Upload model
Browse files- cls_token.py +55 -0
- enable_cpe_support.py +67 -0
- eradio_model.py +1340 -0
- hf_model.py +61 -3
- input_conditioner.py +49 -0
- radio_model.py +100 -0
- vit_patch_generator.py +299 -0
cls_token.py
ADDED
|
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
| 4 |
+
# and proprietary rights in and to this software, related documentation
|
| 5 |
+
# and any modifications thereto. Any use, reproduction, disclosure or
|
| 6 |
+
# distribution of this software and related documentation without an express
|
| 7 |
+
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
| 8 |
+
|
| 9 |
+
import torch
|
| 10 |
+
from torch import nn
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
class ClsToken(nn.Module):
|
| 14 |
+
def __init__(self, ndim: int,
|
| 15 |
+
num_tokens: int = 1,
|
| 16 |
+
enabled: bool = True,
|
| 17 |
+
register_multiple: int = 0,
|
| 18 |
+
):
|
| 19 |
+
super().__init__()
|
| 20 |
+
|
| 21 |
+
self.ndim = ndim
|
| 22 |
+
self.enabled = enabled
|
| 23 |
+
self.num_registers = 0
|
| 24 |
+
self.num_tokens = num_tokens
|
| 25 |
+
if enabled:
|
| 26 |
+
if register_multiple > 0:
|
| 27 |
+
self.num_registers = register_multiple - (num_tokens % register_multiple)
|
| 28 |
+
|
| 29 |
+
scale = ndim ** -0.5
|
| 30 |
+
self.token = nn.Parameter(torch.randn(num_tokens + self.num_registers, ndim) * scale)
|
| 31 |
+
else:
|
| 32 |
+
self.token = None
|
| 33 |
+
|
| 34 |
+
self.num_patches = self.num_tokens + self.num_registers
|
| 35 |
+
|
| 36 |
+
def disable(self):
|
| 37 |
+
self.token = None
|
| 38 |
+
self.enabled = False
|
| 39 |
+
|
| 40 |
+
def forward(self, x: torch.Tensor):
|
| 41 |
+
if self.token is None:
|
| 42 |
+
return x
|
| 43 |
+
|
| 44 |
+
token = self.token.unsqueeze(0).expand(x.shape[0], -1, -1)
|
| 45 |
+
x = torch.cat([
|
| 46 |
+
token,
|
| 47 |
+
x,
|
| 48 |
+
], dim=1)
|
| 49 |
+
|
| 50 |
+
return x
|
| 51 |
+
|
| 52 |
+
def no_weight_decay(self):
|
| 53 |
+
return [
|
| 54 |
+
'token',
|
| 55 |
+
]
|
enable_cpe_support.py
ADDED
|
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
| 4 |
+
# and proprietary rights in and to this software, related documentation
|
| 5 |
+
# and any modifications thereto. Any use, reproduction, disclosure or
|
| 6 |
+
# distribution of this software and related documentation without an express
|
| 7 |
+
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
| 8 |
+
|
| 9 |
+
from typing import Union, Tuple
|
| 10 |
+
from types import MethodType
|
| 11 |
+
|
| 12 |
+
import torch
|
| 13 |
+
from torch import nn
|
| 14 |
+
|
| 15 |
+
from timm.models import VisionTransformer, checkpoint_seq
|
| 16 |
+
|
| 17 |
+
from .vit_patch_generator import ViTPatchGenerator
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
def _forward_cpe(self: VisionTransformer, x: torch.Tensor) -> torch.Tensor:
|
| 21 |
+
x = self.patch_generator(x)
|
| 22 |
+
if self.grad_checkpointing and not torch.jit.is_scripting():
|
| 23 |
+
x = checkpoint_seq(self.blocks, x)
|
| 24 |
+
else:
|
| 25 |
+
x = self.blocks(x)
|
| 26 |
+
x = self.norm(x)
|
| 27 |
+
return x
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
def enable_cpe(model: nn.Module,
|
| 31 |
+
max_img_size: Union[int, Tuple[int, int]] = 1024,
|
| 32 |
+
num_cls_tokens: int = 1,
|
| 33 |
+
pos_dropout: float = 0.1,
|
| 34 |
+
register_multiple: int = 0,
|
| 35 |
+
):
|
| 36 |
+
if not isinstance(model, VisionTransformer):
|
| 37 |
+
raise ValueError("CPE only support for VisionTransformer models!")
|
| 38 |
+
|
| 39 |
+
patch_size = model.patch_embed.patch_size[0]
|
| 40 |
+
embed_dim = model.embed_dim
|
| 41 |
+
input_dims = model.patch_embed.img_size
|
| 42 |
+
normalize_patches = not isinstance(model.patch_embed.norm, nn.Identity)
|
| 43 |
+
cls_token = model.cls_token is not None
|
| 44 |
+
|
| 45 |
+
max_img_size = int(round(max_img_size / patch_size) * patch_size)
|
| 46 |
+
|
| 47 |
+
patch_generator = ViTPatchGenerator(
|
| 48 |
+
patch_size=patch_size,
|
| 49 |
+
embed_dim=embed_dim,
|
| 50 |
+
input_dims=input_dims,
|
| 51 |
+
normalize_patches=normalize_patches,
|
| 52 |
+
cls_token=cls_token,
|
| 53 |
+
max_input_dims=max_img_size,
|
| 54 |
+
pos_dropout=pos_dropout,
|
| 55 |
+
num_cls_tokens=num_cls_tokens,
|
| 56 |
+
register_multiple=register_multiple,
|
| 57 |
+
)
|
| 58 |
+
|
| 59 |
+
model.patch_generator = patch_generator
|
| 60 |
+
model.patch_embed = None
|
| 61 |
+
model.cls_token = None
|
| 62 |
+
model.pos_embed = None
|
| 63 |
+
model.pos_drop = None
|
| 64 |
+
model.num_cls_tokens = num_cls_tokens
|
| 65 |
+
model.num_registers = patch_generator.num_registers
|
| 66 |
+
|
| 67 |
+
model.forward_features = MethodType(_forward_cpe, model)
|
eradio_model.py
ADDED
|
@@ -0,0 +1,1340 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
|
| 3 |
+
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved.
|
| 4 |
+
#
|
| 5 |
+
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
| 6 |
+
# and proprietary rights in and to this software, related documentation
|
| 7 |
+
# and any modifications thereto. Any use, reproduction, disclosure or
|
| 8 |
+
# distribution of this software and related documentation without an express
|
| 9 |
+
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
| 10 |
+
|
| 11 |
+
# Created by Pavlo Molchanov, LPR - DL Efficiency Research team
|
| 12 |
+
# based on Fastervit1 from LPR
|
| 13 |
+
|
| 14 |
+
import torch
|
| 15 |
+
import torch.nn as nn
|
| 16 |
+
from timm.models.registry import register_model
|
| 17 |
+
|
| 18 |
+
from timm.models.layers import trunc_normal_, DropPath, LayerNorm2d
|
| 19 |
+
import numpy as np
|
| 20 |
+
import torch.nn.functional as F
|
| 21 |
+
from .block import C2f
|
| 22 |
+
TRT = False # should help for TRT
|
| 23 |
+
|
| 24 |
+
import pickle
|
| 25 |
+
global bias_indx
|
| 26 |
+
bias_indx = -1
|
| 27 |
+
DEBUG = False
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
def pixel_unshuffle(data, factor=2):
|
| 32 |
+
# performs nn.PixelShuffle(factor) in reverse, torch has some bug for ONNX and TRT, so doing it manually
|
| 33 |
+
B, C, H, W = data.shape
|
| 34 |
+
return data.view(B, C, factor, H//factor, factor, W//factor).permute(0,1,2,4,3,5).reshape(B, -1, H//factor, W//factor)
|
| 35 |
+
|
| 36 |
+
class SwiGLU(nn.Module):
|
| 37 |
+
# should be more advanced, but doesnt improve results so far
|
| 38 |
+
def forward(self, x):
|
| 39 |
+
x, gate = x.chunk(2, dim=-1)
|
| 40 |
+
return F.silu(gate) * x
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
def window_partition(x, window_size):
|
| 44 |
+
"""
|
| 45 |
+
Args:
|
| 46 |
+
x: (B, C, H, W)
|
| 47 |
+
window_size: window size
|
| 48 |
+
Returns:
|
| 49 |
+
windows - local window features (num_windows*B, window_size*window_size, C)
|
| 50 |
+
(Hp, Wp) - the size of the padded image
|
| 51 |
+
"""
|
| 52 |
+
B, C, H, W = x.shape
|
| 53 |
+
|
| 54 |
+
if window_size == 0 or (window_size==H and window_size==W):
|
| 55 |
+
windows = x.flatten(2).transpose(1, 2)
|
| 56 |
+
Hp, Wp = H, W
|
| 57 |
+
else:
|
| 58 |
+
pad_h = (window_size - H % window_size) % window_size
|
| 59 |
+
pad_w = (window_size - W % window_size) % window_size
|
| 60 |
+
if pad_h > 0 or pad_w > 0:
|
| 61 |
+
x = F.pad(x, (0, pad_w, 0, pad_h, 0, 0, 0, 0))
|
| 62 |
+
Hp, Wp = H + pad_h, W + pad_w
|
| 63 |
+
|
| 64 |
+
x = x.view(B, C, Hp // window_size, window_size, Wp // window_size, window_size)
|
| 65 |
+
windows = x.permute(0, 2, 4, 3, 5, 1).reshape(-1, window_size*window_size, C)
|
| 66 |
+
|
| 67 |
+
return windows, (Hp, Wp)
|
| 68 |
+
|
| 69 |
+
class Conv2d_BN(nn.Module):
|
| 70 |
+
'''
|
| 71 |
+
Conv2d + BN layer with folding capability to speed up inference
|
| 72 |
+
'''
|
| 73 |
+
def __init__(self, a, b, kernel_size=1, stride=1, padding=0, dilation=1, groups=1, bn_weight_init=1, bias=False):
|
| 74 |
+
super().__init__()
|
| 75 |
+
self.conv = torch.nn.Conv2d(a, b, kernel_size, stride, padding, dilation, groups, bias=False)
|
| 76 |
+
if 1:
|
| 77 |
+
self.bn = torch.nn.BatchNorm2d(b)
|
| 78 |
+
torch.nn.init.constant_(self.bn.weight, bn_weight_init)
|
| 79 |
+
torch.nn.init.constant_(self.bn.bias, 0)
|
| 80 |
+
|
| 81 |
+
def forward(self,x):
|
| 82 |
+
x = self.conv(x)
|
| 83 |
+
x = self.bn(x)
|
| 84 |
+
return x
|
| 85 |
+
|
| 86 |
+
@torch.no_grad()
|
| 87 |
+
def switch_to_deploy(self):
|
| 88 |
+
|
| 89 |
+
# return 1
|
| 90 |
+
if not isinstance(self.bn, nn.Identity):
|
| 91 |
+
c, bn = self.conv, self.bn
|
| 92 |
+
w = bn.weight / (bn.running_var + bn.eps) ** 0.5
|
| 93 |
+
w = c.weight * w[:, None, None, None]
|
| 94 |
+
b = bn.bias - bn.running_mean * bn.weight / \
|
| 95 |
+
(bn.running_var + bn.eps)**0.5
|
| 96 |
+
self.conv.weight.data.copy_(w)
|
| 97 |
+
self.conv.bias = nn.Parameter(b)
|
| 98 |
+
self.bn = nn.Identity()
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
def window_reverse(windows, window_size, H, W, pad_hw):
|
| 103 |
+
"""
|
| 104 |
+
Args:
|
| 105 |
+
windows: local window features (num_windows*B, window_size, window_size, C)
|
| 106 |
+
window_size: Window size
|
| 107 |
+
H: Height of image
|
| 108 |
+
W: Width of image
|
| 109 |
+
pad_w - a tuple of image passing used in windowing step
|
| 110 |
+
Returns:
|
| 111 |
+
x: (B, C, H, W)
|
| 112 |
+
|
| 113 |
+
"""
|
| 114 |
+
# print(f"window_reverse, windows.shape {windows.shape}")
|
| 115 |
+
Hp, Wp = pad_hw
|
| 116 |
+
if window_size == 0 or (window_size==H and window_size==W):
|
| 117 |
+
B = int(windows.shape[0] / (Hp * Wp / window_size / window_size))
|
| 118 |
+
x = windows.transpose(1, 2).view(B, -1, H, W)
|
| 119 |
+
else:
|
| 120 |
+
B = int(windows.shape[0] / (Hp * Wp / window_size / window_size))
|
| 121 |
+
x = windows.view(B, Hp // window_size, Wp // window_size, window_size, window_size, -1)
|
| 122 |
+
x = x.permute(0, 5, 1, 3, 2, 4).reshape(B,windows.shape[2], Hp, Wp)
|
| 123 |
+
|
| 124 |
+
if Hp > H or Wp > W:
|
| 125 |
+
x = x[:, :, :H, :W, ].contiguous()
|
| 126 |
+
|
| 127 |
+
return x
|
| 128 |
+
|
| 129 |
+
|
| 130 |
+
|
| 131 |
+
class PosEmbMLPSwinv2D(nn.Module):
|
| 132 |
+
def __init__(self, window_size, pretrained_window_size, num_heads, seq_length, no_log=False):
|
| 133 |
+
super().__init__()
|
| 134 |
+
self.window_size = window_size
|
| 135 |
+
self.num_heads = num_heads
|
| 136 |
+
# mlp to generate continuous relative position bias
|
| 137 |
+
self.cpb_mlp = nn.Sequential(nn.Linear(2, 512, bias=True),
|
| 138 |
+
nn.ReLU(inplace=True),
|
| 139 |
+
nn.Linear(512, num_heads, bias=False))
|
| 140 |
+
|
| 141 |
+
# get relative_coords_table
|
| 142 |
+
relative_coords_h = torch.arange(-(self.window_size[0] - 1), self.window_size[0], dtype=torch.float32)
|
| 143 |
+
relative_coords_w = torch.arange(-(self.window_size[1] - 1), self.window_size[1], dtype=torch.float32)
|
| 144 |
+
relative_coords_table = torch.stack(
|
| 145 |
+
torch.meshgrid([relative_coords_h,
|
| 146 |
+
relative_coords_w])).permute(1, 2, 0).contiguous().unsqueeze(0) # 1, 2*Wh-1, 2*Ww-1, 2
|
| 147 |
+
if pretrained_window_size[0] > 0:
|
| 148 |
+
relative_coords_table[:, :, :, 0] /= (pretrained_window_size[0] - 1)
|
| 149 |
+
relative_coords_table[:, :, :, 1] /= (pretrained_window_size[1] - 1)
|
| 150 |
+
else:
|
| 151 |
+
relative_coords_table[:, :, :, 0] /= (self.window_size[0] - 1)
|
| 152 |
+
relative_coords_table[:, :, :, 1] /= (self.window_size[1] - 1)
|
| 153 |
+
|
| 154 |
+
if not no_log:
|
| 155 |
+
relative_coords_table *= 8 # normalize to -8, 8
|
| 156 |
+
relative_coords_table = torch.sign(relative_coords_table) * torch.log2(
