oist commited on
Commit
3a556f9
·
verified ·
1 Parent(s): 161febb

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +2 -1
README.md CHANGED
@@ -319,6 +319,7 @@ print("Prediction:", pred_class)
319
  ### Example 3: Text–Text Inference (Ported SONAR)
320
 
321
  ```python
 
322
  import torch
323
  from transformers import AutoTokenizer, AutoModel
324
  from transformers.models.m2m_100.modeling_m2m_100 import M2M100Encoder
@@ -365,7 +366,7 @@ print("Prediction:", pred_class)
365
  You can use the BLASER semantic score in combination with the MMNLI NLI class to get a **better understanding of the relationship** between source and candidate translations. The NLI class gives the entailment/contradiction/neutral label, while the BLASER score provides a fine-grained semantic similarity.
366
 
367
  ```python
368
-
369
  import torch
370
  from transformers import AutoTokenizer, AutoModel
371
  from transformers.models.m2m_100.modeling_m2m_100 import M2M100Encoder
 
319
  ### Example 3: Text–Text Inference (Ported SONAR)
320
 
321
  ```python
322
+ # !pip install transformers sentencepiece torch -q
323
  import torch
324
  from transformers import AutoTokenizer, AutoModel
325
  from transformers.models.m2m_100.modeling_m2m_100 import M2M100Encoder
 
366
  You can use the BLASER semantic score in combination with the MMNLI NLI class to get a **better understanding of the relationship** between source and candidate translations. The NLI class gives the entailment/contradiction/neutral label, while the BLASER score provides a fine-grained semantic similarity.
367
 
368
  ```python
369
+ # !pip install transformers sentencepiece torch -q
370
  import torch
371
  from transformers import AutoTokenizer, AutoModel
372
  from transformers.models.m2m_100.modeling_m2m_100 import M2M100Encoder