+
raise RuntimeError('Got unexpected upsampletype %s, expected is [none, timepreserve, half]' % self.layer_type)
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
def forward(self, x):
|
| 60 |
+
return self.conv(x)
|
| 61 |
+
|
| 62 |
+
class DownSample(nn.Module):
|
| 63 |
+
def __init__(self, layer_type):
|
| 64 |
+
super().__init__()
|
| 65 |
+
self.layer_type = layer_type
|
| 66 |
+
|
| 67 |
+
def forward(self, x):
|
| 68 |
+
if self.layer_type == 'none':
|
| 69 |
+
return x
|
| 70 |
+
elif self.layer_type == 'timepreserve':
|
| 71 |
+
return F.avg_pool2d(x, (2, 1))
|
| 72 |
+
elif self.layer_type == 'half':
|
| 73 |
+
if x.shape[-1] % 2 != 0:
|
| 74 |
+
x = torch.cat([x, x[..., -1].unsqueeze(-1)], dim=-1)
|
| 75 |
+
return F.avg_pool2d(x, 2)
|
| 76 |
+
else:
|
| 77 |
+
raise RuntimeError('Got unexpected donwsampletype %s, expected is [none, timepreserve, half]' % self.layer_type)
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
class UpSample(nn.Module):
|
| 81 |
+
def __init__(self, layer_type):
|
| 82 |
+
super().__init__()
|
| 83 |
+
self.layer_type = layer_type
|
| 84 |
+
|
| 85 |
+
def forward(self, x):
|
| 86 |
+
if self.layer_type == 'none':
|
| 87 |
+
return x
|
| 88 |
+
elif self.layer_type == 'timepreserve':
|
| 89 |
+
return F.interpolate(x, scale_factor=(2, 1), mode='nearest')
|
| 90 |
+
elif self.layer_type == 'half':
|
| 91 |
+
return F.interpolate(x, scale_factor=2, mode='nearest')
|
| 92 |
+
else:
|
| 93 |
+
raise RuntimeError('Got unexpected upsampletype %s, expected is [none, timepreserve, half]' % self.layer_type)
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
class ResBlk(nn.Module):
|
| 97 |
+
def __init__(self, dim_in, dim_out, actv=nn.LeakyReLU(0.2),
|
| 98 |
+
normalize=False, downsample='none'):
|
| 99 |
+
super().__init__()
|
| 100 |
+
self.actv = actv
|
| 101 |
+
self.normalize = normalize
|
| 102 |
+
self.downsample = DownSample(downsample)
|
| 103 |
+
self.downsample_res = LearnedDownSample(downsample, dim_in)
|
| 104 |
+
self.learned_sc = dim_in != dim_out
|
| 105 |
+
self._build_weights(dim_in, dim_out)
|
| 106 |
+
|
| 107 |
+
def _build_weights(self, dim_in, dim_out):
|
| 108 |
+
self.conv1 = spectral_norm(nn.Conv2d(dim_in, dim_in, 3, 1, 1))
|
| 109 |
+
self.conv2 = spectral_norm(nn.Conv2d(dim_in, dim_out, 3, 1, 1))
|
| 110 |
+
if self.normalize:
|
| 111 |
+
self.norm1 = nn.InstanceNorm2d(dim_in, affine=True)
|
| 112 |
+
self.norm2 = nn.InstanceNorm2d(dim_in, affine=True)
|
| 113 |
+
if self.learned_sc:
|
| 114 |
+
self.conv1x1 = spectral_norm(nn.Conv2d(dim_in, dim_out, 1, 1, 0, bias=False))
|
| 115 |
+
|
| 116 |
+
def _shortcut(self, x):
|
| 117 |
+
if self.learned_sc:
|
| 118 |
+
x = self.conv1x1(x)
|
| 119 |
+
if self.downsample:
|
| 120 |
+
x = self.downsample(x)
|
| 121 |
+
return x
|
| 122 |
+
|
| 123 |
+
def _residual(self, x):
|
| 124 |
+
if self.normalize:
|
| 125 |
+
x = self.norm1(x)
|
| 126 |
+
x = self.actv(x)
|
| 127 |
+
x = self.conv1(x)
|
| 128 |
+
x = self.downsample_res(x)
|
| 129 |
+
if self.normalize:
|
| 130 |
+
x = self.norm2(x)
|
| 131 |
+
x = self.actv(x)
|
| 132 |
+
x = self.conv2(x)
|
| 133 |
+
return x
|
| 134 |
+
|
| 135 |
+
def forward(self, x):
|
| 136 |
+
x = self._shortcut(x) + self._residual(x)
|
| 137 |
+
return x / math.sqrt(2) # unit variance
|
| 138 |
+
|
| 139 |
+
class StyleEncoder(nn.Module):
|
| 140 |
+
def __init__(self, dim_in=48, style_dim=48, max_conv_dim=384):
|
| 141 |
+
super().__init__()
|
| 142 |
+
blocks = []
|
| 143 |
+
blocks += [spectral_norm(nn.Conv2d(1, dim_in, 3, 1, 1))]
|
| 144 |
+
|
| 145 |
+
repeat_num = 4
|
| 146 |
+
for _ in range(repeat_num):
|
| 147 |
+
dim_out = min(dim_in*2, max_conv_dim)
|
| 148 |
+
blocks += [ResBlk(dim_in, dim_out, downsample='half')]
|
| 149 |
+
dim_in = dim_out
|
| 150 |
+
|
| 151 |
+
blocks += [nn.LeakyReLU(0.2)]
|
| 152 |
+
blocks += [spectral_norm(nn.Conv2d(dim_out, dim_out, 5, 1, 0))]
|
| 153 |
+
blocks += [nn.AdaptiveAvgPool2d(1)]
|
| 154 |
+
blocks += [nn.LeakyReLU(0.2)]
|