|
| 157 |
+
torch.abs(relative_coords_table) + 1.0) / np.log2(8)
|
| 158 |
+
|
| 159 |
+
self.register_buffer("relative_coords_table", relative_coords_table)
|
| 160 |
+
|
| 161 |
+
# get pair-wise relative position index for each token inside the window
|
| 162 |
+
coords_h = torch.arange(self.window_size[0])
|
| 163 |
+
coords_w = torch.arange(self.window_size[1])
|
| 164 |
+
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
|
| 165 |
+
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
|
| 166 |
+
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
|
| 167 |
+
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
|
| 168 |
+
relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0
|
| 169 |
+
relative_coords[:, :, 1] += self.window_size[1] - 1
|
| 170 |
+
relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
|
| 171 |
+
relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
|
| 172 |
+
self.register_buffer("relative_position_index", relative_position_index)
|
| 173 |
+
|
| 174 |
+
self.grid_exists = False
|
| 175 |
+
|
| 176 |
+
self.deploy = False
|
| 177 |
+
|
| 178 |
+
relative_bias = torch.zeros(1, num_heads, seq_length, seq_length)
|
| 179 |
+
self.seq_length = seq_length
|
| 180 |
+
self.register_buffer("relative_bias", relative_bias) #for EMA
|
| 181 |
+
|
| 182 |
+
def switch_to_deploy(self):
|
| 183 |
+
self.deploy = True
|
| 184 |
+
self.grid_exists = True
|
| 185 |
+
|
| 186 |
+
def forward(self, input_tensor):
|
| 187 |
+
# for efficiency, we want this forward to be folded into a single operation (sum)
|
| 188 |
+
# if resolution stays the same, then we dont need to recompute MLP layers
|
| 189 |
+
#
|
| 190 |
+
# to dynamically adjust patch size over the step
|
| 191 |
+
# if not (input_tensor.shape[1:] == self.relative_bias.shape[1:]):
|
| 192 |
+
# self.grid_exists = False
|
| 193 |
+
|
| 194 |
+
if self.training: self.grid_exists = False
|
| 195 |
+
|
| 196 |
+
if self.deploy and self.grid_exists:
|
| 197 |
+
input_tensor += self.relative_bias
|
| 198 |
+
return input_tensor
|
| 199 |
+
|
| 200 |
+
if not self.grid_exists:
|
| 201 |
+
self.grid_exists = True
|
| 202 |
+
|
| 203 |
+
relative_position_bias_table = self.cpb_mlp(self.relative_coords_table).view(-1, self.num_heads)
|
| 204 |
+
relative_position_bias = relative_position_bias_table[self.relative_position_index.view(-1)].view(
|
| 205 |
+
self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1],
|
| 206 |
+
-1) # Wh*Ww,Wh*Ww,nH
|
| 207 |
+
|
| 208 |
+
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
|
| 209 |
+
relative_position_bias = 16 * torch.sigmoid(relative_position_bias)
|
| 210 |
+
|
| 211 |
+
self.relative_bias = relative_position_bias.unsqueeze(0)
|
| 212 |
+
|
| 213 |
+
input_tensor += self.relative_bias
|
| 214 |
+
return input_tensor
|
| 215 |
+
|
| 216 |
+
|
| 217 |
+
|
| 218 |
+
class GRAAttentionBlock(nn.Module):
|
| 219 |
+
def __init__(self, window_size, dim_in, dim_out,
|
| 220 |
+
num_heads, drop_path=0., qk_scale=None, qkv_bias=False,
|
| 221 |
+
norm_layer=nn.LayerNorm, layer_scale=None,
|
| 222 |
+
use_swiglu=True,
|
| 223 |
+
subsample_ratio=1, dim_ratio=1, conv_base=False,
|
| 224 |
+
do_windowing=True, multi_query=False) -> None:
|
| 225 |
+
super().__init__()
|
| 226 |
+
|
| 227 |
+
dim = dim_in
|
| 228 |
+
# conv_base = True
|
| 229 |
+
SHUFFLE = True
|
| 230 |
+
SHUFFLE = False
|
| 231 |
+
self.do_windowing = do_windowing
|
| 232 |
+
|
| 233 |
+
if do_windowing:
|
| 234 |
+
if SHUFFLE:
|
| 235 |
+
self.downsample_op = torch.nn.PixelUnshuffle(subsample_ratio) if subsample_ratio>1 else torch.nn.Identity()
|
| 236 |
+
self.downsample_mixer = nn.Conv2d(dim_in * (subsample_ratio * subsample_ratio), dim_in * (dim_ratio), kernel_size=1, stride=1, padding=0, bias=False) if dim*dim_ratio != dim * subsample_ratio * subsample_ratio else torch.nn.Identity()
|
| 237 |
+
else:
|
| 238 |
+
if conv_base:
|
| 239 |
+
self.downsample_op = nn.Conv2d(dim_in, dim_out, kernel_size=subsample_ratio, stride=subsample_ratio) if subsample_ratio > 1 else nn.Identity()
|
| 240 |
+
self.downsample_mixer = nn.Identity()
|
| 241 |
+
else:
|
| 242 |
+
self.downsample_op = nn.AvgPool2d(kernel_size=subsample_ratio, stride=subsample_ratio) if subsample_ratio > 1 else nn.Identity()
|
| 243 |
+
self.downsample_mixer = Conv2d_BN(dim_in, dim_out, kernel_size=1, stride=1) if subsample_ratio > 1 else nn.Identity()
|
| 244 |
+
|
| 245 |
+
|
| 246 |
+
if do_windowing:
|
| 247 |
+
if SHUFFLE:
|
| 248 |
+
self.upsample_mixer =nn.Conv2d(dim_in * dim_ratio, dim_in * (subsample_ratio * subsample_ratio), kernel_size=1, stride=1, padding=0, bias=False) if dim*dim_ratio != dim * subsample_ratio * subsample_ratio else torch.nn.Identity()
|
| 249 |
+
self.upsample_op = torch.nn.PixelShuffle(subsample_ratio) if subsample_ratio>1 else torch.nn.Identity()
|
| 250 |
+
else:
|
| 251 |
+
if conv_base:
|
| 252 |
+
self.upsample_mixer = nn.Identity()
|
| 253 |
+
self.upsample_op = nn.ConvTranspose2d(dim_in, dim_out, kernel_size=subsample_ratio, stride=subsample_ratio) if subsample_ratio > 1 else nn.Identity()
|
| 254 |
+
else:
|
| 255 |
+
self.upsample_mixer = nn.Upsample(scale_factor=subsample_ratio, mode='nearest') if subsample_ratio > 1 else nn.Identity()
|
| 256 |
+
self.upsample_op = Conv2d_BN(dim_in, dim_out, kernel_size=1, stride=1, padding=0, bias=False) if subsample_ratio > 1 else nn.Identity()
|
| 257 |
+
|
| 258 |
+
self.window_size = window_size
|
| 259 |
+
|
| 260 |
+
self.norm1 = norm_layer(dim_in)
|
| 261 |
+
if DEBUG:
|
| 262 |
+
print(f"GRAAttentionBlock: input_resolution: , window_size: {window_size}, dim_in: {dim_in}, dim_out: {dim_out}, num_heads: {num_heads}, drop_path: {drop_path}, qk_scale: {qk_scale}, qkv_bias: {qkv_bias}, layer_scale: {layer_scale}")
|
| 263 |
+
|
| 264 |
+
|
| 265 |
+
self.attn = WindowAttention(
|
| 266 |
+
dim_in,
|
| 267 |
+
num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
|
| 268 |
+
resolution=window_size,
|
| 269 |
+
seq_length=window_size**2, dim_out=dim_in, multi_query=multi_query)
|
| 270 |
+
if DEBUG:
|
| 271 |
+
print(f"Attention: dim_in: {dim_in}, num_heads: {num_heads}, qkv_bias: {qkv_bias}, qk_scale: {qk_scale}, resolution: {window_size}, seq_length: {window_size**2}, dim_out: {dim_in}")
|
| 272 |
+
print(f"drop_path: {drop_path}, layer_scale: {layer_scale}")
|
| 273 |
+
|
| 274 |
+
self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
| 275 |
+
|
| 276 |
+
use_layer_scale = layer_scale is not None and type(layer_scale) in [int, float]
|
| 277 |
+
self.gamma1 = nn.Parameter(layer_scale * torch.ones(dim_in)) if use_layer_scale else 1
|
| 278 |
+
|
| 279 |
+
### mlp layer
|
| 280 |
+
mlp_ratio = 4
|
| 281 |
+
self.norm2 = norm_layer(dim_in)
|
| 282 |
+
mlp_hidden_dim = int(dim_in * mlp_ratio)
|
| 283 |
+
|
| 284 |
+
activation = nn.GELU if not use_swiglu else SwiGLU
|
| 285 |
+
mlp_hidden_dim = int((4 * dim_in * 1 / 2) / 64) * 64 if use_swiglu else mlp_hidden_dim
|
| 286 |
+
|
| 287 |
+
self.mlp = Mlp(in_features=dim_in, hidden_features=mlp_hidden_dim, act_layer=activation, use_swiglu=use_swiglu)
|
| 288 |
+
|
| 289 |
+
self.gamma2 = nn.Parameter(layer_scale * torch.ones(dim_in)) if layer_scale else 1
|
| 290 |
+
self.drop_path2=DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
| 291 |
+
if DEBUG:
|
| 292 |
+
print(f"MLP layer: dim_in: {dim_in}, dim_out: {dim_in}, mlp_hidden_dim: {mlp_hidden_dim}")
|
| 293 |
+
print(f"drop_path: {drop_path}, layer_scale: {layer_scale}")
|
| 294 |
+
|
| 295 |
+
|
| 296 |
+
def forward(self, x):
|
| 297 |
+
skip_connection = x
|
| 298 |
+
|
| 299 |
+
if self.do_windowing:
|
| 300 |
+
# performing windowing if required
|
| 301 |
+
x = self.downsample_op(x)
|
| 302 |
+
x = self.downsample_mixer(x)
|
| 303 |
+
|
| 304 |
+
if self.window_size>0:
|
| 305 |
+
H, W = x.shape[2], x.shape[3]
|
| 306 |
+
|
| 307 |
+
x, pad_hw = window_partition(x, self.window_size)
|
| 308 |
+
|
| 309 |
+
# window attention
|
| 310 |
+
x = x + self.drop_path1(self.gamma1*self.attn(self.norm1(x)))
|
| 311 |
+
# mlp layer
|
| 312 |
+
x = x + self.drop_path2(self.gamma2*self.mlp(self.norm2(x)))
|
| 313 |
+
|
| 314 |
+
if self.do_windowing:
|
| 315 |
+
if self.window_size > 0:
|
| 316 |
+
x = window_reverse(x, self.window_size, H, W, pad_hw)
|
| 317 |
+
|
| 318 |
+
x = self.upsample_mixer(x)
|
| 319 |
+
x = self.upsample_op(x)
|
| 320 |
+
|
| 321 |
+
|
| 322 |
+
if x.shape[2] != skip_connection.shape[2] or x.shape[3] != skip_connection.shape[3]:
|
| 323 |
+
x = torch.nn.functional.pad(x, ( 0, -x.shape[3] + skip_connection.shape[3], 0, -x.shape[2] + skip_connection.shape[2]))
|
| 324 |
+
# need to add skip connection because downsampling and upsampling will break residual connection
|
| 325 |
+
# 0.5 is needed to make sure that the skip connection is not too strong
|
| 326 |
+
# in case of no downsample / upsample we can show that 0.5 compensates for the residual connection
|
| 327 |
+
x = 0.5 * x + 0.5 * skip_connection
|
| 328 |
+
|
| 329 |
+
return x
|
| 330 |
+
|
| 331 |
+
|
| 332 |
+
|
| 333 |
+
|
| 334 |
+
class MultiResolutionAttention(nn.Module):
|
| 335 |
+
"""
|
| 336 |
+
MultiResolutionAttention (MRA) module
|
| 337 |
+
The idea is to use multiple attention blocks with different resolution
|
| 338 |
+
Feature maps are downsampled / upsampled for each attention block on different blocks
|
| 339 |
+
Every attention block supports
|
| 340 |
+
|
| 341 |
+
"""
|
| 342 |
+
|
| 343 |
+
def __init__(self, window_size, sr_ratio,
|
| 344 |
+
dim, dim_ratio, num_heads,
|
| 345 |
+
do_windowing=True,
|
| 346 |
+
layer_scale=1e-5, norm_layer=nn.LayerNorm,
|
| 347 |
+
drop_path = 0, qkv_bias=False, qk_scale=1.0,
|
| 348 |
+
use_swiglu=True, multi_query=False, conv_base=False) -> None:
|
| 349 |
+
"""
|
| 350 |
+
Args:
|
| 351 |
+
input_resolution: input image resolution
|
| 352 |
+
window_size: window size
|
| 353 |
+
compression_ratio: compression ratio
|
| 354 |
+
max_depth: maximum depth of the GRA module
|
| 355 |
+
"""
|
| 356 |
+
super().__init__()
|
| 357 |
+
|
| 358 |
+
depth = len(sr_ratio)
|
| 359 |
+
|
| 360 |
+
|
| 361 |
+
self.attention_blocks = nn.ModuleList()
|
| 362 |
+
|
| 363 |
+
|
| 364 |
+
for i in range(depth):
|
| 365 |
+
subsample_ratio = sr_ratio[i]
|
| 366 |
+
if len(window_size) > i:
|
| 367 |
+
window_size_local = window_size[i]
|
| 368 |
+
else:
|
| 369 |
+
window_size_local = window_size[0]
|
| 370 |
+
|
| 371 |
+
self.attention_blocks.append(GRAAttentionBlock(window_size=window_size_local,
|
| 372 |
+
dim_in=dim, dim_out=dim, num_heads=num_heads,
|
| 373 |
+
qkv_bias=qkv_bias, qk_scale=qk_scale, norm_layer=norm_layer,
|
| 374 |
+
layer_scale=layer_scale, drop_path=drop_path,
|
| 375 |
+
use_swiglu=use_swiglu, subsample_ratio=subsample_ratio, dim_ratio=dim_ratio,
|
| 376 |
+
do_windowing=do_windowing, multi_query=multi_query, conv_base=conv_base),
|
| 377 |
+
)
|
| 378 |
+
|
| 379 |
+
|
| 380 |
+
|
| 381 |
+
def forward(self, x):
|
| 382 |
+
|
| 383 |
+
for attention_block in self.attention_blocks:
|
| 384 |
+
x = attention_block(x)
|
| 385 |
+
|
| 386 |
+
return x
|
| 387 |
+
|
| 388 |
+
|
| 389 |
+
|
| 390 |
+
class Mlp(nn.Module):
|
| 391 |
+
"""
|
| 392 |
+
Multi-Layer Perceptron (MLP) block
|
| 393 |
+
"""
|
| 394 |
+
|
| 395 |
+
def __init__(self,
|
| 396 |
+
in_features,
|
| 397 |
+
hidden_features=None,
|
| 398 |
+
out_features=None,
|
| 399 |
+
act_layer=nn.GELU,
|
| 400 |
+
use_swiglu=True,
|
| 401 |
+
drop=0.):
|
| 402 |
+
"""
|
| 403 |
+
Args:
|
| 404 |
+
in_features: input features dimension.
