Initial commit of MMNLI model with LFS
Browse files- .gitattributes +1 -0
- README.md +146 -0
- config.json +15 -0
- model.stateforce +3 -0
- modeling_mmnli.py +98 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
model.stateforce filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
|
@@ -0,0 +1,146 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Multilingual & Multimodal NLI (MMNLI)
|
| 2 |
+
|
| 3 |
+
This repository provides the **MMNLI model**, a multilingual and multimodal Natural Language Inference classifier.
|
| 4 |
+
It extends the BLASER architecture into **multiclass NLI**, supporting entailment, contradiction, and neutrality across text-text, text-speech, speech-text, and speech-speech input pairs.
|
| 5 |
+
|
| 6 |
+
The model is trained on the [oist/multimodal_nli_dataset](https://huggingface.co/datasets/oist/multimodal_nli_dataset).
|
| 7 |
+
Please refer to that dataset card for details.
|
| 8 |
+
|
| 9 |
+
---
|
| 10 |
+
|
| 11 |
+
## Usage
|
| 12 |
+
|
| 13 |
+
The model depends on **SONAR embeddings**. You can use the official SONAR encoders (for text and speech) or the **ported SONAR text encoder** [`cointegrated/SONAR_200_text_encoder`](https://huggingface.co/cointegrated/SONAR_200_text_encoder).
|
| 14 |
+
|
| 15 |
+
---
|
| 16 |
+
|
| 17 |
+
### Example 1: Speech–Text Inference
|
| 18 |
+
|
| 19 |
+
```python
|
| 20 |
+
import torch
|
| 21 |
+
from sonar.inference_pipelines.speech import SpeechToEmbeddingModelPipeline
|
| 22 |
+
from sonar.inference_pipelines.text import TextToEmbeddingModelPipeline
|
| 23 |
+
from transformers import AutoModel
|
| 24 |
+
|
| 25 |
+
# 1. Load SONAR encoders
|
| 26 |
+
speech_encoder = SpeechToEmbeddingModelPipeline(encoder="sonar_speech_encoder_eng")
|
| 27 |
+
text_encoder = TextToEmbeddingModelPipeline(encoder="text_sonar_basic_encoder", tokenizer="text_sonar_basic_encoder")
|
| 28 |
+
|
| 29 |
+
# 2. Encode premise (speech) and hypothesis (text)
|
| 30 |
+
premise_embs = speech_encoder.predict(["audio.wav"])
|
| 31 |
+
hypothesis_embs = text_encoder.predict(["The cat sat on the mat."], source_lang="eng_Latn")
|
| 32 |
+
|
| 33 |
+
# 3. Load MMNLI model
|
| 34 |
+
mmnli_model_name = "oist/multimodal_nli_model"
|
| 35 |
+
mmnli_model = AutoModel.from_pretrained(mmnli_model_name, trust_remote_code=True)
|
| 36 |
+
mmnli_model.eval()
|
| 37 |
+
|
| 38 |
+
# 4. Run inference
|
| 39 |
+
with torch.inference_mode():
|
| 40 |
+
logits = mmnli_model(premise_embs, hypothesis_embs) # returns [batch_size, 3]
|
| 41 |
+
pred_class = torch.argmax(logits, dim=-1).item()
|
| 42 |
+
|
| 43 |
+
print("Prediction:", pred_class)
|
| 44 |
+
# 0 = Entailment, 1 = Neutral, 2 = Contradiction
|
| 45 |
+
```
|
| 46 |
+
|
| 47 |
+
### Example 2: Text–Text Inference (Official SONAR)
|
| 48 |
+
|
| 49 |
+
```python
|
| 50 |
+
import torch
|
| 51 |
+
from sonar.inference_pipelines.text import TextToEmbeddingModelPipeline
|
| 52 |
+
from transformers import AutoModel
|
| 53 |
+
|
| 54 |
+
# 1. Load official SONAR text encoder
|
| 55 |
+
text_encoder = TextToEmbeddingModelPipeline(
|
| 56 |
+
encoder="text_sonar_basic_encoder",
|
| 57 |
+
tokenizer="text_sonar_basic_encoder"
|
| 58 |
+
)
|
| 59 |
+
|
| 60 |
+
# 2. Encode premise and hypothesis
|
| 61 |
+
premise_texts = ["Le chat s'assit sur le tapis."]