| 155 |
+
self.shared = nn.Sequential(*blocks)
|
| 156 |
+
|
| 157 |
+
self.unshared = nn.Linear(dim_out, style_dim)
|
| 158 |
+
|
| 159 |
+
def forward(self, x):
|
| 160 |
+
h = self.shared(x)
|
| 161 |
+
h = h.view(h.size(0), -1)
|
| 162 |
+
s = self.unshared(h)
|
| 163 |
+
|
| 164 |
+
return s
|
| 165 |
+
|
| 166 |
+
class LinearNorm(torch.nn.Module):
|
| 167 |
+
def __init__(self, in_dim, out_dim, bias=True, w_init_gain='linear'):
|
| 168 |
+
super(LinearNorm, self).__init__()
|
| 169 |
+
self.linear_layer = torch.nn.Linear(in_dim, out_dim, bias=bias)
|
| 170 |
+
|
| 171 |
+
torch.nn.init.xavier_uniform_(
|
| 172 |
+
self.linear_layer.weight,
|
| 173 |
+
gain=torch.nn.init.calculate_gain(w_init_gain))
|
| 174 |
+
|
| 175 |
+
def forward(self, x):
|
| 176 |
+
return self.linear_layer(x)
|
| 177 |
+
|
| 178 |
+
class Discriminator2d(nn.Module):
|
| 179 |
+
def __init__(self, dim_in=48, num_domains=1, max_conv_dim=384, repeat_num=4):
|
| 180 |
+
super().__init__()
|
| 181 |
+
blocks = []
|
| 182 |
+
blocks += [spectral_norm(nn.Conv2d(1, dim_in, 3, 1, 1))]
|
| 183 |
+
|
| 184 |
+
for lid in range(repeat_num):
|
| 185 |
+
dim_out = min(dim_in*2, max_conv_dim)
|
| 186 |
+
blocks += [ResBlk(dim_in, dim_out, downsample='half')]
|
| 187 |
+
dim_in = dim_out
|
| 188 |
+
|
| 189 |
+
blocks += [nn.LeakyReLU(0.2)]
|
| 190 |
+
blocks += [spectral_norm(nn.Conv2d(dim_out, dim_out, 5, 1, 0))]
|
| 191 |
+
blocks += [nn.LeakyReLU(0.2)]
|
| 192 |
+
blocks += [nn.AdaptiveAvgPool2d(1)]
|
| 193 |
+
blocks += [spectral_norm(nn.Conv2d(dim_out, num_domains, 1, 1, 0))]
|
| 194 |
+
self.main = nn.Sequential(*blocks)
|
| 195 |
+
|
| 196 |
+
def get_feature(self, x):
|
| 197 |
+
features = []
|
| 198 |
+
for l in self.main:
|
| 199 |
+
x = l(x)
|
| 200 |
+
features.append(x)
|
| 201 |
+
out = features[-1]
|
| 202 |
+
out = out.view(out.size(0), -1) # (batch, num_domains)
|
| 203 |
+
return out, features
|
| 204 |
+
|
| 205 |
+
def forward(self, x):
|
| 206 |
+
out, features = self.get_feature(x)
|
| 207 |
+
out = out.squeeze() # (batch)
|
| 208 |
+
return out, features
|
| 209 |
+
|
| 210 |
+
class ResBlk1d(nn.Module):
|
| 211 |
+
def __init__(self, dim_in, dim_out, actv=nn.LeakyReLU(0.2),
|
| 212 |
+
normalize=False, downsample='none', dropout_p=0.2):
|
| 213 |
+
super().__init__()
|
| 214 |
+
self.actv = actv
|
| 215 |
+
self.normalize = normalize
|
| 216 |
+
self.downsample_type = downsample
|
| 217 |
+
self.learned_sc = dim_in != dim_out
|
| 218 |
+
self._build_weights(dim_in, dim_out)
|
| 219 |
+
self.dropout_p = dropout_p
|
| 220 |
+
|
| 221 |
+
if self.downsample_type == 'none':
|
| 222 |
+
self.pool = nn.Identity()
|
| 223 |
+
else:
|
| 224 |
+
self.pool = weight_norm(nn.Conv1d(dim_in, dim_in, kernel_size=3, stride=2, groups=dim_in, padding=1))
|
| 225 |
+
|
| 226 |
+
def _build_weights(self, dim_in, dim_out):
|
| 227 |
+
self.conv1 = weight_norm(nn.Conv1d(dim_in, dim_in, 3, 1, 1))
|
| 228 |
+
self.conv2 = weight_norm(nn.Conv1d(dim_in, dim_out, 3, 1, 1))
|
| 229 |
+
if self.normalize:
|
| 230 |
+
self.norm1 = nn.InstanceNorm1d(dim_in, affine=True)
|
| 231 |
+
self.norm2 = nn.InstanceNorm1d(dim_in, affine=True)
|
| 232 |
+
if self.learned_sc:
|
| 233 |
+
self.conv1x1 = weight_norm(nn.Conv1d(dim_in, dim_out, 1, 1, 0, bias=False))
|
| 234 |
+
|
| 235 |
+
def downsample(self, x):
|
| 236 |
+
if self.downsample_type == 'none':
|
| 237 |
+
return x
|
| 238 |
+
else:
|
| 239 |
+
if x.shape[-1] % 2 != 0:
|
| 240 |
+
x = torch.cat([x, x[..., -1].unsqueeze(-1)], dim=-1)
|
| 241 |
+
return F.avg_pool1d(x, 2)
|
| 242 |
+
|
| 243 |
+
def _shortcut(self, x):
|
| 244 |
+
if self.learned_sc:
|
| 245 |
+
x = self.conv1x1(x)
|
| 246 |
+
x = self.downsample(x)
|
| 247 |
+
return x
|
| 248 |
+
|
| 249 |
+
def _residual(self, x):
|
| 250 |
+
if self.normalize:
|
| 251 |
+
x = self.norm1(x)
|
| 252 |
+
x = self.actv(x)
|
| 253 |
+
x = F.dropout(x, p=self.dropout_p, training=self.training)
|
| 254 |
+
|
| 255 |
+
x = self.conv1(x)
|
| 256 |
+
x = self.pool(x)