|
| 405 |
+
hidden_features: hidden features dimension.
|
| 406 |
+
out_features: output features dimension.
|
| 407 |
+
act_layer: activation function.
|
| 408 |
+
drop: dropout rate.
|
| 409 |
+
"""
|
| 410 |
+
|
| 411 |
+
super().__init__()
|
| 412 |
+
out_features = out_features or in_features
|
| 413 |
+
hidden_features = hidden_features or in_features
|
| 414 |
+
self.fc1 = nn.Linear(in_features, hidden_features * (2 if use_swiglu else 1), bias=False)
|
| 415 |
+
self.act = act_layer()
|
| 416 |
+
self.fc2 = nn.Linear(hidden_features, out_features, bias=False)
|
| 417 |
+
# self.drop = GaussianDropout(drop)
|
| 418 |
+
|
| 419 |
+
def forward(self, x):
|
| 420 |
+
x_size = x.size()
|
| 421 |
+
x = x.view(-1, x_size[-1])
|
| 422 |
+
x = self.fc1(x)
|
| 423 |
+
x = self.act(x)
|
| 424 |
+
# x = self.drop(x)
|
| 425 |
+
x = self.fc2(x)
|
| 426 |
+
# x = self.drop(x)
|
| 427 |
+
x = x.view(x_size)
|
| 428 |
+
return x
|
| 429 |
+
|
| 430 |
+
class Downsample(nn.Module):
|
| 431 |
+
"""
|
| 432 |
+
Down-sampling block
|
| 433 |
+
|
| 434 |
+
Pixel Unshuffle is used for down-sampling, works great accuracy - wise but takes 10% more TRT time
|
| 435 |
+
"""
|
| 436 |
+
|
| 437 |
+
def __init__(self,
|
| 438 |
+
dim,
|
| 439 |
+
shuffle = False,
|
| 440 |
+
):
|
| 441 |
+
"""
|
| 442 |
+
Args:
|
| 443 |
+
dim: feature size dimension.
|
| 444 |
+
shuffle: idea with
|
| 445 |
+
keep_dim: bool argument for maintaining the resolution.
|
| 446 |
+
"""
|
| 447 |
+
|
| 448 |
+
super().__init__()
|
| 449 |
+
dim_out = 2 * dim
|
| 450 |
+
|
| 451 |
+
if shuffle:
|
| 452 |
+
self.norm = lambda x: pixel_unshuffle(x, factor=2)
|
| 453 |
+
self.reduction = Conv2d_BN(dim*4, dim_out, 1, 1, 0, bias=False)
|
| 454 |
+
else:
|
| 455 |
+
#removed layer norm for better, in this formulation we are getting 10% better speed
|
| 456 |
+
# LayerNorm for high resolution inputs will be a pain as it pools over the entire spatial dimension
|
| 457 |
+
self.norm = nn.Identity()
|
| 458 |
+
self.reduction = Conv2d_BN(dim, dim_out, 3, 2, 1, bias=False)
|
| 459 |
+
|
| 460 |
+
|
| 461 |
+
def forward(self, x):
|
| 462 |
+
x = self.norm(x)
|
| 463 |
+
x = self.reduction(x)
|
| 464 |
+
return x
|
| 465 |
+
|
| 466 |
+
|
| 467 |
+
class PatchEmbed(nn.Module):
|
| 468 |
+
"""
|
| 469 |
+
Patch embedding block
|
| 470 |
+
"""
|
| 471 |
+
|
| 472 |
+
def __init__(self, in_chans=3, in_dim=64, dim=96, shuffle_down=False):
|
| 473 |
+
"""
|
| 474 |
+
Args:
|
| 475 |
+
in_chans: number of input channels.
|
| 476 |
+
in_dim: intermediate feature size dimension to speed up stem.
|
| 477 |
+
dim: final stem channel number
|
| 478 |
+
shuffle_down: use PixelUnshuffle for down-sampling, effectively increases the receptive field
|
| 479 |
+
"""
|
| 480 |
+
|
| 481 |
+
super().__init__()
|
| 482 |
+
# shuffle_down = False
|
| 483 |
+
if not shuffle_down:
|
| 484 |
+
self.proj = nn.Identity()
|
| 485 |
+
self.conv_down = nn.Sequential(
|
| 486 |
+
Conv2d_BN(in_chans, in_dim, 3, 2, 1, bias=False),
|
| 487 |
+
nn.ReLU(),
|
| 488 |
+
Conv2d_BN(in_dim, dim, 3, 2, 1, bias=False),
|
| 489 |
+
nn.ReLU()
|
| 490 |
+
)
|
| 491 |
+
else:
|
| 492 |
+
self.proj = lambda x: pixel_unshuffle(x, factor=4)
|
| 493 |
+
|
| 494 |
+
# self.conv_down = nn.Sequential(Conv2d_BN(in_chans*16, in_dim, 3, 1, 1),
|
| 495 |
+
# nn.SiLU(),
|
| 496 |
+
# Conv2d_BN(in_dim, dim, 3, 1, 1),
|
| 497 |
+
# nn.SiLU(),
|
| 498 |
+
# )
|
| 499 |
+
self.conv_down = nn.Sequential(Conv2d_BN(in_chans*16, dim, 3, 1, 1),
|
| 500 |
+
nn.ReLU(),
|
| 501 |
+
)
|
| 502 |
+
|
| 503 |
+
def forward(self, x):
|
| 504 |
+
x = self.proj(x)
|
| 505 |
+
x = self.conv_down(x)
|
| 506 |
+
return x
|
| 507 |
+
|
| 508 |
+
|
| 509 |
+
|
| 510 |
+
class ConvBlock(nn.Module):
|
| 511 |
+
"""
|
| 512 |
+
Convolutional block, used in first couple of stages
|
| 513 |
+
Experimented with plan resnet-18 like modules, they are the best in terms of throughput
|
| 514 |
+
Experimented with RepVGG, dont see significant improvement in accuracy
|
| 515 |
+
Finally, YOLOv8 idea seem to work fine (resnet-18 like block with squeezed feature dimension, and feature concatendation at the end)
|
| 516 |
+
"""
|
| 517 |
+
def __init__(self, dim,
|
| 518 |
+
drop_path=0.,
|
| 519 |
+
layer_scale=None,
|
| 520 |
+
kernel_size=3,
|
| 521 |
+
rep_vgg=False):
|
| 522 |
+
super().__init__()
|
| 523 |
+
self.rep_vgg = rep_vgg
|
| 524 |
+
if not rep_vgg:
|
| 525 |
+
self.conv1 = Conv2d_BN(dim, dim, kernel_size=kernel_size, stride=1, padding=1)
|
| 526 |
+
self.act1 = nn.GELU()
|
| 527 |
+
else:
|
| 528 |
+
self.conv1 = RepVGGBlock(dim, dim, kernel_size=kernel_size, stride=1, padding=1, groups=1)
|
| 529 |
+
|
| 530 |
+
|
| 531 |
+
if not rep_vgg:
|
| 532 |
+
self.conv2 = Conv2d_BN(dim, dim, kernel_size=kernel_size, stride=1, padding=1)
|
| 533 |
+
else:
|
| 534 |
+
self.conv2 = RepVGGBlock(dim, dim, kernel_size=kernel_size, stride=1, padding=1, groups=1)
|
| 535 |
+
|
| 536 |
+
self.layer_scale = layer_scale
|
| 537 |
+
if layer_scale is not None and type(layer_scale) in [int, float]:
|
| 538 |
+
self.gamma = nn.Parameter(layer_scale * torch.ones(dim))
|
| 539 |
+
self.layer_scale = True
|
| 540 |
+
else:
|
| 541 |
+
self.layer_scale = False
|
| 542 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
| 543 |
+
|
| 544 |
+
def forward(self, x):
|
| 545 |
+
input = x
|
| 546 |
+
if not self.rep_vgg:
|
| 547 |
+
x = self.conv1(x)
|
| 548 |
+
x = self.act1(x)
|
| 549 |
+
x = self.conv2(x)
|
| 550 |
+
else:
|
| 551 |
+
x = self.conv1(x)
|
| 552 |
+
x = self.conv2(x)
|
| 553 |
+
if self.layer_scale:
|
| 554 |
+
x = x * self.gamma.view(1, -1, 1, 1)
|
| 555 |
+
x = input + self.drop_path(x)
|
| 556 |
+
return x
|
| 557 |
+
|
| 558 |
+
|
| 559 |
+
class WindowAttention(nn.Module):
|
| 560 |
+
# Windowed Attention from SwinV2
|
| 561 |
+
# use a MLP trick to deal with various input image resolutions, then fold it to improve speed
|
| 562 |
+
# tested multi-querry attention, but it is not as good as full attention:
|
| 563 |
+
# look into palm: https://github.com/lucidrains/PaLM-pytorch/blob/main/palm_pytorch/palm_pytorch.py
|
| 564 |
+
# single kv attention, mlp in parallel (didnt improve speed)
|
| 565 |
+
|
| 566 |
+
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, resolution=0,
|
| 567 |
+
seq_length=0, dim_out=None, multi_query=False):
