import ast
import json
import re
from collections.abc import Sequence
from typing import Union
import partial_json_parser
from partial_json_parser.core.options import Allow
from vllm.entrypoints.openai.protocol import (
ChatCompletionRequest,
DeltaFunctionCall, DeltaMessage,
DeltaToolCall,
ExtractedToolCallInformation,
FunctionCall,
ToolCall,
)
from vllm.entrypoints.openai.tool_parsers.abstract_tool_parser import (
ToolParser,
ToolParserManager,
)
from vllm.logger import init_logger
from vllm.transformers_utils.tokenizer import AnyTokenizer
from vllm.utils import random_uuid
logger = init_logger(__name__)
@ToolParserManager.register_module("llama_nemotron_xml")
class LlamaNemotronXMLToolParser(ToolParser):
def __init__(self, tokenizer: AnyTokenizer):
super().__init__(tokenizer)
self.current_tool_name_sent: bool = False
self.prev_tool_call_arr: list[dict] = []
self.current_tool_id: int = -1 # Potentially for streaming
self.streamed_args_for_tool: list[str] = [] # Potentially for streaming
self.tool_call_start_token: str = ""
self.tool_call_end_token: str = ""
# Regex to find full ... blocks and capture their content
self.tool_call_block_regex = re.compile(r"(.*?)", re.DOTALL)
# Regex to find ... within a tool_call block content
self.name_regex = re.compile(r"(.*?)", re.DOTALL)
# Regex to find value pairs within the tool_call block content (excluding tags)
self.param_regex = re.compile(r"<([^/>\s]+)>(.*?)\1>", re.DOTALL)
def extract_tool_calls(
self,
model_output: str,
request: ChatCompletionRequest,
) -> ExtractedToolCallInformation:
tool_call_start_index = model_output.find(self.tool_call_start_token)
if tool_call_start_index == -1:
return ExtractedToolCallInformation(
tools_called=False,
tool_calls=[],
content=model_output,
)
content = model_output[:tool_call_start_index].strip()
tool_calls_str_content = model_output[tool_call_start_index:]
parsed_tool_calls = []
try:
# Find all occurrences of ...
xml_tool_call_contents = self.tool_call_block_regex.findall(tool_calls_str_content)
for tool_content_str in xml_tool_call_contents:
name_match = self.name_regex.search(tool_content_str)
if not name_match:
logger.warning(f"Could not find tool name in XML block: {tool_content_str}")
continue
tool_name = name_match.group(1).strip()
parsed_arguments = {}
# Find all parameter tags in the tool_call content, excluding the tag
param_matches = self.param_regex.finditer(tool_content_str)
for match in param_matches:
param_name = match.group(1).strip()
param_value_str = match.group(2).strip()
# Skip the tag since it's not a parameter
if param_name == "tool":
continue
target_type = None
# Try to get type from request.tools schema
if request.tools:
for tool_def in request.tools:
if tool_def.function.name == tool_name:
if tool_def.function.parameters and \
isinstance(tool_def.function.parameters, dict) and \
"properties" in tool_def.function.parameters and \
isinstance(tool_def.function.parameters["properties"], dict) and \
param_name in tool_def.function.parameters["properties"] and \
isinstance(tool_def.function.parameters["properties"][param_name], dict):
target_type = tool_def.function.parameters["properties"][param_name].get("type")
break
typed_param_value = param_value_str # Default to string
if target_type:
try:
if target_type == "string":
typed_param_value = param_value_str
elif target_type == "integer":
typed_param_value = int(param_value_str)
elif target_type == "number":
typed_param_value = float(param_value_str)
elif target_type == "boolean":
typed_param_value = param_value_str.lower() == 'true'
elif target_type in ["object", "array"]:
try:
typed_param_value = json.loads(param_value_str)
except json.JSONDecodeError:
# Fallback for non-strict JSON like Python dict/list string
typed_param_value = ast.literal_eval(param_value_str)
else: # Unknown type, keep as string
typed_param_value = param_value_str
except (ValueError, SyntaxError, json.JSONDecodeError) as e:
logger.warning(
f"Could not convert param '{param_name}' with value '{param_value_str}' "
f"to type '{target_type}'. Error: {e}. Using string value."