|
| 257 |
+
if self.normalize:
|
| 258 |
+
x = self.norm2(x)
|
| 259 |
+
|
| 260 |
+
x = self.actv(x)
|
| 261 |
+
x = F.dropout(x, p=self.dropout_p, training=self.training)
|
| 262 |
+
|
| 263 |
+
x = self.conv2(x)
|
| 264 |
+
return x
|
| 265 |
+
|
| 266 |
+
def forward(self, x):
|
| 267 |
+
x = self._shortcut(x) + self._residual(x)
|
| 268 |
+
return x / math.sqrt(2) # unit variance
|
| 269 |
+
|
| 270 |
+
class LayerNorm(nn.Module):
|
| 271 |
+
def __init__(self, channels, eps=1e-5):
|
| 272 |
+
super().__init__()
|
| 273 |
+
self.channels = channels
|
| 274 |
+
self.eps = eps
|
| 275 |
+
|
| 276 |
+
self.gamma = nn.Parameter(torch.ones(channels))
|
| 277 |
+
self.beta = nn.Parameter(torch.zeros(channels))
|
| 278 |
+
|
| 279 |
+
def forward(self, x):
|
| 280 |
+
x = x.transpose(1, -1)
|
| 281 |
+
x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
|
| 282 |
+
return x.transpose(1, -1)
|
| 283 |
+
|
| 284 |
+
class TextEncoder(nn.Module):
|
| 285 |
+
def __init__(self, channels, kernel_size, depth, n_symbols, actv=nn.LeakyReLU(0.2)):
|
| 286 |
+
super().__init__()
|
| 287 |
+
self.embedding = nn.Embedding(n_symbols, channels)
|
| 288 |
+
|
| 289 |
+
padding = (kernel_size - 1) // 2
|
| 290 |
+
self.cnn = nn.ModuleList()
|
| 291 |
+
for _ in range(depth):
|
| 292 |
+
self.cnn.append(nn.Sequential(
|
| 293 |
+
weight_norm(nn.Conv1d(channels, channels, kernel_size=kernel_size, padding=padding)),
|
| 294 |
+
LayerNorm(channels),
|
| 295 |
+
actv,
|
| 296 |
+
nn.Dropout(0.2),
|
| 297 |
+
))
|
| 298 |
+
# self.cnn = nn.Sequential(*self.cnn)
|
| 299 |
+
|
| 300 |
+
self.lstm = nn.LSTM(channels, channels//2, 1, batch_first=True, bidirectional=True)
|
| 301 |
+
|
| 302 |
+
def forward(self, x, input_lengths, m):
|
| 303 |
+
x = self.embedding(x) # [B, T, emb]
|
| 304 |
+
x = x.transpose(1, 2) # [B, emb, T]
|
| 305 |
+
m = m.to(input_lengths.device).unsqueeze(1)
|
| 306 |
+
x.masked_fill_(m, 0.0)
|
| 307 |
+
|
| 308 |
+
for c in self.cnn:
|
| 309 |
+
x = c(x)
|
| 310 |
+
x.masked_fill_(m, 0.0)
|
| 311 |
+
|
| 312 |
+
x = x.transpose(1, 2) # [B, T, chn]
|
| 313 |
+
|
| 314 |
+
input_lengths = input_lengths.cpu().numpy()
|
| 315 |
+
x = nn.utils.rnn.pack_padded_sequence(
|
| 316 |
+
x, input_lengths, batch_first=True, enforce_sorted=False)
|
| 317 |
+
|
| 318 |
+
self.lstm.flatten_parameters()
|
| 319 |
+
x, _ = self.lstm(x)
|
| 320 |
+
x, _ = nn.utils.rnn.pad_packed_sequence(
|
| 321 |
+
x, batch_first=True)
|
| 322 |
+
|
| 323 |
+
x = x.transpose(-1, -2)
|
| 324 |
+
x_pad = torch.zeros([x.shape[0], x.shape[1], m.shape[-1]])
|
| 325 |
+
|
| 326 |
+
x_pad[:, :, :x.shape[-1]] = x
|
| 327 |
+
x = x_pad.to(x.device)
|
| 328 |
+
|
| 329 |
+
x.masked_fill_(m, 0.0)
|
| 330 |
+
|
| 331 |
+
return x
|
| 332 |
+
|
| 333 |
+
def inference(self, x):
|
| 334 |
+
x = self.embedding(x)
|
| 335 |
+
x = x.transpose(1, 2)
|
| 336 |
+
x = self.cnn(x)
|
| 337 |
+
x = x.transpose(1, 2)
|
| 338 |
+
self.lstm.flatten_parameters()
|
| 339 |
+
x, _ = self.lstm(x)
|
| 340 |
+
return x
|
| 341 |
+
|
| 342 |
+
def length_to_mask(self, lengths):
|
| 343 |
+
mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
|
| 344 |
+
mask = torch.gt(mask+1, lengths.unsqueeze(1))
|
| 345 |
+
return mask
|
| 346 |
+
|
| 347 |
+
|
| 348 |
+
|
| 349 |
+
class AdaIN1d(nn.Module):
|
| 350 |
+
def __init__(self, style_dim, num_features):
|
| 351 |
+
super().__init__()
|
| 352 |
+
self.norm = nn.InstanceNorm1d(num_features, affine=False)
|
| 353 |
+
self.fc = nn.Linear(style_dim, num_features*2)
|
| 354 |
+
|
| 355 |
+
def forward(self, x, s):
|
| 356 |
+
h = self.fc(s)
|
| 357 |
+
h = h.view(h.size(0), h.size(1), 1)
|
| 358 |
+
gamma, beta = torch.chunk(h, chunks=2, dim=1)
|
| 359 |
+
return (1 + gamma) * self.norm(x) + beta
|
| 360 |
+
|
| 361 |
+
class UpSample1d(nn.Module):
|
| 362 |
+
def __init__(self, layer_type):
|
| 363 |
+
super().__init__()
|
| 364 |
+
self.layer_type = layer_type
|
| 365 |
+
|
| 366 |
+
def forward(self, x):
|
| 367 |
+
if self.layer_type == 'none':