|
| 568 |
+
# taken from EdgeViT and tweaked with attention bias.
|
| 569 |
+
super().__init__()
|
| 570 |
+
if not dim_out: dim_out = dim
|
| 571 |
+
self.multi_query = multi_query
|
| 572 |
+
self.num_heads = num_heads
|
| 573 |
+
head_dim = dim // num_heads
|
| 574 |
+
self.head_dim = dim // num_heads
|
| 575 |
+
|
| 576 |
+
self.dim_internal = dim
|
| 577 |
+
|
| 578 |
+
self.scale = qk_scale or head_dim ** -0.5
|
| 579 |
+
if not multi_query:
|
| 580 |
+
if TRT:
|
| 581 |
+
self.q = nn.Linear(dim, dim, bias=qkv_bias)
|
| 582 |
+
self.k = nn.Linear(dim, dim, bias=qkv_bias)
|
| 583 |
+
self.v = nn.Linear(dim, dim, bias=qkv_bias)
|
| 584 |
+
else:
|
| 585 |
+
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
| 586 |
+
else:
|
| 587 |
+
self.qkv = nn.Linear(dim, dim + 2*self.head_dim, bias=qkv_bias)
|
| 588 |
+
|
| 589 |
+
self.proj = nn.Linear(dim, dim_out, bias=False)
|
| 590 |
+
# attention positional bias
|
| 591 |
+
self.pos_emb_funct = PosEmbMLPSwinv2D(window_size=[resolution, resolution],
|
| 592 |
+
pretrained_window_size=[resolution, resolution],
|
| 593 |
+
num_heads=num_heads,
|
| 594 |
+
seq_length=seq_length)
|
| 595 |
+
|
| 596 |
+
self.resolution = resolution
|
| 597 |
+
|
| 598 |
+
def forward(self, x):
|
| 599 |
+
B, N, C = x.shape
|
| 600 |
+
|
| 601 |
+
if not self.multi_query:
|
| 602 |
+
if TRT:
|
| 603 |
+
q = self.q(x).reshape(B, -1, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)
|
| 604 |
+
k = self.k(x).reshape(B, -1, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)
|
| 605 |
+
v = self.v(x).reshape(B, -1, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)
|
| 606 |
+
else:
|
| 607 |
+
qkv = self.qkv(x).reshape(B, -1, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
|
| 608 |
+
q, k, v = qkv[0], qkv[1], qkv[2]
|
| 609 |
+
else:
|
| 610 |
+
qkv = self.qkv(x)
|
| 611 |
+
(q, k, v) = qkv.split([self.dim_internal, self.head_dim, self.head_dim], dim=2)
|
| 612 |
+
|
| 613 |
+
q = q.reshape(B, -1, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)
|
| 614 |
+
k = k.reshape(B, -1, 1, C // self.num_heads).permute(0, 2, 1, 3)
|
| 615 |
+
v = v.reshape(B, -1, 1, C // self.num_heads).permute(0, 2, 1, 3)
|
| 616 |
+
|
| 617 |
+
attn = (q @ k.transpose(-2, -1)) * self.scale
|
| 618 |
+
|
| 619 |
+
attn = self.pos_emb_funct(attn)
|
| 620 |
+
|
| 621 |
+
attn = attn.softmax(dim=-1)
|
| 622 |
+
x = (attn @ v).transpose(1, 2).reshape(B, -1, C)
|
| 623 |
+
x = self.proj(x)
|
| 624 |
+
return x
|
| 625 |
+
|
| 626 |
+
|
| 627 |
+
|
| 628 |
+
class FasterViTLayer(nn.Module):
|
| 629 |
+
"""
|
| 630 |
+
fastervitlayer
|
| 631 |
+
"""
|
| 632 |
+
|
| 633 |
+
def __init__(self,
|
| 634 |
+
dim,
|
| 635 |
+
depth,
|
| 636 |
+
num_heads,
|
| 637 |
+
window_size,
|
| 638 |
+
conv=False,
|
| 639 |
+
downsample=True,
|
| 640 |
+
mlp_ratio=4.,
|
| 641 |
+
qkv_bias=False,
|
| 642 |
+
qk_scale=None,
|
| 643 |
+
norm_layer=nn.LayerNorm,
|
| 644 |
+
drop_path=0.,
|
| 645 |
+
layer_scale=None,
|
| 646 |
+
layer_scale_conv=None,
|
| 647 |
+
sr_dim_ratio=1,
|
| 648 |
+
sr_ratio=1,
|
| 649 |
+
multi_query=False,
|
| 650 |
+
use_swiglu=True,
|
| 651 |
+
rep_vgg=False,
|
| 652 |
+
yolo_arch=False,
|
| 653 |
+
downsample_shuffle=False,
|
| 654 |
+
conv_base=False,
|
| 655 |
+
|
| 656 |
+
):
|
| 657 |
+
"""
|
| 658 |
+
Args:
|
| 659 |
+
dim: feature size dimension.
|
| 660 |
+
depth: number of layers in each stage.
|
| 661 |
+
input_resolution: input image resolution.
|
| 662 |
+
window_size: window size in each stage.
|
| 663 |
+
downsample: bool argument for down-sampling.
|
| 664 |
+
mlp_ratio: MLP ratio.
|
| 665 |
+
num_heads: number of heads in each stage.
|
| 666 |
+
qkv_bias: bool argument for query, key, value learnable bias.
|
| 667 |
+
qk_scale: bool argument to scaling query, key.
|
| 668 |
+
drop: dropout rate.
|
| 669 |
+
attn_drop: attention dropout rate.
|
| 670 |
+
drop_path: drop path rate.
|
| 671 |
+
norm_layer: normalization layer.
|
| 672 |
+
layer_scale: layer scaling coefficient.
|
| 673 |
+
"""
|
| 674 |
+
|
| 675 |
+
super().__init__()
|
| 676 |
+
self.conv = conv
|
| 677 |
+
self.yolo_arch=False
|
| 678 |
+
if conv:
|
| 679 |
+
if not yolo_arch:
|
| 680 |
+
self.blocks = nn.ModuleList([
|
| 681 |
+
ConvBlock(dim=dim,
|
| 682 |
+
drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
|
| 683 |
+
layer_scale=layer_scale_conv, rep_vgg=rep_vgg)
|
| 684 |
+
for i in range(depth)])
|
| 685 |
+
else:
|
| 686 |
+
self.blocks = C2f(dim,dim,n=depth,shortcut=True,e=0.5)
|
| 687 |
+
self.yolo_arch=True
|
| 688 |
+
else:
|
| 689 |
+
if not isinstance(window_size, list): window_size = [window_size]
|
| 690 |
+
self.window_size = window_size[0]
|
| 691 |
+
self.do_single_windowing = True
|
| 692 |
+
if not isinstance(sr_ratio, list): sr_ratio = [sr_ratio]
|
| 693 |
+
if any([sr!=1 for sr in sr_ratio]) or len(set(window_size))>1:
|
| 694 |
+
self.do_single_windowing = False
|
| 695 |
+
do_windowing = True
|
| 696 |
+
else:
|
| 697 |
+
self.do_single_windowing = True
|
| 698 |
+
do_windowing = False
|
| 699 |
+
|
| 700 |
+
self.blocks = nn.ModuleList()
|
| 701 |
+
for i in range(depth):
|
| 702 |
+
|
| 703 |
+
self.blocks.append(
|
| 704 |
+
MultiResolutionAttention(window_size=window_size,
|
| 705 |
+
sr_ratio=sr_ratio,
|
| 706 |
+
dim=dim,
|
| 707 |
+
dim_ratio = sr_dim_ratio,
|
| 708 |
+
num_heads=num_heads,
|
| 709 |
+
norm_layer=norm_layer,
|
| 710 |
+
drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
|
| 711 |
+
layer_scale=layer_scale,
|
| 712 |
+
qkv_bias=qkv_bias,
|
| 713 |
+
qk_scale=qk_scale,
|
| 714 |
+
use_swiglu=use_swiglu,
|
| 715 |
+
do_windowing=do_windowing,
|
| 716 |
+
multi_query=multi_query,
|
| 717 |
+
conv_base=conv_base,
|
| 718 |
+
))
|
| 719 |
+
|
| 720 |
+
self.transformer = not conv
|
| 721 |
+
|
| 722 |
+
|
| 723 |
+
self.downsample = None if not downsample else Downsample(dim=dim, shuffle=downsample_shuffle)
|
| 724 |
+
|
| 725 |
+
|
| 726 |
+
|
| 727 |
+
|
| 728 |
+
def forward(self, x):
|
| 729 |
+
B, C, H, W = x.shape
|
| 730 |
+
|
| 731 |
+
if self.transformer and self.do_single_windowing:
|
| 732 |
+
H, W = x.shape[2], x.shape[3]
|
| 733 |
+
x, pad_hw = window_partition(x, self.window_size)
|
| 734 |
+
|
| 735 |
+
if not self.yolo_arch:
|
| 736 |
+
for bn, blk in enumerate(self.blocks):
|
| 737 |
+
x = blk(x)
|
| 738 |
+
else:
|
| 739 |
+
x = self.blocks(x)
|
| 740 |
+
|
| 741 |
+
if self.transformer and self.do_single_windowing:
|
| 742 |
+
x = window_reverse(x, self.window_size, H, W, pad_hw)
|
| 743 |
+
|
| 744 |
+
|
| 745 |
+
if self.downsample is None:
|
| 746 |
+
return x, x
|
| 747 |
+
|
| 748 |
+
return self.downsample(x), x #changing to output pre downsampled features
|
| 749 |
+
|
| 750 |
+
|
| 751 |
+
class FasterViT(nn.Module):
|
| 752 |
+
"""
|
| 753 |
+
FasterViT
|
| 754 |
+
"""
|
| 755 |
+
|
| 756 |
+
def __init__(self,
|
| 757 |
+
dim,
|
| 758 |
+
in_dim,
|
| 759 |
+
depths,
|
| 760 |
+
window_size,
|
| 761 |
+
mlp_ratio,
|
| 762 |
+
num_heads,
|
| 763 |
+
drop_path_rate=0.2,
|
| 764 |
+
in_chans=3,
|
| 765 |
+
num_classes=1000,
|
| 766 |
+
qkv_bias=False,
|
| 767 |
+
qk_scale=None,
|
| 768 |
+
layer_scale=None,
|
| 769 |
+
layer_scale_conv=None,
|
| 770 |
+
layer_norm_last=False,
|
| 771 |
+
sr_ratio = [1, 1, 1, 1],
|
| 772 |
+
max_depth = -1,
|
| 773 |
+
conv_base=False,
|
| 774 |
+
use_swiglu=False,
|
| 775 |
+
multi_query=False,
|
| 776 |
+
norm_layer=nn.LayerNorm,
|
| 777 |
+
rep_vgg=False,
|
| 778 |
+
drop_uniform=False,
|
| 779 |
+
yolo_arch=False,
|
| 780 |
+
shuffle_down=False,
|
| 781 |
+
downsample_shuffle=False,
|
| 782 |
+
return_full_features=False,
|
| 783 |
+
full_features_head_dim=128,
|
| 784 |
+
neck_start_stage=1,
|
| 785 |
+
use_neck=False,
|
| 786 |
+
**kwargs):
|
| 787 |
+
"""
|
| 788 |
+
Args:
|
| 789 |
+
dim: feature size dimension.
|
| 790 |
+
depths: number of layers in each stage.
|
| 791 |
+
window_size: window size in each stage.
|
| 792 |
+
mlp_ratio: MLP ratio.
|
| 793 |
+
num_heads: number of heads in each stage.
|
| 794 |
+
drop_path_rate: drop path rate.
|
| 795 |
+
in_chans: number of input channels.
|
| 796 |
+
num_classes: number of classes.
|
| 797 |
+
qkv_bias: bool argument for query, key, value learnable bias.
|
| 798 |
+
qk_scale: bool argument to scaling query, key.
|
| 799 |
+
drop_rate: dropout rate.
|
| 800 |
+
attn_drop_rate: attention dropout rate.
|
| 801 |
+
norm_layer: normalization layer.
|
| 802 |
+
layer_scale: layer scaling coefficient.
|
| 803 |
+
return_full_features: output dense features as well as logits
|
| 804 |
+
full_features_head_dim: number of channels in the dense features head
|
| 805 |
+
neck_start_stage: a stage id to start full feature neck. Model has 4 stages, indix starts with 0
|
| 806 |
+
for 224 resolution, the output of the stage before downsample:
|
| 807 |
+
stage 0: 56x56, stage 1: 28x28, stage 2: 14x14, stage 3: 7x7
|
| 808 |
+
use_neck: even for summarization embedding use neck
|
| 809 |
+
"""
|
| 810 |
+
super().__init__()
|
| 811 |
+
|
| 812 |
+
num_features = int(dim * 2 ** (len(depths) - 1))
|
| 813 |
+
self.num_classes = num_classes
|
| 814 |
+
self.patch_embed = PatchEmbed(in_chans=in_chans, in_dim=in_dim, dim=dim, shuffle_down=shuffle_down)
|
| 815 |
+
# set return_full_features true if we want to return full features from all stages
|
| 816 |
+
self.return_full_features = return_full_features
|
| 817 |
+
self.use_neck = use_neck
|
| 818 |
+
|
| 819 |
+
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]
|
| 820 |
+
if drop_uniform:
|
| 821 |
+
dpr = [drop_path_rate for x in range(sum(depths))]
|
| 822 |
+
|
| 823 |
+
if not isinstance(max_depth, list): max_depth = [max_depth] * len(depths)
|
| 824 |
+
|
| 825 |
+
self.levels = nn.ModuleList()
|
| 826 |
+
for i in range(len(depths)):
|
| 827 |
+