)
typed_param_value = param_value_str
else: # No schema type, try ast.literal_eval
try:
# For values like "true", "123", "['a', 'b']"
# ast.literal_eval('some_string_without_quotes') will raise SyntaxError
if (param_value_str.startswith("'") and param_value_str.endswith("'")) or \
(param_value_str.startswith('"') and param_value_str.endswith('"')) or \
(param_value_str.startswith('[') and param_value_str.endswith(']')) or \
(param_value_str.startswith('{') and param_value_str.endswith('}')) or \
param_value_str.lower() in ['true', 'false', 'none'] or \
param_value_str.replace('.', '', 1).isdigit() or \
(param_value_str.startswith('-') and param_value_str[1:].replace('.', '', 1).isdigit()):
typed_param_value = ast.literal_eval(param_value_str)
else: # It's likely a plain string not meant for ast.literal_eval
typed_param_value = param_value_str
except (ValueError, SyntaxError):
typed_param_value = param_value_str # Keep as string if ast.literal_eval fails
parsed_arguments[param_name] = typed_param_value
parsed_tool_calls.append(ToolCall(
id=f"call_{random_uuid()}",
type="function",
function=FunctionCall(
name=tool_name,
arguments=json.dumps(parsed_arguments, ensure_ascii=False),
),
))
return ExtractedToolCallInformation(
tools_called=len(parsed_tool_calls) > 0,
tool_calls=parsed_tool_calls,
content=content if content else None,
)
except Exception:
logger.exception(f"Error in extracting XML tool call from response. Response: {model_output}")
# Fallback to original model output if parsing fails catastrophically
return ExtractedToolCallInformation(
tools_called=False,
tool_calls=[],
content=model_output,
)
def extract_tool_calls_streaming(
self,
previous_text: str,
current_text: str,
delta_text: str,
previous_token_ids: Sequence[int],
current_token_ids: Sequence[int],
delta_token_ids: Sequence[int],
request: ChatCompletionRequest,
) -> Union[DeltaMessage, None]:
raise NotImplementedError("Tool calling is not supported in streaming mode!")
@ToolParserManager.register_module("llama_nemotron_json")
class LlamaNemotronJSONToolParser(ToolParser):
def __init__(self, tokenizer: AnyTokenizer):
super().__init__(tokenizer)
self.current_tool_name_sent: bool = False
self.prev_tool_call_arr: list[dict] = []
self.current_tool_id: int = -1
self.streamed_args_for_tool: list[str] = []
self.tool_call_start_token: str = ""
self.tool_call_end_token: str = ""
self.tool_call_regex = re.compile(r"(.*?)", re.DOTALL)
def extract_tool_calls(
self,
model_output: str,
request: ChatCompletionRequest,
) -> ExtractedToolCallInformation:
if self.tool_call_start_token not in model_output:
return ExtractedToolCallInformation(
tools_called=False,
tool_calls=[],
content=model_output,
)
else:
try:
str_tool_calls = self.tool_call_regex.findall(model_output)[0].strip()
if not str_tool_calls.startswith("["):
str_tool_calls = "[" + str_tool_calls
if not str_tool_calls.endswith("]"):
str_tool_calls = "]" + str_tool_calls
json_tool_calls = json.loads(str_tool_calls)
tool_calls = []
for tool_call in json_tool_calls:
try:
tool_calls.append(ToolCall(
type="function",
function=FunctionCall(
name=tool_call["name"],
arguments=json.dumps(tool_call["arguments"], ensure_ascii=False) \
if isinstance(tool_call["arguments"], dict) else tool_call["arguments"],
),
))
except:
continue
content = model_output[:model_output.rfind(self.tool_call_start_token)]
return ExtractedToolCallInformation(
tools_called=True,
tool_calls=tool_calls,
content=content if content else None,
)
except Exception:
logger.exception(f"Error in extracting tool call from response. Response: {model_output}")
return ExtractedToolCallInformation(
tools_called=False,
tool_calls=[],
content=model_output,
)
def extract_tool_calls_streaming(
self,
previous_text: str,
current_text: str,
delta_text: str,
previous_token_ids: Sequence[int],
current_token_ids: Sequence[int],
delta_token_ids: Sequence[int],
request: ChatCompletionRequest,
) -> Union[DeltaMessage, None]:
raise NotImplementedError("Tool calling is not supported in streaming mode!")