|
| 368 |
+
return x
|
| 369 |
+
else:
|
| 370 |
+
return F.interpolate(x, scale_factor=2, mode='nearest')
|
| 371 |
+
|
| 372 |
+
class AdainResBlk1d(nn.Module):
|
| 373 |
+
def __init__(self, dim_in, dim_out, style_dim=64, actv=nn.LeakyReLU(0.2),
|
| 374 |
+
upsample='none', dropout_p=0.0):
|
| 375 |
+
super().__init__()
|
| 376 |
+
self.actv = actv
|
| 377 |
+
self.upsample_type = upsample
|
| 378 |
+
self.upsample = UpSample1d(upsample)
|
| 379 |
+
self.learned_sc = dim_in != dim_out
|
| 380 |
+
self._build_weights(dim_in, dim_out, style_dim)
|
| 381 |
+
self.dropout = nn.Dropout(dropout_p)
|
| 382 |
+
|
| 383 |
+
if upsample == 'none':
|
| 384 |
+
self.pool = nn.Identity()
|
| 385 |
+
else:
|
| 386 |
+
self.pool = weight_norm(nn.ConvTranspose1d(dim_in, dim_in, kernel_size=3, stride=2, groups=dim_in, padding=1, output_padding=1))
|
| 387 |
+
|
| 388 |
+
|
| 389 |
+
def _build_weights(self, dim_in, dim_out, style_dim):
|
| 390 |
+
self.conv1 = weight_norm(nn.Conv1d(dim_in, dim_out, 3, 1, 1))
|
| 391 |
+
self.conv2 = weight_norm(nn.Conv1d(dim_out, dim_out, 3, 1, 1))
|
| 392 |
+
self.norm1 = AdaIN1d(style_dim, dim_in)
|
| 393 |
+
self.norm2 = AdaIN1d(style_dim, dim_out)
|
| 394 |
+
if self.learned_sc:
|
| 395 |
+
self.conv1x1 = weight_norm(nn.Conv1d(dim_in, dim_out, 1, 1, 0, bias=False))
|
| 396 |
+
|
| 397 |
+
def _shortcut(self, x):
|
| 398 |
+
x = self.upsample(x)
|
| 399 |
+
if self.learned_sc:
|
| 400 |
+
x = self.conv1x1(x)
|
| 401 |
+
return x
|
| 402 |
+
|
| 403 |
+
def _residual(self, x, s):
|
| 404 |
+
x = self.norm1(x, s)
|
| 405 |
+
x = self.actv(x)
|
| 406 |
+
x = self.pool(x)
|
| 407 |
+
x = self.conv1(self.dropout(x))
|
| 408 |
+
x = self.norm2(x, s)
|
| 409 |
+
x = self.actv(x)
|
| 410 |
+
x = self.conv2(self.dropout(x))
|
| 411 |
+
return x
|
| 412 |
+
|
| 413 |
+
def forward(self, x, s):
|
| 414 |
+
out = self._residual(x, s)
|
| 415 |
+
out = (out + self._shortcut(x)) / math.sqrt(2)
|
| 416 |
+
return out
|
| 417 |
+
|
| 418 |
+
class AdaLayerNorm(nn.Module):
|
| 419 |
+
def __init__(self, style_dim, channels, eps=1e-5):
|
| 420 |
+
super().__init__()
|
| 421 |
+
self.channels = channels
|
| 422 |
+
self.eps = eps
|
| 423 |
+
|
| 424 |
+
self.fc = nn.Linear(style_dim, channels*2)
|
| 425 |
+
|
| 426 |
+
def forward(self, x, s):
|
| 427 |
+
x = x.transpose(-1, -2)
|
| 428 |
+
x = x.transpose(1, -1)
|
| 429 |
+
|
| 430 |
+
h = self.fc(s)
|
| 431 |
+
h = h.view(h.size(0), h.size(1), 1)
|
| 432 |
+
gamma, beta = torch.chunk(h, chunks=2, dim=1)
|
| 433 |
+
gamma, beta = gamma.transpose(1, -1), beta.transpose(1, -1)
|
| 434 |
+
|
| 435 |
+
|
| 436 |
+
x = F.layer_norm(x, (self.channels,), eps=self.eps)
|
| 437 |
+
x = (1 + gamma) * x + beta
|
| 438 |
+
return x.transpose(1, -1).transpose(-1, -2)
|
| 439 |
+
|
| 440 |
+
class ProsodyPredictor(nn.Module):
|
| 441 |
+
|
| 442 |
+
def __init__(self, style_dim, d_hid, nlayers, max_dur=50, dropout=0.1):
|
| 443 |
+
super().__init__()
|
| 444 |
+
|
| 445 |
+
self.text_encoder = DurationEncoder(sty_dim=style_dim,
|
| 446 |
+
d_model=d_hid,
|
| 447 |
+
nlayers=nlayers,
|
| 448 |
+
dropout=dropout)
|
| 449 |
+
|
| 450 |
+
self.lstm = nn.LSTM(d_hid + style_dim, d_hid // 2, 1, batch_first=True, bidirectional=True)
|
| 451 |
+
self.duration_proj = LinearNorm(d_hid, max_dur)
|
| 452 |
+
|
| 453 |
+
self.shared = nn.LSTM(d_hid + style_dim, d_hid // 2, 1, batch_first=True, bidirectional=True)
|
| 454 |
+
self.F0 = nn.ModuleList()
|
| 455 |
+
self.F0.append(AdainResBlk1d(d_hid, d_hid, style_dim, dropout_p=dropout))
|
| 456 |
+
self.F0.append(AdainResBlk1d(d_hid, d_hid // 2, style_dim, upsample=True, dropout_p=dropout))
|
| 457 |
+
self.F0.append(AdainResBlk1d(d_hid // 2, d_hid // 2, style_dim, dropout_p=dropout))
|
| 458 |
+
|
| 459 |
+
self.N = nn.ModuleList()
|
| 460 |
+
self.N.append(AdainResBlk1d(d_hid, d_hid, style_dim, dropout_p=dropout))
|
| 461 |
+
self.N.append(AdainResBlk1d(d_hid, d_hid // 2, style_dim, upsample=True, dropout_p=dropout))
|
| 462 |
+