conv = True if (i == 0 or i == 1) else False
|
| 828 |
+
|
| 829 |
+
level = FasterViTLayer(dim=int(dim * 2 ** i),
|
| 830 |
+
depth=depths[i],
|
| 831 |
+
num_heads=num_heads[i],
|
| 832 |
+
window_size=window_size[i],
|
| 833 |
+
mlp_ratio=mlp_ratio,
|
| 834 |
+
qkv_bias=qkv_bias,
|
| 835 |
+
qk_scale=qk_scale,
|
| 836 |
+
conv=conv,
|
| 837 |
+
drop_path=dpr[sum(depths[:i]):sum(depths[:i + 1])],
|
| 838 |
+
downsample=(i < 3),
|
| 839 |
+
layer_scale=layer_scale,
|
| 840 |
+
layer_scale_conv=layer_scale_conv,
|
| 841 |
+
sr_ratio=sr_ratio[i],
|
| 842 |
+
use_swiglu=use_swiglu,
|
| 843 |
+
multi_query=multi_query,
|
| 844 |
+
norm_layer=norm_layer,
|
| 845 |
+
rep_vgg=rep_vgg,
|
| 846 |
+
yolo_arch=yolo_arch,
|
| 847 |
+
downsample_shuffle=downsample_shuffle,
|
| 848 |
+
conv_base=conv_base)
|
| 849 |
+
|
| 850 |
+
self.levels.append(level)
|
| 851 |
+
|
| 852 |
+
if self.return_full_features or self.use_neck:
|
| 853 |
+
# create feature projection layers for segmentation output
|
| 854 |
+
self.neck_features_proj = nn.ModuleList()
|
| 855 |
+
self.neck_start_stage = neck_start_stage
|
| 856 |
+
upsample_ratio = 1
|
| 857 |
+
for i in range(len(depths)):
|
| 858 |
+
level_n_features_output = int(dim * 2 ** i)
|
| 859 |
+
|
| 860 |
+
if self.neck_start_stage > i: continue
|
| 861 |
+
|
| 862 |
+
if (upsample_ratio > 1) or full_features_head_dim!=level_n_features_output:
|
| 863 |
+
feature_projection = nn.Sequential()
|
| 864 |
+
# feature_projection.add_module("norm",LayerNorm2d(level_n_features_output)) #slow, but better
|
| 865 |
+
|
| 866 |
+
|
| 867 |
+
if 0 :
|
| 868 |
+
# Train: 0 [1900/10009 ( 19%)] Loss: 6.113 (6.57) Time: 0.548s, 233.40/s (0.549s, 233.04/s) LR: 1.000e-05 Data: 0.015 (0.013)
|
| 869 |
+
feature_projection.add_module("norm",nn.BatchNorm2d(level_n_features_output)) #fast, but worse
|
| 870 |
+
feature_projection.add_module("dconv", nn.ConvTranspose2d(level_n_features_output,
|
| 871 |
+
full_features_head_dim, kernel_size=upsample_ratio, stride=upsample_ratio))
|
| 872 |
+
else:
|
| 873 |
+
# pixel shuffle based upsampling
|
| 874 |
+
# Train: 0 [1950/10009 ( 19%)] Loss: 6.190 (6.55) Time: 0.540s, 236.85/s (0.548s, 233.38/s) LR: 1.000e-05 Data: 0.015 (0.013)
|
| 875 |
+
feature_projection.add_module("norm",nn.BatchNorm2d(level_n_features_output)) #fast, but worse
|
| 876 |
+
feature_projection.add_module("conv", nn.Conv2d(level_n_features_output,
|
| 877 |
+
full_features_head_dim*upsample_ratio*upsample_ratio, kernel_size=1, stride=1))
|
| 878 |
+
feature_projection.add_module("upsample_pixelshuffle", nn.PixelShuffle(upsample_ratio))
|
| 879 |
+
|
| 880 |
+
else:
|
| 881 |
+
feature_projection = nn.Sequential()
|
| 882 |
+
feature_projection.add_module("norm",nn.BatchNorm2d(level_n_features_output))
|
| 883 |
+
|
| 884 |
+
|
| 885 |
+
self.neck_features_proj.append(feature_projection)
|
| 886 |
+
|
| 887 |
+
if i>0 and self.levels[i-1].downsample is not None:
|
| 888 |
+
upsample_ratio *= 2
|
| 889 |
+
|
| 890 |
+
|
| 891 |
+
num_features = full_features_head_dim if (self.return_full_features or self.use_neck) else num_features
|
| 892 |
+
|
| 893 |
+
self.num_features = num_features
|
| 894 |
+
|
| 895 |
+
self.norm = LayerNorm2d(num_features) if layer_norm_last else nn.BatchNorm2d(num_features)
|
| 896 |
+
self.avgpool = nn.AdaptiveAvgPool2d(1)
|
| 897 |
+
self.head = nn.Linear(num_features, num_classes) if num_classes > 0 else nn.Identity()
|
| 898 |
+
self.apply(self._init_weights)
|
| 899 |
+
# pass
|
| 900 |
+
|
| 901 |
+
def _init_weights(self, m):
|
| 902 |
+
if isinstance(m, nn.Linear):
|
| 903 |
+
trunc_normal_(m.weight, std=.02)
|
| 904 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
| 905 |
+
nn.init.constant_(m.bias, 0)
|
| 906 |
+
elif isinstance(m, nn.LayerNorm):
|
| 907 |
+
nn.init.constant_(m.bias, 0)
|
| 908 |
+
nn.init.constant_(m.weight, 1.0)
|
| 909 |
+
elif isinstance(m, LayerNorm2d):
|
| 910 |
+
nn.init.constant_(m.bias, 0)
|
| 911 |
+
nn.init.constant_(m.weight, 1.0)
|
| 912 |
+
elif isinstance(m, nn.BatchNorm2d):
|
| 913 |
+
nn.init.ones_(m.weight)
|
| 914 |
+
nn.init.zeros_(m.bias)
|
| 915 |
+
|
| 916 |
+
@torch.jit.ignore
|
| 917 |
+
def no_weight_decay_keywords(self):
|
| 918 |
+
return {'rpb'}
|
| 919 |
+
|
| 920 |
+
def forward_features(self, x):
|
| 921 |
+
x = self.patch_embed(x)
|
| 922 |
+
full_features = None
|
| 923 |
+
for il, level in enumerate(self.levels):
|
| 924 |
+
x, pre_downsample_x = level(x)
|
| 925 |
+
|
| 926 |
+
if self.return_full_features or self.use_neck:
|
| 927 |
+
if self.neck_start_stage > il: continue
|
| 928 |
+
if full_features is None:
|
| 929 |
+
full_features = self.neck_features_proj[il - self.neck_start_stage](pre_downsample_x)
|
| 930 |
+
else:
|
| 931 |
+
#upsample torch tensor x to match full_features size, and add to full_features
|
| 932 |
+
feature_projection = self.neck_features_proj[il - self.neck_start_stage](pre_downsample_x)
|
| 933 |
+
if feature_projection.shape[2] != full_features.shape[2] or feature_projection.shape[3] != full_features.shape[3]:
|
| 934 |
+
feature_projection = torch.nn.functional.pad(feature_projection, ( 0, -feature_projection.shape[3] + full_features.shape[3], 0, -feature_projection.shape[2] + full_features.shape[2]))
|
| 935 |
+
full_features += feature_projection
|
| 936 |
+
|
| 937 |
+
# x = self.norm(full_features if (self.return_full_features or self.use_neck) else x)
|
| 938 |
+
x = self.norm(x) # new version for
|
| 939 |
+
x = self.avgpool(x)
|
| 940 |
+
x = torch.flatten(x, 1)
|
| 941 |
+
|
| 942 |
+
if not self.return_full_features:
|
| 943 |
+
return x, None
|
| 944 |
+
|
| 945 |
+
return x, full_features
|
| 946 |
+
|
| 947 |
+
def forward(self, x):
|
| 948 |
+
x, full_features = self.forward_features(x)
|
| 949 |
+
x = self.head(x)
|
| 950 |
+
if full_features is not None:
|
| 951 |
+
return x, full_features
|
| 952 |
+
return x
|
| 953 |
+
|
| 954 |
+
def switch_to_deploy(self):
|
| 955 |
+
'''
|
| 956 |
+
A method to perform model self-compression
|
| 957 |
+
merges BN into conv layers
|
| 958 |
+
converts MLP relative positional bias into precomputed buffers
|
| 959 |
+
'''
|
| 960 |
+
for level in [self.patch_embed, self.levels, self.head]:
|
| 961 |
+
for module in level.modules():
|
| 962 |
+
if hasattr(module, 'switch_to_deploy'):
|
| 963 |
+
module.switch_to_deploy()
|
| 964 |
+
|
| 965 |
+
@register_model
|
| 966 |
+
def fastervit2_small(pretrained=False, **kwargs): #,
|
| 967 |
+
model = FasterViT(depths=[3, 3, 5, 5],
|
| 968 |
+
num_heads=[2, 4, 8, 16],
|
| 969 |
+
window_size=[8, 8, [7, 7], 7],
|
| 970 |
+
dim=96,
|
| 971 |
+
in_dim=64,
|
| 972 |
+
mlp_ratio=4,
|
| 973 |
+
drop_path_rate=0.2,
|
| 974 |
+
sr_ratio=[1, 1, [1, 2], 1],
|
| 975 |
+
use_swiglu=False,
|
| 976 |
+
downsample_shuffle=False,
|
| 977 |
+
yolo_arch=True,
|
| 978 |
+
shuffle_down=False,
|
| 979 |
+
**kwargs)
|
| 980 |
+
if pretrained:
|
| 981 |
+
model.load_state_dict(torch.load(pretrained))
|
| 982 |
+
return model
|
| 983 |
+
|
| 984 |
+
@register_model
|
| 985 |
+
def fastervit2_tiny(pretrained=False, **kwargs): #,
|
| 986 |
+
model = FasterViT(depths=[1, 3, 4, 5],
|
| 987 |
+
num_heads=[2, 4, 8, 16],
|
| 988 |
+
window_size=[8, 8, [7, 7], 7],
|
| 989 |
+
dim=80,
|
| 990 |
+
in_dim=64,
|
| 991 |
+
mlp_ratio=4,
|
| 992 |
+
drop_path_rate=0.2,
|
| 993 |
+
sr_ratio=[1, 1, [2, 1], 1],
|
| 994 |
+
use_swiglu=False,
|
| 995 |
+
downsample_shuffle=False,
|
| 996 |
+
yolo_arch=True,
|
| 997 |
+
shuffle_down=False,
|
| 998 |
+
**kwargs)
|
| 999 |
+
if pretrained:
|
| 1000 |
+
model.load_state_dict(torch.load(pretrained))
|
| 1001 |
+
return model
|
| 1002 |
+
|
| 1003 |
+
@register_model
|
| 1004 |
+
def fastervit2_base(pretrained=False, **kwargs):
|
| 1005 |
+
model = FasterViT(depths=[3, 3, 5, 5],
|
| 1006 |
+
num_heads=[2, 4, 8, 16],
|
| 1007 |
+
window_size=[8, 8, [7, 7], 7],
|
| 1008 |
+
dim=128,
|
| 1009 |
+
in_dim=64,
|
| 1010 |
+
mlp_ratio=4,
|
| 1011 |
+
drop_path_rate=0.2,
|
| 1012 |
+
sr_ratio=[1, 1, [2, 1], 1],
|
| 1013 |
+
use_swiglu=False,
|
| 1014 |
+
yolo_arch=True,
|
| 1015 |
+
shuffle_down=False,
|
| 1016 |
+
conv_base=True,
|
| 1017 |
+
**kwargs)
|
| 1018 |
+
if pretrained:
|
| 1019 |
+
model.load_state_dict(torch.load(pretrained))
|
| 1020 |
+
return model
|
| 1021 |
+
|
| 1022 |
+
@register_model
|
| 1023 |
+
def fastervit2_base_fullres1(pretrained=False, **kwargs):
|
| 1024 |
+
model = FasterViT(depths=[3, 3, 5, 5],
|
| 1025 |
+
num_heads=[2, 4, 8, 16],
|
| 1026 |
+
window_size=[8, 8, [7, 7], 7],
|
| 1027 |
+
dim=128,
|
| 1028 |
+
in_dim=64,
|
| 1029 |
+
mlp_ratio=4,
|
| 1030 |
+
drop_path_rate=0.2,
|
| 1031 |
+
sr_ratio=[1, 1, [2, 1], 1],
|
| 1032 |
+
use_swiglu=False,
|
| 1033 |
+
yolo_arch=True,
|
| 1034 |
+
shuffle_down=False,
|
| 1035 |
+
conv_base=True,
|
| 1036 |
+
use_neck=True,
|
| 1037 |
+
full_features_head_dim=1024,
|
| 1038 |
+
neck_start_stage=2,
|
| 1039 |
+
**kwargs)
|
| 1040 |
+
if pretrained:
|
| 1041 |
+
model.load_state_dict(torch.load(pretrained))
|
| 1042 |
+
return model
|
| 1043 |
+
|
| 1044 |
+
@register_model
|
| 1045 |
+
def fastervit2_base_fullres2(pretrained=False, **kwargs):
|
| 1046 |
+
model = FasterViT(depths=[3, 3, 5, 5],
|
| 1047 |
+
num_heads=[2, 4, 8, 16],
|
| 1048 |
+
window_size=[8, 8, [7, 7], 7],
|
| 1049 |
+
dim=128,
|
| 1050 |
+
in_dim=64,
|
| 1051 |
+
mlp_ratio=4,
|
| 1052 |
+
drop_path_rate=0.2,
|
| 1053 |
+
sr_ratio=[1, 1, [2, 1], 1],
|
| 1054 |
+
use_swiglu=False,
|
| 1055 |
+
yolo_arch=True,
|
| 1056 |
+
shuffle_down=False,
|
| 1057 |
+
conv_base=True,
|
| 1058 |
+
use_neck=True,
|
| 1059 |
+
full_features_head_dim=512,
|
| 1060 |
+
neck_start_stage=1,
|
| 1061 |
+
**kwargs)
|
| 1062 |
+
if pretrained:
|
| 1063 |
+
model.load_state_dict(torch.load(pretrained))
|
| 1064 |
+
return model
|
| 1065 |