@ToolParserManager.register_module("llama_nemotron_pythonic")
class LlamaNemotronPythonicToolParser(ToolParser):
def __init__(self, tokenizer: AnyTokenizer):
super().__init__(tokenizer)
self.current_tool_name_sent: bool = False
self.prev_tool_call_arr: list[dict] = []
self.current_tool_id: int = -1
self.streamed_args_for_tool: list[str] = []
self.tool_call_start_token: str = ""
self.tool_call_end_token: str = ""
self.tool_call_regex = re.compile(r"(.*?)", re.DOTALL)
# Regex to parse pythonic function calls: function_name(arg1="value1", arg2=123, arg3=True)
self.function_call_regex = re.compile(r"(\w+)\((.*?)\)$", re.DOTALL)
def parse_function_arguments(self, args_str: str) -> dict:
"""Parse pythonic function arguments string into a dictionary"""
if not args_str.strip():
return {}
# Use ast.parse to safely parse the function call arguments
# We'll construct a temporary function call and parse it
try:
# Create a dummy function call to parse arguments
dummy_code = f"dummy_func({args_str})"
parsed = ast.parse(dummy_code, mode='eval')
# Extract arguments from the AST
call_node = parsed.body
if not isinstance(call_node, ast.Call):
return {}
arguments = {}
# Handle keyword arguments
for keyword in call_node.keywords:
if keyword.arg is None: # **kwargs
continue
# Convert AST value to Python value
try:
value = ast.literal_eval(keyword.value)
arguments[keyword.arg] = value
except (ValueError, TypeError):
# If literal_eval fails, try to get the raw value
if isinstance(keyword.value, ast.Name):
arguments[keyword.arg] = keyword.value.id
elif isinstance(keyword.value, ast.Constant):
arguments[keyword.arg] = keyword.value.value
else:
# Fallback: convert to string
arguments[keyword.arg] = ast.unparse(keyword.value)
# Handle positional arguments (less common in tool calls but supported)
for i, arg in enumerate(call_node.args):
try:
value = ast.literal_eval(arg)
arguments[f"arg_{i}"] = value
except (ValueError, TypeError):
if isinstance(arg, ast.Name):
arguments[f"arg_{i}"] = arg.id
elif isinstance(arg, ast.Constant):
arguments[f"arg_{i}"] = arg.value
else:
arguments[f"arg_{i}"] = ast.unparse(arg)
return arguments
except (SyntaxError, ValueError) as e:
logger.warning(f"Failed to parse function arguments '{args_str}': {e}")
return {}
def extract_tool_calls(
self,
model_output: str,
request: ChatCompletionRequest,
) -> ExtractedToolCallInformation:
if self.tool_call_start_token not in model_output:
return ExtractedToolCallInformation(
tools_called=False,
tool_calls=[],
content=model_output,
)
tool_call_start_index = model_output.find(self.tool_call_start_token)
content = model_output[:tool_call_start_index].strip()
try:
# Extract content between tags
tool_call_matches = self.tool_call_regex.findall(model_output)
if not tool_call_matches:
return ExtractedToolCallInformation(
tools_called=False,
tool_calls=[],
content=model_output,
)
tool_calls_content = tool_call_matches[0].strip()
# Split by lines to get individual function calls
function_lines = [line.strip() for line in tool_calls_content.split('\n') if line.strip()]
parsed_tool_calls = []
for func_line in function_lines:
# Parse each function call
match = self.function_call_regex.match(func_line)
if not match:
logger.warning(f"Could not parse function call: {func_line}")
continue
function_name = match.group(1)
args_str = match.group(2)
# Parse arguments
parsed_arguments = self.parse_function_arguments(args_str)
# Apply type conversion based on schema if available
if request.tools:
for tool_def in request.tools:
if tool_def.function.name == function_name:
schema_properties = {}
if (tool_def.function.parameters and
isinstance(tool_def.function.parameters, dict) and
"properties" in tool_def.function.parameters and
isinstance(tool_def.function.parameters["properties"], dict)):
schema_properties = tool_def.function.parameters["properties"]
# Convert arguments based on schema types
for arg_name, arg_value in parsed_arguments.items():
if arg_name in schema_properties:
param_info = schema_properties[arg_name]
target_type = param_info.get("type")
try:
if target_type == "string" and not isinstance(arg_value, str):
parsed_arguments[arg_name] = str(arg_value)
elif target_type == "integer" and not isinstance(arg_value, int):
parsed_arguments[arg_name] = int(arg_value)
elif target_type == "number" and not isinstance(arg_value, (int, float)):
parsed_arguments[arg_name] = float(arg_value)
elif target_type == "boolean" and not isinstance(arg_value, bool):
if isinstance(arg_value, str):
parsed_arguments[arg_name] = arg_value.lower() in ['true', '1', 'yes']
else:
parsed_arguments[arg_name] = bool(arg_value)
elif target_type in ["object", "array"]:
if isinstance(arg_value, str):
try:
parsed_arguments[arg_name] = json.loads(arg_value)
except json.JSONDecodeError:
# Keep as string if JSON parsing fails
pass
except (ValueError, TypeError) as e:
logger.warning(f"Type conversion failed for {arg_name}: {e}")
# Keep original value if conversion fails
break
parsed_tool_calls.append(ToolCall(
id=f"call_{random_uuid()}",
type="function",
function=FunctionCall(
name=function_name,
arguments=json.dumps(parsed_arguments, ensure_ascii=False),
),
))
return ExtractedToolCallInformation(
tools_called=len(parsed_tool_calls) > 0,
tool_calls=parsed_tool_calls,
content=content if content else None,
)
except Exception:
logger.exception(f"Error in extracting pythonic tool call from response. Response: {model_output}")
return ExtractedToolCallInformation(
tools_called=False,
tool_calls=[],
content=model_output,
)
def extract_tool_calls_streaming(
self,
previous_text: str,
current_text: str,
delta_text: str,
previous_token_ids: Sequence[int],
current_token_ids: Sequence[int],
delta_token_ids: Sequence[int],
request: ChatCompletionRequest,
) -> Union[DeltaMessage, None]:
raise NotImplementedError("Tool calling is not supported in streaming mode!")