self.N.append(AdainResBlk1d(d_hid // 2, d_hid // 2, style_dim, dropout_p=dropout))
|
| 463 |
+
|
| 464 |
+
self.F0_proj = nn.Conv1d(d_hid // 2, 1, 1, 1, 0)
|
| 465 |
+
self.N_proj = nn.Conv1d(d_hid // 2, 1, 1, 1, 0)
|
| 466 |
+
|
| 467 |
+
|
| 468 |
+
def forward(self, texts, style, text_lengths, alignment, m):
|
| 469 |
+
d = self.text_encoder(texts, style, text_lengths, m)
|
| 470 |
+
|
| 471 |
+
batch_size = d.shape[0]
|
| 472 |
+
text_size = d.shape[1]
|
| 473 |
+
|
| 474 |
+
# predict duration
|
| 475 |
+
input_lengths = text_lengths.cpu().numpy()
|
| 476 |
+
x = nn.utils.rnn.pack_padded_sequence(
|
| 477 |
+
d, input_lengths, batch_first=True, enforce_sorted=False)
|
| 478 |
+
|
| 479 |
+
m = m.to(text_lengths.device).unsqueeze(1)
|
| 480 |
+
|
| 481 |
+
self.lstm.flatten_parameters()
|
| 482 |
+
x, _ = self.lstm(x)
|
| 483 |
+
x, _ = nn.utils.rnn.pad_packed_sequence(
|
| 484 |
+
x, batch_first=True)
|
| 485 |
+
|
| 486 |
+
x_pad = torch.zeros([x.shape[0], m.shape[-1], x.shape[-1]])
|
| 487 |
+
|
| 488 |
+
x_pad[:, :x.shape[1], :] = x
|
| 489 |
+
x = x_pad.to(x.device)
|
| 490 |
+
|
| 491 |
+
duration = self.duration_proj(nn.functional.dropout(x, 0.5, training=self.training))
|
| 492 |
+
|
| 493 |
+
en = (d.transpose(-1, -2) @ alignment)
|
| 494 |
+
|
| 495 |
+
return duration.squeeze(-1), en
|
| 496 |
+
|
| 497 |
+
def F0Ntrain(self, x, s):
|
| 498 |
+
x, _ = self.shared(x.transpose(-1, -2))
|
| 499 |
+
|
| 500 |
+
F0 = x.transpose(-1, -2)
|
| 501 |
+
for block in self.F0:
|
| 502 |
+
F0 = block(F0, s)
|
| 503 |
+
F0 = self.F0_proj(F0)
|
| 504 |
+
|
| 505 |
+
N = x.transpose(-1, -2)
|
| 506 |
+
for block in self.N:
|
| 507 |
+
N = block(N, s)
|
| 508 |
+
N = self.N_proj(N)
|
| 509 |
+
|
| 510 |
+
return F0.squeeze(1), N.squeeze(1)
|
| 511 |
+
|
| 512 |
+
def length_to_mask(self, lengths):
|
| 513 |
+
mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
|
| 514 |
+
mask = torch.gt(mask+1, lengths.unsqueeze(1))
|
| 515 |
+
return mask
|
| 516 |
+
|
| 517 |
+
class DurationEncoder(nn.Module):
|
| 518 |
+
|
| 519 |
+
def __init__(self, sty_dim, d_model, nlayers, dropout=0.1):
|
| 520 |
+
super().__init__()
|
| 521 |
+
self.lstms = nn.ModuleList()
|
| 522 |
+
for _ in range(nlayers):
|
| 523 |
+
self.lstms.append(nn.LSTM(d_model + sty_dim,
|
| 524 |
+
d_model // 2,
|
| 525 |
+
num_layers=1,
|
| 526 |
+
batch_first=True,
|
| 527 |
+
bidirectional=True,
|
| 528 |
+
dropout=dropout))
|
| 529 |
+
self.lstms.append(AdaLayerNorm(sty_dim, d_model))
|
| 530 |
+
|
| 531 |
+
|
| 532 |
+
self.dropout = dropout
|
| 533 |
+
self.d_model = d_model
|
| 534 |
+
self.sty_dim = sty_dim
|
| 535 |
+
|
| 536 |
+
def forward(self, x, style, text_lengths, m):
|
| 537 |
+
masks = m.to(text_lengths.device)
|
| 538 |
+
|
| 539 |
+
x = x.permute(2, 0, 1)
|
| 540 |
+
s = style.expand(x.shape[0], x.shape[1], -1)
|
| 541 |
+
x = torch.cat([x, s], axis=-1)
|
| 542 |
+
x.masked_fill_(masks.unsqueeze(-1).transpose(0, 1), 0.0)
|
| 543 |
+
|
| 544 |
+
x = x.transpose(0, 1)
|
| 545 |
+
input_lengths = text_lengths.cpu().numpy()
|
| 546 |
+
x = x.transpose(-1, -2)
|
| 547 |
+
|
| 548 |
+
for block in self.lstms:
|
| 549 |
+
if isinstance(block, AdaLayerNorm):
|
| 550 |
+
x = block(x.transpose(-1, -2), style).transpose(-1, -2)
|
| 551 |
+
x = torch.cat([x, s.permute(1, -1, 0)], axis=1)
|
| 552 |
+
x.masked_fill_(masks.unsqueeze(-1).transpose(-1, -2), 0.0)
|
| 553 |
+
else:
|
| 554 |
+
x = x.transpose(-1, -2)
|
| 555 |
+
x = nn.utils.rnn.pack_padded_sequence(
|
| 556 |
+
x, input_lengths, batch_first=True, enforce_sorted=False)
|
| 557 |
+
block.flatten_parameters()
|
| 558 |
+
x, _ = block(x)
|
| 559 |
+
x, _ = nn.utils.rnn.pad_packed_sequence(
|
| 560 |
+
x, batch_first=True)
|
| 561 |
+
x = F.dropout(x, p=self.dropout, training=self.training)
|
| 562 |
+
x = x.transpose(-1, -2)
|
| 563 |
+
|
| 564 |
+
x_pad = torch.zeros([x.shape[0], x.shape[1], m.shape[-1]])
|
| 565 |
+
|
| 566 |
+
x_pad[:, :, :x.shape[-1]] = x
|
| 567 |
+
x = x_pad.to(x.device)
|