+
|
| 1066 |
+
@register_model
|
| 1067 |
+
def fastervit2_base_fullres3(pretrained=False, **kwargs):
|
| 1068 |
+
model = FasterViT(depths=[3, 3, 5, 5],
|
| 1069 |
+
num_heads=[2, 4, 8, 16],
|
| 1070 |
+
window_size=[8, 8, [7, 7], 7],
|
| 1071 |
+
dim=128,
|
| 1072 |
+
in_dim=64,
|
| 1073 |
+
mlp_ratio=4,
|
| 1074 |
+
drop_path_rate=0.2,
|
| 1075 |
+
sr_ratio=[1, 1, [2, 1], 1],
|
| 1076 |
+
use_swiglu=False,
|
| 1077 |
+
yolo_arch=True,
|
| 1078 |
+
shuffle_down=False,
|
| 1079 |
+
conv_base=True,
|
| 1080 |
+
use_neck=True,
|
| 1081 |
+
full_features_head_dim=256,
|
| 1082 |
+
neck_start_stage=1,
|
| 1083 |
+
**kwargs)
|
| 1084 |
+
if pretrained:
|
| 1085 |
+
model.load_state_dict(torch.load(pretrained))
|
| 1086 |
+
return model
|
| 1087 |
+
|
| 1088 |
+
@register_model
|
| 1089 |
+
def fastervit2_base_fullres4(pretrained=False, **kwargs):
|
| 1090 |
+
model = FasterViT(depths=[3, 3, 5, 5],
|
| 1091 |
+
num_heads=[2, 4, 8, 16],
|
| 1092 |
+
window_size=[8, 8, [7, 7], 7],
|
| 1093 |
+
dim=128,
|
| 1094 |
+
in_dim=64,
|
| 1095 |
+
mlp_ratio=4,
|
| 1096 |
+
drop_path_rate=0.2,
|
| 1097 |
+
sr_ratio=[1, 1, [2, 1], 1],
|
| 1098 |
+
use_swiglu=False,
|
| 1099 |
+
yolo_arch=True,
|
| 1100 |
+
shuffle_down=False,
|
| 1101 |
+
conv_base=True,
|
| 1102 |
+
use_neck=True,
|
| 1103 |
+
full_features_head_dim=256,
|
| 1104 |
+
neck_start_stage=2,
|
| 1105 |
+
**kwargs)
|
| 1106 |
+
if pretrained:
|
| 1107 |
+
model.load_state_dict(torch.load(pretrained))
|
| 1108 |
+
return model
|
| 1109 |
+
|
| 1110 |
+
@register_model
|
| 1111 |
+
def fastervit2_base_fullres5(pretrained=False, **kwargs):
|
| 1112 |
+
model = FasterViT(depths=[3, 3, 5, 5],
|
| 1113 |
+
num_heads=[2, 4, 8, 16],
|
| 1114 |
+
window_size=[8, 8, [7, 7], 7],
|
| 1115 |
+
dim=128,
|
| 1116 |
+
in_dim=64,
|
| 1117 |
+
mlp_ratio=4,
|
| 1118 |
+
drop_path_rate=0.2,
|
| 1119 |
+
sr_ratio=[1, 1, [2, 1], 1],
|
| 1120 |
+
use_swiglu=False,
|
| 1121 |
+
yolo_arch=True,
|
| 1122 |
+
shuffle_down=False,
|
| 1123 |
+
conv_base=True,
|
| 1124 |
+
use_neck=True,
|
| 1125 |
+
full_features_head_dim=512,
|
| 1126 |
+
neck_start_stage=2,
|
| 1127 |
+
**kwargs)
|
| 1128 |
+
if pretrained:
|
| 1129 |
+
model.load_state_dict(torch.load(pretrained))
|
| 1130 |
+
return model
|
| 1131 |
+
|
| 1132 |
+
#pyt: 1934, 4202 TRT
|
| 1133 |
+
@register_model
|
| 1134 |
+
def fastervit2_large(pretrained=False, **kwargs):
|
| 1135 |
+
model = FasterViT(depths=[3, 3, 5, 5],
|
| 1136 |
+
num_heads=[2, 4, 8, 16],
|
| 1137 |
+
window_size=[8, 8, [7, 7], 7],
|
| 1138 |
+
dim=128+64,
|
| 1139 |
+
in_dim=64,
|
| 1140 |
+
mlp_ratio=4,
|
| 1141 |
+
drop_path_rate=0.2,
|
| 1142 |
+
sr_ratio=[1, 1, [2, 1], 1],
|
| 1143 |
+
use_swiglu=False,
|
| 1144 |
+
yolo_arch=True,
|
| 1145 |
+
shuffle_down=False,
|
| 1146 |
+
**kwargs)
|
| 1147 |
+
if pretrained:
|
| 1148 |
+
model.load_state_dict(torch.load(pretrained))
|
| 1149 |
+
return model
|
| 1150 |
+
|
| 1151 |
+
@register_model
|
| 1152 |
+
def fastervit2_large_fullres(pretrained=False, **kwargs):
|
| 1153 |
+
model = FasterViT(depths=[3, 3, 5, 5],
|
| 1154 |
+
num_heads=[2, 4, 8, 16],
|
| 1155 |
+
window_size=[None, None, [7, 7], 7],
|
| 1156 |
+
dim=192,
|
| 1157 |
+
in_dim=64,
|
| 1158 |
+
mlp_ratio=4,
|
| 1159 |
+
drop_path_rate=0.,
|
| 1160 |
+
sr_ratio=[1, 1, [2, 1], 1],
|
| 1161 |
+
use_swiglu=False,
|
| 1162 |
+
yolo_arch=True,
|
| 1163 |
+
shuffle_down=False,
|
| 1164 |
+
conv_base=True,
|
| 1165 |
+
use_neck=True,
|
| 1166 |
+
full_features_head_dim=1536,
|
| 1167 |
+
neck_start_stage=2,
|
| 1168 |
+
**kwargs)
|
| 1169 |
+
if pretrained:
|
| 1170 |
+
model.load_state_dict(torch.load(pretrained))
|
| 1171 |
+
return model
|
| 1172 |
+
|
| 1173 |
+
@register_model
|
| 1174 |
+
def fastervit2_large_fullres_ws8(pretrained=False, **kwargs):
|
| 1175 |
+
model = FasterViT(depths=[3, 3, 5, 5],
|
| 1176 |
+
num_heads=[2, 4, 8, 16],
|
| 1177 |
+
window_size=[None, None, [8, 8], 8],
|
| 1178 |
+
dim=192,
|
| 1179 |
+
in_dim=64,
|
| 1180 |
+
mlp_ratio=4,
|
| 1181 |
+
drop_path_rate=0.,
|
| 1182 |
+
sr_ratio=[1, 1, [2, 1], 1],
|
| 1183 |
+
use_swiglu=False,
|
| 1184 |
+
yolo_arch=True,
|
| 1185 |
+
shuffle_down=False,
|
| 1186 |
+
conv_base=True,
|
| 1187 |
+
use_neck=True,
|
| 1188 |
+
full_features_head_dim=1536,
|
| 1189 |
+
neck_start_stage=2,
|
| 1190 |
+
**kwargs)
|
| 1191 |
+
if pretrained:
|
| 1192 |
+
model.load_state_dict(torch.load(pretrained))
|
| 1193 |
+
return model
|
| 1194 |
+
|
| 1195 |
+
@register_model
|
| 1196 |
+
def fastervit2_large_fullres_ws16(pretrained=False, **kwargs):
|
| 1197 |
+
model = FasterViT(depths=[3, 3, 5, 5],
|
| 1198 |
+
num_heads=[2, 4, 8, 16],
|
| 1199 |
+
window_size=[None, None, [16, 16], 16],
|
| 1200 |
+
dim=192,
|
| 1201 |
+
in_dim=64,
|
| 1202 |
+
mlp_ratio=4,
|
| 1203 |
+
drop_path_rate=0.,
|
| 1204 |
+
sr_ratio=[1, 1, [2, 1], 1],
|
| 1205 |
+
use_swiglu=False,
|
| 1206 |
+
yolo_arch=True,
|
| 1207 |
+
shuffle_down=False,
|
| 1208 |
+
conv_base=True,
|
| 1209 |
+
use_neck=True,
|
| 1210 |
+
full_features_head_dim=1536,
|
| 1211 |
+
neck_start_stage=2,
|
| 1212 |
+
**kwargs)
|
| 1213 |
+
if pretrained:
|
| 1214 |
+
model.load_state_dict(torch.load(pretrained))
|
| 1215 |
+
return model
|
| 1216 |
+
|
| 1217 |
+
@register_model
|
| 1218 |
+
def fastervit2_large_fullres_ws32(pretrained=False, **kwargs):
|
| 1219 |
+
model = FasterViT(depths=[3, 3, 5, 5],
|
| 1220 |
+
num_heads=[2, 4, 8, 16],
|
| 1221 |
+
window_size=[None, None, [32, 32], 32],
|
| 1222 |
+
dim=192,
|
| 1223 |
+
in_dim=64,
|
| 1224 |
+
mlp_ratio=4,
|
| 1225 |
+
drop_path_rate=0.,
|
| 1226 |
+
sr_ratio=[1, 1, [2, 1], 1],
|
| 1227 |
+
use_swiglu=False,
|
| 1228 |
+
yolo_arch=True,
|
| 1229 |
+
shuffle_down=False,
|
| 1230 |
+
conv_base=True,
|
| 1231 |
+
use_neck=True,
|
| 1232 |
+
full_features_head_dim=1536,
|
| 1233 |
+
neck_start_stage=2,
|
| 1234 |
+
**kwargs)
|
| 1235 |
+
if pretrained:
|
| 1236 |
+
model.load_state_dict(torch.load(pretrained))
|
| 1237 |
+
return model
|
| 1238 |
+
|
| 1239 |
+
#pyt: 897
|
| 1240 |
+
@register_model
|
| 1241 |
+
def fastervit2_xlarge(pretrained=False, **kwargs):
|
| 1242 |
+
model = FasterViT(depths=[3, 3, 5, 5],
|
| 1243 |
+
num_heads=[2, 4, 8, 16],
|
| 1244 |
+
window_size=[8, 8, [7, 7], 7],
|
| 1245 |
+
dim=128+128+64,
|
| 1246 |
+
in_dim=64,
|
| 1247 |
+
mlp_ratio=4,
|
| 1248 |
+
drop_path_rate=0.2,
|
| 1249 |
+
sr_ratio=[1, 1, [2, 1], 1],
|
| 1250 |
+
use_swiglu=False,
|
| 1251 |
+
yolo_arch=True,
|
| 1252 |
+
shuffle_down=False,
|
| 1253 |
+
**kwargs)
|
| 1254 |
+
if pretrained:
|
| 1255 |
+
model.load_state_dict(torch.load(pretrained))
|
| 1256 |
+
return model
|
| 1257 |
+
|
| 1258 |
+
|
| 1259 |
+
#pyt:
|
| 1260 |
+
@register_model
|
| 1261 |
+
def fastervit2_huge(pretrained=False, **kwargs):
|
| 1262 |
+
model = FasterViT(depths=[3, 3, 5, 5],
|
| 1263 |
+
num_heads=[2, 4, 8, 16],
|
| 1264 |
+
window_size=[8, 8, [7, 7], 7],
|
| 1265 |
+
dim=128+128+128+64,
|
| 1266 |
+
in_dim=64,
|
| 1267 |
+
mlp_ratio=4,
|
| 1268 |
+
drop_path_rate=0.2,
|
| 1269 |
+
sr_ratio=[1, 1, [2, 1], 1],
|
| 1270 |
+
use_swiglu=False,
|
| 1271 |
+
yolo_arch=True,
|
| 1272 |
+
shuffle_down=False,
|
| 1273 |
+
**kwargs)
|
| 1274 |
+
if pretrained:
|
| 1275 |
+
model.load_state_dict(torch.load(pretrained))
|
| 1276 |
+
return model
|
| 1277 |
+
|
| 1278 |
+
|
| 1279 |
+
@register_model
|
| 1280 |
+
def fastervit2_xtiny(pretrained=False, **kwargs): #,
|
| 1281 |
+
model = FasterViT(depths=[1, 3, 4, 5],
|
| 1282 |
+
num_heads=[2, 4, 8, 16],
|
| 1283 |
+
window_size=[8, 8, [7, 7], 7],
|
| 1284 |
+
dim=64,
|
| 1285 |
+
in_dim=64,
|
| 1286 |
+
mlp_ratio=4,
|
| 1287 |
+
drop_path_rate=0.1,
|
| 1288 |
+
sr_ratio=[1, 1, [2, 1], 1],
|
| 1289 |
+
use_swiglu=False,
|
| 1290 |
+
downsample_shuffle=False,
|
| 1291 |
+
yolo_arch=True,
|
| 1292 |
+
shuffle_down=False,
|
| 1293 |
+
**kwargs)
|
| 1294 |
+
if pretrained:
|
| 1295 |
+
model.load_state_dict(torch.load(pretrained))
|
| 1296 |
+
return model
|
| 1297 |
+
|
| 1298 |
+
|
| 1299 |
+
@register_model
|
| 1300 |
+
def fastervit2_xxtiny_5(pretrained=False, **kwargs): #,
|
| 1301 |
+
model = FasterViT(depths=[1, 3, 4, 5],
|
| 1302 |
+
num_heads=[2, 4, 8, 16],
|
| 1303 |
+
window_size=[8, 8, [7, 7], 7],
|
| 1304 |
+
dim=48,
|
| 1305 |
+
in_dim=64,
|
| 1306 |
+
mlp_ratio=4,
|
| 1307 |
+
drop_path_rate=0.05,
|
| 1308 |
+
sr_ratio=[1, 1, [2, 1], 1],
|
| 1309 |
+
use_swiglu=False,
|
| 1310 |
+
downsample_shuffle=False,
|
| 1311 |
+
yolo_arch=True,
|
| 1312 |
+
shuffle_down=False,
|
| 1313 |
+
**kwargs)
|
| 1314 |
+
if pretrained:
|
| 1315 |
+
model.load_state_dict(torch.load(pretrained))
|
| 1316 |
+
return model
|
| 1317 |
+
|
| 1318 |
+
@register_model
|
| 1319 |
+
def fastervit2_xxxtiny(pretrained=False, **kwargs): #,
|
| 1320 |
+
model = FasterViT(depths=[1, 3, 4, 5],
|
| 1321 |
+
num_heads=[2, 4, 8, 16],
|
| 1322 |
+
window_size=[8, 8, [7, 7], 7],
|
| 1323 |
+
dim=32,
|
| 1324 |
+
in_dim=32,
|
| 1325 |
+
mlp_ratio=4,
|
| 1326 |
+
drop_path_rate=0.0,
|
| 1327 |
+
sr_ratio=[1, 1, [2, 1], 1],
|
| 1328 |
+
use_swiglu=False,
|
| 1329 |
+
downsample_shuffle=False,
|
| 1330 |
+
yolo_arch=True,
|
| 1331 |
+
shuffle_down=False,
|
| 1332 |
+
**kwargs)
|
| 1333 |
+
if pretrained:
|
| 1334 |
+
model.load_state_dict(torch.load(pretrained))
|
| 1335 |
+
return model
|
| 1336 |
+
|
| 1337 |
+
|
| 1338 |
+
@register_model
|
| 1339 |
+
def eradio(pretrained=False, **kwargs):
|
| 1340 |
+
return fastervit2_large_fullres(pretrained=pretrained, **kwargs)
|
hf_model.py
CHANGED
|
@@ -15,12 +15,70 @@ from collections import namedtuple
|
|
| 15 |
from typing import Optional
|
| 16 |
|
| 17 |
from einops import rearrange
|
|
|
|
| 18 |
import torch
|
| 19 |
from transformers import PretrainedConfig, PreTrainedModel
|
| 20 |
|
| 21 |
-
|
| 22 |
-
from
|
| 23 |
-
from .
