Update README.md
Browse files
README.md
CHANGED
|
@@ -14,6 +14,7 @@ tags:
|
|
| 14 |
- pytorch
|
| 15 |
---
|
| 16 |
|
|
|
|
| 17 |
# Llama-3.1-Nemotron-Nano-4B-v1.1
|
| 18 |
|
| 19 |
|
|
@@ -52,6 +53,8 @@ Developers designing AI Agent systems, chatbots, RAG systems, and other AI-power
|
|
| 52 |
|
| 53 |
## References
|
| 54 |
|
|
|
|
|
|
|
| 55 |
- [\[2505.00949\] Llama-Nemotron: Efficient Reasoning Models](https://arxiv.org/abs/2505.00949)
|
| 56 |
|
| 57 |
|
|
@@ -177,6 +180,63 @@ pipeline = transformers.pipeline(
|
|
| 177 |
print(pipeline([{"role": "system", "content": f"detailed thinking {thinking}"}, {"role": "user", "content": "Solve x*(sin(x)+2)=0"}, {"role":"assistant", "content":"<think>\n</think>"}]))
|
| 178 |
```
|
| 179 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 180 |
## Inference:
|
| 181 |
**Engine:** Transformers
|
| 182 |
**Test Hardware:**
|
|
|
|
| 14 |
- pytorch
|
| 15 |
---
|
| 16 |
|
| 17 |
+
|
| 18 |
# Llama-3.1-Nemotron-Nano-4B-v1.1
|
| 19 |
|
| 20 |
|
|
|
|
| 53 |
|
| 54 |
## References
|
| 55 |
|
| 56 |
+
- [\[2408.11796\] LLM Pruning and Distillation in Practice: The Minitron Approach](https://arxiv.org/abs/2408.11796)
|
| 57 |
+
- [\[2502.00203\] Reward-aware Preference Optimization: A Unified Mathematical Framework for Model Alignment](https://arxiv.org/abs/2502.00203)
|
| 58 |
- [\[2505.00949\] Llama-Nemotron: Efficient Reasoning Models](https://arxiv.org/abs/2505.00949)
|
| 59 |
|
| 60 |
|
|
|
|
| 180 |
print(pipeline([{"role": "system", "content": f"detailed thinking {thinking}"}, {"role": "user", "content": "Solve x*(sin(x)+2)=0"}, {"role":"assistant", "content":"<think>\n</think>"}]))
|
| 181 |
```
|
| 182 |
|
| 183 |
+
## Running a vLLM Server with Tool-call Support
|
| 184 |
+
|
| 185 |
+
Llama-3.1-Nemotron-Nano-4B-v1.1 supports tool calling. This HF repo hosts a tool-callilng parser as well as a chat template in Jinja, which can be used to launch a vLLM server.
|
| 186 |
+
Here is an example command to launch a vLLM server with tool-call support.
|
| 187 |
+
|
| 188 |
+
```console
|
| 189 |
+
$ git clone https://huggingface.co/nvidia/Llama-3.1-Nemotron-Nano-4B-v1.1
|
| 190 |
+
|
| 191 |
+
$ conda create -n vllm python=3.12 -y
|
| 192 |
+
$ conda activate vllm
|
| 193 |
+
|
| 194 |
+
$ python -m vllm.entrypoints.openai.api_server \
|
| 195 |
+
--model Llama-3.1-Nemotron-Nano-4B-v1.1 \
|
| 196 |
+
--trust-remote-code \
|
| 197 |
+
--seed 1 \
|
| 198 |
+
--host "0.0.0.0" \
|
| 199 |
+
--port 5000 \
|
| 200 |
+
--served-model-name "Llama-Nemotron-Nano-4B-v1.1" \
|
| 201 |
+
--tensor-parallel-size 1 \
|
| 202 |
+
--max-model-len 131072 \
|
| 203 |
+
--gpu-memory-utilization 0.95 \
|
| 204 |
+
--enforce-eager \
|
| 205 |
+
--enable-auto-tool-choice \
|
| 206 |
+
--tool-parser-plugin "Llama-3.1-Nemotron-Nano-4B-v1.1/llama_nemotron_nano_toolcall_parser.py" \
|
| 207 |
+
--tool-call-parser "llama_nemotron_json" \
|
| 208 |
+
--chat-template "Llama-3.1-Nemotron-Nano-4B-v1.1/llama_nemotron_nano_generic_tool_calling.jinja"
|
| 209 |
+
```
|
| 210 |
+
|
| 211 |
+
You can call the launched server with tool-call support using a Python script like below.
|
| 212 |
+
|
| 213 |
+
```python
|
| 214 |
+
>>> from openai import OpenAI
|
| 215 |
+
>>> client = OpenAI(
|
| 216 |
+
base_url="http://0.0.0.0:5000/v1",
|
| 217 |
+
api_key="dummy",
|
| 218 |
+
)
|
| 219 |
+
|
| 220 |
+
>>> completion = client.chat.completions.create(
|
| 221 |
+
model="Llama-Nemotron-Nano-v1.1",
|
| 222 |
+
messages=[
|
| 223 |
+
{"role": "system", "content": "detailed thinking on"},
|
| 224 |
+
{"role": "user", "content": "My bill is $100. What will be the amount for 18% tip?"},
|
| 225 |
+
],
|
| 226 |
+
tools=[
|
| 227 |
+
{"type": "function", "function": {"name": "calculate_tip", "parameters": {"type": "object", "properties": {"bill_total": {"type": "integer", "description": "The total amount of the bill"}, "tip_percentage": {"type": "integer", "description": "The percentage of tip to be applied"}}, "required": ["bill_total", "tip_percentage"]}}},
|
| 228 |
+
{"type": "function", "function": {"name": "convert_currency", "parameters": {"type": "object", "properties": {"amount": {"type": "integer", "description": "The amount to be converted"}, "from_currency": {"type": "string", "description": "The currency code to convert from"}, "to_currency": {"type": "string", "description": "The currency code to convert to"}}, "required": ["from_currency", "amount", "to_currency"]}}},
|
| 229 |
+
],
|
| 230 |
+
)
|
| 231 |
+
|
| 232 |
+
>>> completion.choices[0].message.content
|
| 233 |
+
'<think>\nOkay, let\'s see. The user has a bill of $100 and wants to know the amount of a 18% tip. So, I need to calculate the tip amount. The available tools include calculate_tip, which requires bill_total and tip_percentage. The parameters are both integers. The bill_total is 100, and the tip percentage is 18. So, the function should multiply 100 by 18% and return 18.0. But wait, maybe the user wants the total including the tip? The question says "the amount for 18% tip," which could be interpreted as the tip amount itself. Since the function is called calculate_tip, it\'s likely that it\'s designed to compute the tip, not the total. So, using calculate_tip with bill_total=100 and tip_percentage=18 should give the correct result. The other function, convert_currency, isn\'t relevant here. So, I should call calculate_tip with those values.\n</think>\n\n'
|
| 234 |
+
|
| 235 |
+
>>> completion.choices[0].message.tool_calls
|
| 236 |
+
[ChatCompletionMessageToolCall(id='chatcmpl-tool-2972d86817344edc9c1e0f9cd398e999', function=Function(arguments='{"bill_total": 100, "tip_percentage": 18}', name='calculate_tip'), type='function')]
|
| 237 |
+
```
|
| 238 |
+
|
| 239 |
+
|
| 240 |
## Inference:
|
| 241 |
**Engine:** Transformers
|
| 242 |
**Test Hardware:**
|