| 568 |
+
|
| 569 |
+
return x.transpose(-1, -2)
|
| 570 |
+
|
| 571 |
+
def inference(self, x, style):
|
| 572 |
+
x = self.embedding(x.transpose(-1, -2)) * math.sqrt(self.d_model)
|
| 573 |
+
style = style.expand(x.shape[0], x.shape[1], -1)
|
| 574 |
+
x = torch.cat([x, style], axis=-1)
|
| 575 |
+
src = self.pos_encoder(x)
|
| 576 |
+
output = self.transformer_encoder(src).transpose(0, 1)
|
| 577 |
+
return output
|
| 578 |
+
|
| 579 |
+
def length_to_mask(self, lengths):
|
| 580 |
+
mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
|
| 581 |
+
mask = torch.gt(mask+1, lengths.unsqueeze(1))
|
| 582 |
+
return mask
|
| 583 |
+
|
| 584 |
+
def load_F0_models(path):
|
| 585 |
+
# load F0 model
|
| 586 |
+
|
| 587 |
+
F0_model = JDCNet(num_class=1, seq_len=192)
|
| 588 |
+
params = torch.load(path, map_location='cpu')['net']
|
| 589 |
+
F0_model.load_state_dict(params)
|
| 590 |
+
_ = F0_model.train()
|
| 591 |
+
|
| 592 |
+
return F0_model
|
| 593 |
+
|
| 594 |
+
def load_ASR_models(ASR_MODEL_PATH, ASR_MODEL_CONFIG):
|
| 595 |
+
# load ASR model
|
| 596 |
+
def _load_config(path):
|
| 597 |
+
with open(path) as f:
|
| 598 |
+
config = yaml.safe_load(f)
|
| 599 |
+
model_config = config['model_params']
|
| 600 |
+
return model_config
|
| 601 |
+
|
| 602 |
+
def _load_model(model_config, model_path):
|
| 603 |
+
model = ASRCNN(**model_config)
|
| 604 |
+
params = torch.load(model_path, map_location='cpu')['model']
|
| 605 |
+
model.load_state_dict(params)
|
| 606 |
+
return model
|
| 607 |
+
|
| 608 |
+
asr_model_config = _load_config(ASR_MODEL_CONFIG)
|
| 609 |
+
asr_model = _load_model(asr_model_config, ASR_MODEL_PATH)
|
| 610 |
+
_ = asr_model.train()
|
| 611 |
+
|
| 612 |
+
return asr_model
|
| 613 |
+
|
| 614 |
+
def build_model(args, text_aligner, pitch_extractor, bert):
|
| 615 |
+
assert args.decoder.type in ['istftnet', 'hifigan'], 'Decoder type unknown'
|
| 616 |
+
|
| 617 |
+
if args.decoder.type == "istftnet":
|
| 618 |
+
from Modules.istftnet import Decoder
|
| 619 |
+
decoder = Decoder(dim_in=args.hidden_dim, style_dim=args.style_dim, dim_out=args.n_mels,
|
| 620 |
+
resblock_kernel_sizes = args.decoder.resblock_kernel_sizes,
|
| 621 |
+
upsample_rates = args.decoder.upsample_rates,
|
| 622 |
+
upsample_initial_channel=args.decoder.upsample_initial_channel,
|
| 623 |
+
resblock_dilation_sizes=args.decoder.resblock_dilation_sizes,
|
| 624 |
+
upsample_kernel_sizes=args.decoder.upsample_kernel_sizes,
|
| 625 |
+
gen_istft_n_fft=args.decoder.gen_istft_n_fft, gen_istft_hop_size=args.decoder.gen_istft_hop_size)
|
| 626 |
+
else:
|
| 627 |
+
from Modules.hifigan import Decoder
|
| 628 |
+
decoder = Decoder(dim_in=args.hidden_dim, style_dim=args.style_dim, dim_out=args.n_mels,
|
| 629 |
+
resblock_kernel_sizes = args.decoder.resblock_kernel_sizes,
|
| 630 |
+
upsample_rates = args.decoder.upsample_rates,
|
| 631 |
+
upsample_initial_channel=args.decoder.upsample_initial_channel,
|
| 632 |
+
resblock_dilation_sizes=args.decoder.resblock_dilation_sizes,
|
| 633 |
+
upsample_kernel_sizes=args.decoder.upsample_kernel_sizes)
|
| 634 |
+
|
| 635 |
+
text_encoder = TextEncoder(channels=args.hidden_dim, kernel_size=5, depth=args.n_layer, n_symbols=args.n_token)
|
| 636 |
+
|
| 637 |
+
predictor = ProsodyPredictor(style_dim=args.style_dim, d_hid=args.hidden_dim, nlayers=args.n_layer, max_dur=args.max_dur, dropout=args.dropout)
|
| 638 |
+
|
| 639 |
+
style_encoder = StyleEncoder(dim_in=args.dim_in, style_dim=args.style_dim, max_conv_dim=args.hidden_dim) # acoustic style encoder
|
| 640 |
+
predictor_encoder = StyleEncoder(dim_in=args.dim_in, style_dim=args.style_dim, max_conv_dim=args.hidden_dim) # prosodic style encoder
|
| 641 |
+
|
| 642 |
+
# define diffusion model
|
| 643 |
+
if args.multispeaker:
|
| 644 |
+
transformer = StyleTransformer1d(channels=args.style_dim*2,
|
| 645 |
+
context_embedding_features=bert.config.hidden_size,
|
| 646 |
+
context_features=args.style_dim*2,
|
| 647 |
+
**args.diffusion.transformer)
|