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
|
| 25 |
|
| 26 |
class ERADIOConfig(PretrainedConfig):
|
|
|
|
| 15 |
from typing import Optional
|
| 16 |
|
| 17 |
from einops import rearrange
|
| 18 |
+
from timm.models import VisionTransformer
|
| 19 |
import torch
|
| 20 |
from transformers import PretrainedConfig, PreTrainedModel
|
| 21 |
|
| 22 |
+
|
| 23 |
+
from .eradio_model import eradio
|
| 24 |
+
from .radio_model import create_model_from_args
|
| 25 |
+
from .radio_model import RADIOModel as RADIOModelBase
|
| 26 |
+
from .input_conditioner import get_default_conditioner, InputConditioner
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
class RADIOConfig(PretrainedConfig):
|
| 30 |
+
"""Pretrained Hugging Face configuration for RADIO models."""
|
| 31 |
+
|
| 32 |
+
def __init__(
|
| 33 |
+
self,
|
| 34 |
+
args: Optional[dict] = None,
|
| 35 |
+
version: Optional[str] = "v1",
|
| 36 |
+
return_summary: Optional[bool] = True,
|
| 37 |
+
return_spatial_features: Optional[bool] = True,
|
| 38 |
+
**kwargs,
|
| 39 |
+
):
|
| 40 |
+
self.args = args
|
| 41 |
+
self.version = version
|
| 42 |
+
self.return_summary = return_summary
|
| 43 |
+
self.return_spatial_features = return_spatial_features
|
| 44 |
+
super().__init__(**kwargs)
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
class RADIOModel(PreTrainedModel):
|
| 48 |
+
"""Pretrained Hugging Face model for RADIO.
|
| 49 |
+
|
| 50 |
+
This class inherits from PreTrainedModel, which provides
|
| 51 |
+
HuggingFace's functionality for loading and saving models.
|
| 52 |
+
"""
|
| 53 |
+
|
| 54 |
+
config_class = RADIOConfig
|
| 55 |
+
|
| 56 |
+
def __init__(self, config):
|
| 57 |
+
super().__init__(config)
|
| 58 |
+
|
| 59 |
+
RADIOArgs = namedtuple("RADIOArgs", config.args.keys())
|
| 60 |
+
args = RADIOArgs(**config.args)
|
| 61 |
+
self.config = config
|
| 62 |
+
model = create_model_from_args(args)
|
| 63 |
+
input_conditioner: InputConditioner = get_default_conditioner()
|
| 64 |
+
|
| 65 |
+
self.radio_model = RADIOModelBase(
|
| 66 |
+
model,
|
| 67 |
+
input_conditioner,
|
| 68 |
+
config.return_summary,
|
| 69 |
+
config.return_spatial_features,
|
| 70 |
+
)
|
| 71 |
+
|
| 72 |
+
@property
|
| 73 |
+
def model(self) -> VisionTransformer:
|
| 74 |
+
return self.radio_model.model
|
| 75 |
+
|
| 76 |
+
@property
|
| 77 |
+
def input_conditioner(self) -> InputConditioner:
|
| 78 |
+
return self.radio_model.input_conditioner
|
| 79 |
+
|
| 80 |
+
def forward(self, x: torch.Tensor):
|
| 81 |
+
return self.radio_model.forward(x)
|
| 82 |
|
| 83 |
|
| 84 |
class ERADIOConfig(PretrainedConfig):
|
input_conditioner.py
ADDED
|
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
| 4 |
+
# and proprietary rights in and to this software, related documentation
|
| 5 |
+
# and any modifications thereto. Any use, reproduction, disclosure or
|
| 6 |
+
# distribution of this software and related documentation without an express
|
| 7 |
+
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
| 8 |
+
|
| 9 |
+
from typing import Union, Tuple
|
| 10 |
+
|
| 11 |
+
import torch
|
| 12 |
+
from torch import nn
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
norm_t = Union[Tuple[float, float, float], torch.Tensor]
|
| 16 |
+
|
| 17 |
+
class InputConditioner(nn.Module):
|
| 18 |
+
def __init__(self,
|
| 19 |
+
input_scale: float,
|
| 20 |
+
norm_mean: norm_t,
|
| 21 |
+
norm_std: norm_t,
|
| 22 |
+
dtype: torch.dtype = torch.float32,
|
| 23 |
+
):
|
| 24 |
+
super().__init__()
|
| 25 |
+
|
| 26 |
+
self.dtype = dtype
|
| 27 |
+
|
| 28 |
+
# self.input_scale = input_scale
|
| 29 |
+
self.register_buffer("norm_mean", _to_tensor(norm_mean) / input_scale)
|
| 30 |
+
self.register_buffer("norm_std", _to_tensor(norm_std) / input_scale)
|
| 31 |
+
|
| 32 |
+
def forward(self, x: torch.Tensor):
|
| 33 |
+
# x = x * self.input_scale
|
| 34 |
+
y = (x - self.norm_mean) / self.norm_std
|
| 35 |
+
return y.to(self.dtype)
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
def get_default_conditioner():
|
| 39 |
+
from timm.data.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD
|
| 40 |
+
|
| 41 |
+
return InputConditioner(
|
| 42 |
+
input_scale=1.0,
|
| 43 |
+
norm_mean=OPENAI_CLIP_MEAN,
|
| 44 |
+
norm_std=OPENAI_CLIP_STD,
|
| 45 |
+
)
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
def _to_tensor(v: norm_t):
|
| 49 |
+
return torch.as_tensor(v, dtype=torch.float32).view(-1, 1, 1)
|
radio_model.py
ADDED
|
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
| 4 |
+
# and proprietary rights in and to this software, related documentation
|
| 5 |
+
# and any modifications thereto. Any use, reproduction, disclosure or
|
| 6 |
+
# distribution of this software and related documentation without an express
|
| 7 |
+
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
| 8 |
+
|
| 9 |
+
import torch
|
| 10 |
+
from torch import nn
|
| 11 |
+
|
| 12 |
+
from timm.models import create_model, VisionTransformer
|
| 13 |
+
|
| 14 |
+
from .enable_cpe_support import enable_cpe
|
| 15 |
+
from .input_conditioner import InputConditioner
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
class RADIOModel(nn.Module):
|
| 19 |
+
def __init__(
|
| 20 |
+
self,
|
| 21 |
+
model: nn.Module,
|
| 22 |
+
input_conditioner: InputConditioner,
|
| 23 |
+
return_summary: bool,
|
| 24 |
+
return_spatial_features: bool,
|
| 25 |
+
):
|
| 26 |
+
super().__init__()
|
| 27 |
+
|
| 28 |
+
self.model = model
|
| 29 |
+
self.input_conditioner = input_conditioner
|
| 30 |
+
self.return_summary = return_summary
|
| 31 |
+
self.return_spatial_features = return_spatial_features
|
| 32 |
+
|
| 33 |
+
def forward(self, x: torch.Tensor):
|
| 34 |
+
x = self.input_conditioner(x)
|
| 35 |
+
|
| 36 |
+
y = self.model.forward_features(x)
|
| 37 |
+
|
| 38 |
+
if isinstance(y, (list, tuple)):
|
| 39 |
+
summary, all_feat = y
|
| 40 |
+
elif isinstance(self.model, VisionTransformer):
|
| 41 |
+
patch_gen = getattr(self.model, "patch_generator", None)
|
| 42 |
+
if patch_gen is not None:
|
| 43 |
+
summary = y[:, : patch_gen.num_cls_tokens].flatten(1)
|
| 44 |
+
all_feat = y[:, patch_gen.num_skip :]
|
| 45 |
+
elif self.model.global_pool == "avg":
|
| 46 |
+
summary = y[:, self.model.num_prefix_tokens :].mean(dim=1)
|
| 47 |
+
all_feat = y
|
| 48 |
+
else:
|
| 49 |
+
summary = y[:, 0]
|
| 50 |
+
all_feat = y[:, 1:]
|
| 51 |
+
else:
|
| 52 |
+
raise ValueError("Unsupported model type")
|
| 53 |
+
|
| 54 |
+
if self.return_summary and self.return_spatial_features:
|
| 55 |
+
return summary, all_feat
|
| 56 |
+
elif self.return_summary:
|
| 57 |
+
return summary
|
| 58 |
+
return all_feat
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
def create_model_from_args(args) -> nn.Module:
|
| 62 |
+
in_chans = 3
|
| 63 |
+
if args.in_chans is not None:
|
| 64 |
+
in_chans = args.in_chans
|
| 65 |
+
elif args.input_size is not None:
|
| 66 |
+
in_chans = args.input_size[0]
|
| 67 |
+
|
| 68 |
+
# Skip weight initialization unless it's explicitly requested.
|
| 69 |
+
weight_init = args.model_kwargs.pop("weight_init", "skip")
|
| 70 |
+
|
| 71 |
+
model = create_model(
|
| 72 |
+
args.model,
|
| 73 |
+
pretrained=args.pretrained,
|
| 74 |
+
in_chans=in_chans,
|
| 75 |
+
num_classes=args.num_classes,
|
| 76 |
+
drop_rate=args.drop,
|
| 77 |
+
drop_path_rate=args.drop_path,
|
| 78 |
+
drop_block_rate=args.drop_block,
|
| 79 |
+
global_pool=args.gp,
|
| 80 |
+
bn_momentum=args.bn_momentum,
|
| 81 |
+
bn_eps=args.bn_eps,
|
| 82 |
+
scriptable=args.torchscript,
|
| 83 |
+
checkpoint_path=args.initial_checkpoint,
|
| 84 |
+
weight_init=weight_init,
|
| 85 |
+
**args.model_kwargs,
|
| 86 |
+
)
|
| 87 |
+
|
| 88 |
+
assert (
|
| 89 |
+
not args.cls_token_per_teacher or args.cpe_max_size is not None
|
| 90 |
+
), "CPE must be enabled for multiple CLS tokens!"
|
| 91 |
+
|
| 92 |
+
if args.cpe_max_size is not None:
|
| 93 |
+
enable_cpe(
|
| 94 |
+
model,
|
| 95 |
+
args.cpe_max_size,
|
| 96 |
+
num_cls_tokens=len(args.teachers) if args.cls_token_per_teacher else 1,
|
| 97 |
+
register_multiple=args.register_multiple,
|
| 98 |
+
)
|
| 99 |
+
|
| 100 |
+
return model
|
vit_patch_generator.py
ADDED
|
@@ -0,0 +1,299 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
| 4 |
+
# and proprietary rights in and to this software, related documentation
|
| 5 |
+
# and any modifications thereto. Any use, reproduction, disclosure or
|
| 6 |
+
# distribution of this software and related documentation without an express
|
| 7 |
+
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
| 8 |
+
|
| 9 |
+
import math
|
| 10 |
+
from typing import Union, Tuple, Optional
|
| 11 |
+
|
| 12 |
+
import torch
|
| 13 |
+
import torch.nn.functional as F
|
| 14 |
+
from torch import nn
|
| 15 |
+
from einops import rearrange
|
| 16 |
+
|
| 17 |
+
from .cls_token import ClsToken
|
| 18 |
+
|
| 19 |
+
input_dim_t = Union[int, Tuple[int, int]]
|
| 20 |
+
|
| 21 |
+
try:
|
| 22 |
+
# raise ImportError()
|
| 23 |
+
from indirect_grid_sample import indirect_grid_sample
|
| 24 |
+
except ImportError:
|
| 25 |
+
indirect_grid_sample = None
|
| 26 |
+
|
| 27 |
+
class ViTPatchGenerator(nn.Module):
|
| 28 |
+
def __init__(self,
|
| 29 |
+
patch_size: int,
|
| 30 |
+
embed_dim: int,
|
| 31 |
+
input_dims: input_dim_t,
|
| 32 |
+
abs_pos: bool = True,
|
| 33 |
+
normalize_patches: bool = False,
|
| 34 |
+
cls_token: bool = False,
|
| 35 |
+
max_input_dims: Optional[input_dim_t] = None,
|
| 36 |
+
pos_dropout: float = 0.0,
|
| 37 |
+
return_pos_enc: bool = False,
|
| 38 |
+
num_cls_tokens: int = 1,
|
| 39 |
+
register_multiple: int = 0,
|
| 40 |
+
device=None, dtype=None,
|
| 41 |
+
):
|
| 42 |
+
super().__init__()
|
| 43 |
+
|
| 44 |
+
if isinstance(input_dims, int):
|
| 45 |
+
input_dims = (input_dims, input_dims)
|
| 46 |
+
|
| 47 |
+
if max_input_dims is None:
|
| 48 |
+
max_input_dims = input_dims
|
| 49 |
+
if isinstance(max_input_dims, int):
|
| 50 |
+
max_input_dims = (max_input_dims, max_input_dims)
|
| 51 |
+
|
| 52 |
+
max_input_dims = tuple(
|
| 53 |
+
int(math.ceil(d / patch_size) * patch_size)
|
| 54 |
+
for d in max_input_dims
|
| 55 |
+
)
|
| 56 |
+
|
| 57 |
+
self.cpe_mode = max_input_dims != input_dims
|
| 58 |
+
self.pos_dropout = pos_dropout
|
| 59 |
+
self.return_pos_enc = return_pos_enc
|
| 60 |
+
|
| 61 |
+
factory = dict(device=device, dtype=dtype)
|
| 62 |
+
|
| 63 |
+
self.patch_size = patch_size
|
| 64 |
+
self.abs_pos = abs_pos
|
| 65 |
+
self.embed_dim = embed_dim
|
| 66 |
+
|
| 67 |
+
self.num_rows = max_input_dims[0] // patch_size
|
| 68 |
+
self.num_cols = max_input_dims[1] // patch_size
|
| 69 |
+
self.input_dims = tuple(d // patch_size for d in input_dims)
|
| 70 |
+
self.num_patches = self.num_rows * self.num_cols
|
| 71 |
+
self.max_input_dims = max_input_dims
|
| 72 |
+
|
| 73 |
+
self.im_to_patches = Im2Patches(patch_size)
|
| 74 |
+
self.embedder = ViTPatchLinear(patch_size, embed_dim, **factory)
|
| 75 |
+
|
| 76 |
+
if abs_pos:
|
| 77 |
+
scale = embed_dim ** -0.5
|
| 78 |
+
self.pos_embed = nn.Parameter(torch.randn(1, self.num_patches, embed_dim, **factory) * scale)
|
| 79 |
+
|
| 80 |
+
self.cls_token = ClsToken(
|
| 81 |
+
embed_dim,
|
| 82 |
+
num_tokens=num_cls_tokens,
|
| 83 |
+
enabled=cls_token,
|
| 84 |
+
register_multiple=register_multiple,
|
| 85 |
+
)
|
| 86 |
+
|
| 87 |
+
self.patch_normalizer = nn.LayerNorm(embed_dim) if normalize_patches else nn.Identity()
|
| 88 |
+
|
| 89 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 90 |
+
patches = self.embed_patches(x)
|
| 91 |
+
patches, pos_enc = self.apply_pos_enc(patches, input_size=x.shape[2:])
|
| 92 |
+
patches = self.cls_token(patches)
|
| 93 |
+
patches = self.patch_normalizer(patches)
|
| 94 |
+
if self.return_pos_enc:
|
| 95 |
+
return patches, pos_enc
|
| 96 |
+
return patches
|
| 97 |
+
|
| 98 |
+
@property
|
| 99 |
+
def apply_cls_token(self):
|
| 100 |
+
return self.cls_token.enabled
|
| 101 |
+
|
| 102 |
+
@property
|
| 103 |
+
def num_cls_tokens(self):
|
| 104 |
+
return self.cls_token.num_tokens
|
| 105 |
+
|
| 106 |
+
@property
|
| 107 |
+
def num_registers(self):
|
| 108 |
+
return self.cls_token.num_registers
|
| 109 |
+
|
| 110 |
+
@property
|
| 111 |
+
def num_skip(self):
|
| 112 |
+
return self.num_cls_tokens + self.num_registers
|
| 113 |
+
|
| 114 |
+
def no_weight_decay(self):
|
| 115 |
+
return [
|
| 116 |
+
'pos_embed',
|
| 117 |
+
]
|
| 118 |
+
|
| 119 |
+
def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs):
|
| 120 |
+
if self.abs_pos:
|
| 121 |
+
self._load_embed(state_dict[f'{prefix}pos_embed'], self.pos_embed)
|
| 122 |
+
|
| 123 |
+
def _load_embed(self, src_embed: torch.Tensor, targ_embed: nn.Parameter):
|
| 124 |
+
if src_embed.shape != targ_embed.shape:
|
| 125 |
+
src_size = int(math.sqrt(src_embed.shape[1]))
|
| 126 |
+
|
| 127 |
+
assert src_size ** 2 == src_embed.shape[1], 'Unable to interpolate non-square embedding'
|
| 128 |
+
|
| 129 |
+
src_embed = rearrange(src_embed, 'b (h w) c -> b c h w', h=src_size, w=src_size)
|
| 130 |
+
src_embed = F.interpolate(src_embed, size=(self.num_rows, self.num_cols), mode='bicubic', align_corners=True, antialias=False)
|
| 131 |
+
src_embed = rearrange(src_embed, 'b c h w -> b (h w) c')
|
| 132 |
+
targ_embed.data.copy_(src_embed)
|
| 133 |
+
|
| 134 |
+
def _load_projection(self, src_proj_weight: torch.Tensor, targ_proj_weight: torch.Tensor):
|
| 135 |
+
if src_proj_weight.shape != targ_proj_weight.shape:
|
| 136 |
+
src_patch_size = int(math.sqrt(src_proj_weight.shape[1] // 3))
|
| 137 |
+
|
| 138 |
+
assert (src_patch_size ** 2) * 3 == src_proj_weight.shape[1], 'Unable to interpolate non-square patch size'
|
| 139 |
+
|
| 140 |
+
src_proj_weight = rearrange(src_proj_weight, 'b (c h w) -> b c h w', c=3, h=src_patch_size, w=src_patch_size)
|
| 141 |
+
src_proj_weight = F.interpolate(src_proj_weight, size=(self.patch_size, self.patch_size), mode='bicubic', align_corners=True, antialias=False)
|
| 142 |
+
src_proj_weight = rearrange(src_proj_weight, 'b c h w -> b (c h w)')
|
| 143 |
+
targ_proj_weight.data.copy_(src_proj_weight)
|
| 144 |
+
|
| 145 |
+
def embed_patches(self, x: torch.Tensor) -> torch.Tensor:
|
| 146 |
+
patches = self.im_to_patches(x)
|
| 147 |
+
patches = self.embedder(patches)
|
| 148 |
+
return patches
|
| 149 |
+
|
| 150 |
+
def apply_pos_enc(self,
|
| 151 |
+
patches: torch.Tensor,
|
| 152 |
+
patch_idxs: Optional[torch.Tensor] = None,
|
| 153 |
+
input_size: Optional[Tuple[int, int]] = None,
|
| 154 |
+
) -> torch.Tensor:
|
| 155 |
+
if not self.abs_pos:
|
| 156 |
+
return patches
|
| 157 |
+
|
| 158 |
+
pos_enc = self.get_pos_enc(patches.shape[0], patch_idxs, input_size)
|
| 159 |
+
|
| 160 |
+
if self.training and self.pos_dropout > 0:
|
| 161 |
+
keeps = torch.rand(patches.shape[0], 1, 1, dtype=pos_enc.dtype, device=pos_enc.device) > self.pos_dropout
|
| 162 |
+
pos_enc_drop = torch.where(keeps, pos_enc, 0)
|
| 163 |
+
else:
|
| 164 |
+
pos_enc_drop = pos_enc
|
| 165 |
+
|
| 166 |
+
return patches + pos_enc_drop, pos_enc
|
| 167 |
+
|
| 168 |
+
def get_pos_enc(self,
|
| 169 |
+
batch_size: int,
|
| 170 |
+
patch_idxs: Optional[torch.Tensor] = None,
|
| 171 |
+
input_size: Optional[Tuple[int, int]] = None,
|
| 172 |
+
) -> torch.Tensor:
|
| 173 |
+
if input_size is None:
|
| 174 |
+
input_dims = self.input_dims
|
| 175 |
+
else:
|
| 176 |
+
input_dims = tuple(d // self.patch_size for d in input_size)
|
| 177 |
+
|
| 178 |
+
pos_embed = self._get_pos_embeddings(batch_size, input_dims)
|
| 179 |
+
|
| 180 |
+
if patch_idxs is None:
|
| 181 |
+
return pos_embed
|
| 182 |
+
|
| 183 |
+
exp_patch_idxs = patch_idxs.unsqueeze(-1).expand(-1, -1, pos_embed.shape[-1])
|
| 184 |
+
|
| 185 |
+
pos_embed = torch.gather(pos_embed.expand(patch_idxs.shape[0], -1, -1), dim=1, index=exp_patch_idxs)
|
| 186 |
+
return pos_embed
|
| 187 |
+
|
| 188 |
+
|
| 189 |
+
def _get_pos_embeddings(self, batch_size: int, input_dims: Tuple[int, int]):
|
| 190 |
+
if (self.num_rows, self.num_cols) == input_dims:
|
| 191 |
+
return self.pos_embed
|
| 192 |
+
|
| 193 |
+
pos_embed = self.pos_embed.reshape(1, self.num_rows, self.num_cols, -1).permute(0, 3, 1, 2)
|
| 194 |
+
|
| 195 |
+
def window_select(pos_embed):
|
| 196 |
+
if input_dims[0] < pos_embed.shape[-2]:
|
| 197 |
+
pos_embed = pos_embed[..., :input_dims[0], :]
|
| 198 |
+
if input_dims[1] < pos_embed.shape[-1]:
|
| 199 |
+
pos_embed = pos_embed[..., :, :input_dims[1]]
|
| 200 |
+
return pos_embed
|
| 201 |
+
|
| 202 |
+
if self.cpe_mode:
|
| 203 |
+
if self.training:
|
| 204 |
+
min_scale = math.sqrt(0.1)
|
| 205 |
+
scale = torch.rand(batch_size, 1, 1, device=pos_embed.device) * (1 - min_scale) + min_scale
|
| 206 |
+
aspect_min = math.log(3 / 4)
|
| 207 |
+
aspect_max = -aspect_min
|
| 208 |
+
aspect = torch.exp(torch.rand(batch_size, 1, 1, device=pos_embed.device) * (aspect_max - aspect_min) + aspect_min)
|
| 209 |
+
|
| 210 |
+
scale_x = scale * aspect
|
| 211 |
+
scale_y = scale * (1 / aspect)
|
| 212 |
+
scale_xy = torch.stack([scale_x, scale_y], dim=-1).clamp_(0, 1)
|
| 213 |
+
|
| 214 |
+
pos_xy = torch.rand(batch_size, 1, 1, 2, device=pos_embed.device) * (1 - scale_xy)
|
| 215 |
+
|
| 216 |
+
lin_x = torch.linspace(0, 1, steps=input_dims[1], device=pos_embed.device)[None, None].expand(batch_size, input_dims[0], -1)
|
| 217 |
+
lin_y = torch.linspace(0, 1, steps=input_dims[0], device=pos_embed.device)[None, :, None].expand(batch_size, -1, input_dims[1])
|
| 218 |
+
|
| 219 |
+
lin_xy = torch.stack([lin_x, lin_y], dim=-1)
|
| 220 |
+
|
| 221 |
+
grid_xy = lin_xy * scale_xy + pos_xy
|
| 222 |
+
|
| 223 |
+
# Convert to [-1, 1] range
|
| 224 |
+
grid_xy.mul_(2).sub_(1)
|
| 225 |
+
|
| 226 |
+
pos_embed = F.grid_sample(
|
| 227 |
+
pos_embed.expand(batch_size, -1, -1, -1),
|
| 228 |
+
grid=grid_xy,
|
| 229 |
+
mode='bilinear',
|
| 230 |
+
padding_mode='zeros',
|
| 231 |
+
align_corners=True,
|
| 232 |
+
)
|
| 233 |
+
else:
|
| 234 |
+
# i_rows, i_cols = input_dims
|
| 235 |
+
# p_rows, p_cols = pos_embed.shape[2:]
|
| 236 |
+
# if i_rows <= p_rows and i_cols <= p_cols:
|
| 237 |
+
# left = (p_cols - i_cols) // 2
|
| 238 |
+
# top = (p_rows - i_rows) // 2
|
| 239 |
+
# pos_embed = pos_embed[..., top:top+i_rows, left:left+i_cols]
|
| 240 |
+
# else:
|
| 241 |
+
max_dim = max(input_dims)
|
| 242 |
+
pos_embed = F.interpolate(pos_embed.float(), size=(max_dim, max_dim), align_corners=True, mode='bilinear').to(pos_embed.dtype)
|
| 243 |
+
|
| 244 |
+
pos_embed = window_select(pos_embed)
|
| 245 |
+
else:
|
| 246 |
+
pos_embed = window_select(pos_embed)
|
| 247 |
+
|
| 248 |
+
if pos_embed.shape[-2:] != input_dims:
|
| 249 |
+
pos_embed = F.interpolate(pos_embed.float(), size=input_dims, align_corners=True, mode='bilinear').to(pos_embed.dtype)
|
| 250 |
+
|
| 251 |
+
pos_embed = pos_embed.flatten(2).permute(0, 2, 1)
|
| 252 |
+
|
| 253 |
+
return pos_embed
|
| 254 |
+
|
| 255 |
+
|
| 256 |
+
class Im2Patches(nn.Module):
|
| 257 |
+
def __init__(self, patch_size: int):
|
| 258 |
+
super().__init__()
|
| 259 |
+
self.patch_size = patch_size
|
| 260 |
+
|
| 261 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 262 |
+
if self.patch_size == 1:
|
| 263 |
+
patches = x.flatten(2)
|
| 264 |
+
patches = patches.permute(0, 2, 1)
|
| 265 |
+
return patches
|
| 266 |
+
|
| 267 |
+
py = x.shape[-2] // self.patch_size
|
| 268 |
+
px = x.shape[-1] // self.patch_size
|
| 269 |
+
patches = rearrange(x, 'b c (py yy) (px xx) -> b (py px) (c yy xx)',
|
| 270 |
+
py=py, yy=self.patch_size,
|
| 271 |
+
px=px, xx=self.patch_size,
|
| 272 |
+
)
|
| 273 |
+
return patches
|
| 274 |
+
|
| 275 |
+
|
| 276 |
+
class ViTPatchLinear(nn.Linear):
|
| 277 |
+
def __init__(self, patch_size: int, embed_dim: int, **factory):
|
| 278 |
+
super().__init__(
|
| 279 |
+
3 * (patch_size ** 2),
|
| 280 |
+
embed_dim,
|
| 281 |
+
bias=False,
|
| 282 |
+
**factory
|
| 283 |
+
)
|
| 284 |
+
self.patch_size = patch_size
|
| 285 |
+
|
| 286 |
+
def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs):
|
| 287 |
+
if self.bias is not None:
|
| 288 |
+
self.bias.data.copy_(state_dict[f'{prefix}bias'])
|
| 289 |
+
|
| 290 |
+
chk_weight = state_dict[f'{prefix}weight']
|
| 291 |
+
if chk_weight.shape != self.weight.shape:
|
| 292 |
+
src_patch_size = int(math.sqrt(chk_weight.shape[1] // 3))
|
| 293 |
+
|
| 294 |
+
assert (src_patch_size ** 2) * 3 == chk_weight.shape[1], 'Unable to interpolate non-square patch size'
|
| 295 |
+
|
| 296 |
+
chk_weight = rearrange(chk_weight, 'b (c h w) -> b c h w', c=3, h=src_patch_size, w=src_patch_size)
|
| 297 |
+
chk_weight = F.interpolate(chk_weight, size=(self.patch_size, self.patch_size), mode='bicubic', align_corners=True, antialias=False)
|
| 298 |
+
chk_weight = rearrange(chk_weight, 'b c h w -> b (c h w)')
|
| 299 |
+
self.weight.data.copy_(chk_weight)
|