| 648 |
+
else:
|
| 649 |
+
transformer = Transformer1d(channels=args.style_dim*2,
|
| 650 |
+
context_embedding_features=bert.config.hidden_size,
|
| 651 |
+
**args.diffusion.transformer)
|
| 652 |
+
|
| 653 |
+
diffusion = AudioDiffusionConditional(
|
| 654 |
+
in_channels=1,
|
| 655 |
+
embedding_max_length=bert.config.max_position_embeddings,
|
| 656 |
+
embedding_features=bert.config.hidden_size,
|
| 657 |
+
embedding_mask_proba=args.diffusion.embedding_mask_proba, # Conditional dropout of batch elements,
|
| 658 |
+
channels=args.style_dim*2,
|
| 659 |
+
context_features=args.style_dim*2,
|
| 660 |
+
)
|
| 661 |
+
|
| 662 |
+
diffusion.diffusion = KDiffusion(
|
| 663 |
+
net=diffusion.unet,
|
| 664 |
+
sigma_distribution=LogNormalDistribution(mean = args.diffusion.dist.mean, std = args.diffusion.dist.std),
|
| 665 |
+
sigma_data=args.diffusion.dist.sigma_data, # a placeholder, will be changed dynamically when start training diffusion model
|
| 666 |
+
dynamic_threshold=0.0
|
| 667 |
+
)
|
| 668 |
+
diffusion.diffusion.net = transformer
|
| 669 |
+
diffusion.unet = transformer
|
| 670 |
+
|
| 671 |
+
|
| 672 |
+
nets = Munch(
|
| 673 |
+
bert=bert,
|
| 674 |
+
bert_encoder=nn.Linear(bert.config.hidden_size, args.hidden_dim),
|
| 675 |
+
|
| 676 |
+
predictor=predictor,
|
| 677 |
+
decoder=decoder,
|
| 678 |
+
text_encoder=text_encoder,
|
| 679 |
+
|
| 680 |
+
predictor_encoder=predictor_encoder,
|
| 681 |
+
style_encoder=style_encoder,
|
| 682 |
+
diffusion=diffusion,
|
| 683 |
+
|
| 684 |
+
text_aligner = text_aligner,
|
| 685 |
+
pitch_extractor=pitch_extractor,
|
| 686 |
+
|
| 687 |
+
mpd = MultiPeriodDiscriminator(),
|
| 688 |
+
msd = MultiResSpecDiscriminator(),
|
| 689 |
+
|
| 690 |
+
# slm discriminator head
|
| 691 |
+
wd = WavLMDiscriminator(args.slm.hidden, args.slm.nlayers, args.slm.initial_channel),
|
| 692 |
+
)
|
| 693 |
+
|
| 694 |
+
return nets
|
| 695 |
+
|
| 696 |
+
def load_checkpoint(model, optimizer, path, load_only_params=True, ignore_modules=[]):
|
| 697 |
+
state = torch.load(path, map_location='cpu')
|
| 698 |
+
params = state['net']
|
| 699 |
+
for key in model:
|
| 700 |
+
if key in params and key not in ignore_modules:
|
| 701 |
+
print('%s loaded' % key)
|
| 702 |
+
model[key].load_state_dict(params[key], strict=False)
|
| 703 |
+
_ = [model[key].eval() for key in model]
|
| 704 |
+
|
| 705 |
+
if not load_only_params:
|
| 706 |
+
epoch = state["epoch"]
|
| 707 |
+
iters = state["iters"]
|
| 708 |
+
optimizer.load_state_dict(state["optimizer"])
|
| 709 |
+
else:
|
| 710 |
+
epoch = 0
|
| 711 |
+
iters = 0
|
| 712 |
+
|
| 713 |
+
return model, optimizer, epoch, iters
|
mpd.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:879f7ec4109890f53d921ed60f89f298ae46a260fa8063656c8bbb6840604ffc
|
| 3 |
+
size 164447824
|
msd.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:61f84d232da99b7e817191bb1acf8ba4c354609c6ca4a1aa5fd204bda7181fc8
|
| 3 |
+
size 1139020
|
pitch_extractor.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8a15c28725403a9d5a479cbcb9f75a0cc62cd1dc32c0248d06e13adb8b7049b2
|
| 3 |
+
size 21028913
|
predictor.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f707d32edb614764ef81d6df94b443949d477860ec5131651c1753b0e6ba3b41
|
| 3 |
+
size 64813639
|
predictor_encoder.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1ab7f152c20d4287e3cea852750afb88a63c27d76be4dba20b8c6acce7171e8b
|
| 3 |
+
size 55547155
|
style_encoder.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ba3c2e2a0b5e5d27be0e6eb984ff110ed1496600fe847d8b957c55ebb564e210
|
| 3 |
+
size 55546871
|
text_aligner.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:0f9a6657cb6e6bff160020849c65a10d413fe4b9ec398fde3a52262f8b9fa134
|
| 3 |
+
size 31531315
|
text_encoder.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a75c36db696c17bf2e3905c0e9e00bdb58a87c6eb5e0cbe2015b33bd1bf3bd5e
|
| 3 |
+
size 22432460
|
text_utils.py
ADDED
|
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# IPA Phonemizer: https://github.com/bootphon/phonemizer
|
| 2 |
+
|
| 3 |
+
_pad = "$"
|
| 4 |
+
_punctuation = ';:,.!?¡¿—…"«»“” '
|
| 5 |
+
_letters = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz'
|
| 6 |
+
_letters_ipa = "ɑɐɒæɓʙβɔɕçɗɖðʤəɘɚɛɜɝɞɟʄɡɠɢʛɦɧħɥʜɨɪʝɭɬɫɮʟɱɯɰŋɳɲɴøɵɸθœɶʘɹɺɾɻʀʁɽʂʃʈʧʉʊʋⱱʌɣɤʍχʎʏʑʐʒʔʡʕʢǀǁǂǃˈˌːˑʼʴʰʱʲʷˠˤ˞↓↑→↗↘'̩'ᵻ"
|
| 7 |
+
|
| 8 |
+
# Export all symbols:
|
| 9 |
+
symbols = [_pad] + list(_punctuation) + list(_letters) + list(_letters_ipa)
|
| 10 |
+
|
| 11 |
+
dicts = {}
|
| 12 |
+
for i in range(len((symbols))):
|
| 13 |
+
dicts[symbols[i]] = i
|
| 14 |
+
|
| 15 |
+
class TextCleaner:
|
| 16 |
+
def __init__(self, dummy=None):
|
| 17 |
+
self.word_index_dictionary = dicts
|
| 18 |
+
print(len(dicts))
|
| 19 |
+
def __call__(self, text):
|
| 20 |
+
indexes = []
|
| 21 |
+
for char in text:
|
| 22 |
+
try:
|
| 23 |
+
indexes.append(self.word_index_dictionary[char])
|
| 24 |
+
except KeyError:
|
| 25 |
+
print(text)
|
| 26 |
+
return indexes
|
training_metrics.png
ADDED
|
utils.py
ADDED
|
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from monotonic_align import maximum_path
|
| 2 |
+
from monotonic_align import mask_from_lens
|
| 3 |
+
from monotonic_align.core import maximum_path_c
|
| 4 |
+
import numpy as np
|
| 5 |
+
import torch
|
| 6 |
+
import copy
|
| 7 |
+
from torch import nn
|
| 8 |
+
import torch.nn.functional as F
|
| 9 |
+
import torchaudio
|
| 10 |
+
import librosa
|
| 11 |
+
import matplotlib.pyplot as plt
|
| 12 |
+
from munch import Munch
|
| 13 |
+
|
| 14 |
+
def maximum_path(neg_cent, mask):
|
| 15 |
+
""" Cython optimized version.
|
| 16 |
+
neg_cent: [b, t_t, t_s]
|
| 17 |
+
mask: [b, t_t, t_s]
|
| 18 |
+
"""
|
| 19 |
+
device = neg_cent.device
|
| 20 |
+
dtype = neg_cent.dtype
|
| 21 |
+
neg_cent = np.ascontiguousarray(neg_cent.data.cpu().numpy().astype(np.float32))
|
| 22 |
+
path = np.ascontiguousarray(np.zeros(neg_cent.shape, dtype=np.int32))
|
| 23 |
+
|
| 24 |
+
t_t_max = np.ascontiguousarray(mask.sum(1)[:, 0].data.cpu().numpy().astype(np.int32))
|
| 25 |
+
t_s_max = np.ascontiguousarray(mask.sum(2)[:, 0].data.cpu().numpy().astype(np.int32))
|
| 26 |
+
maximum_path_c(path, neg_cent, t_t_max, t_s_max)
|
| 27 |
+
return torch.from_numpy(path).to(device=device, dtype=dtype)
|
| 28 |
+
|
| 29 |
+
def get_data_path_list(train_path=None, val_path=None):
|
| 30 |
+
if train_path is None:
|
| 31 |
+
train_path = "Data/train_list.txt"
|
| 32 |
+
if val_path is None:
|
| 33 |
+
val_path = "Data/val_list.txt"
|
| 34 |
+
|
| 35 |
+
with open(train_path, 'r', encoding='utf-8', errors='ignore') as f:
|
| 36 |
+
train_list = f.readlines()
|
| 37 |
+
with open(val_path, 'r', encoding='utf-8', errors='ignore') as f:
|
| 38 |
+
val_list = f.readlines()
|
| 39 |
+
|
| 40 |
+
return train_list, val_list
|
| 41 |
+
|
| 42 |
+
def length_to_mask(lengths):
|
| 43 |
+
mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
|
| 44 |
+
mask = torch.gt(mask+1, lengths.unsqueeze(1))
|
| 45 |
+
return mask
|
| 46 |
+
|
| 47 |
+
# for norm consistency loss
|
| 48 |
+
def log_norm(x, mean=-4, std=4, dim=2):
|
| 49 |
+
"""
|
| 50 |
+
normalized log mel -> mel -> norm -> log(norm)
|
| 51 |
+
"""
|
| 52 |
+
x = torch.log(torch.exp(x * std + mean).norm(dim=dim))
|
| 53 |
+
return x
|
| 54 |
+
|
| 55 |
+
def get_image(arrs):
|
| 56 |
+
plt.switch_backend('agg')
|
| 57 |
+
fig = plt.figure()
|
| 58 |
+
ax = plt.gca()
|
| 59 |
+
ax.imshow(arrs)
|
| 60 |
+
|
| 61 |
+
return fig
|
| 62 |
+
|
| 63 |
+
def recursive_munch(d):
|
| 64 |
+
if isinstance(d, dict):
|
| 65 |
+
return Munch((k, recursive_munch(v)) for k, v in d.items())
|
| 66 |
+
elif isinstance(d, list):
|
| 67 |
+
return [recursive_munch(v) for v in d]
|
| 68 |
+
else:
|
| 69 |
+
return d
|
| 70 |
+
|
| 71 |
+
def log_print(message, logger):
|
| 72 |
+
logger.info(message)
|
| 73 |
+
print(message)
|
| 74 |
+
|
wd.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b0064fbf02b28a73a1dbae037c63077bc38c661362cfd08402b301606f153dde
|
| 3 |
+
size 4698570
|