|
| 62 |
+
hypothesis_texts = ["The cat sat on the mat."]
|
| 63 |
+
|
| 64 |
+
premise_embs = text_encoder.predict(premise_texts, source_lang="fra_Latn")
|
| 65 |
+
hypothesis_embs = text_encoder.predict(hypothesis_texts, source_lang="eng_Latn")
|
| 66 |
+
|
| 67 |
+
# 3. Load MMNLI model
|
| 68 |
+
mmnli_model = AutoModel.from_pretrained("oist/multimodal_nli_model", trust_remote_code=True)
|
| 69 |
+
mmnli_model.eval()
|
| 70 |
+
|
| 71 |
+
# 4. Run inference
|
| 72 |
+
with torch.inference_mode():
|
| 73 |
+
logits = mmnli_model(premise_embs, hypothesis_embs)
|
| 74 |
+
pred_class = torch.argmax(logits, dim=-1).item()
|
| 75 |
+
|
| 76 |
+
print("Prediction:", pred_class)
|
| 77 |
+
# 0 = Entailment, 1 = Neutral, 2 = Contradiction
|
| 78 |
+
```
|
| 79 |
+
|
| 80 |
+
### Example 3: Text–Text Inference (Ported SONAR)
|
| 81 |
+
|
| 82 |
+
```python
|
| 83 |
+
import torch
|
| 84 |
+
from transformers import AutoTokenizer, AutoModel
|
| 85 |
+
from transformers.models.m2m_100.modeling_m2m_100 import M2M100Encoder
|
| 86 |
+
|
| 87 |
+
# 1. Load ported SONAR text encoder
|
| 88 |
+
sonar_model_name = "cointegrated/SONAR_200_text_encoder"
|
| 89 |
+
encoder = M2M100Encoder.from_pretrained(sonar_model_name)
|
| 90 |
+
tokenizer = AutoTokenizer.from_pretrained(sonar_model_name)
|
| 91 |
+
|
| 92 |
+
def encode_mean_pool(texts, tokenizer, encoder, lang='eng_Latn', norm=False):
|
| 93 |
+
tokenizer.src_lang = lang
|
| 94 |
+
with torch.inference_mode():
|
| 95 |
+
batch = tokenizer(texts, return_tensors='pt', padding=True)
|
| 96 |
+
seq_embs = encoder(**batch).last_hidden_state
|
| 97 |
+
mask = batch.attention_mask
|
| 98 |
+
mean_emb = (seq_embs * mask.unsqueeze(-1)).sum(1) / mask.unsqueeze(-1).sum(1)
|
| 99 |
+
if norm:
|
| 100 |
+
mean_emb = torch.nn.functional.normalize(mean_emb)
|
| 101 |
+
return mean_emb
|
| 102 |
+
|
| 103 |
+
# Example sentences
|
| 104 |
+
premise_sentences = ["Le chat s'assit sur le tapis."]
|
| 105 |
+
hypothesis_sentences = ["The cat sat on the mat."]
|
| 106 |
+
|
| 107 |
+
# 2. Encode premise and hypothesis
|
| 108 |
+
premise_embs = encode_mean_pool(premise_sentences, tokenizer, encoder, lang="fra_Latn")
|
| 109 |
+
hypothesis_embs = encode_mean_pool(hypothesis_sentences, tokenizer, encoder, lang="eng_Latn")
|
| 110 |
+
|
| 111 |
+
|
| 112 |
+
mmnli_model_name = "oist/multimodal_nli_model"
|
| 113 |
+
mmnli_model = AutoModel.from_pretrained(mmnli_model_name, trust_remote_code=True)
|
| 114 |
+
mmnli_model.eval()
|
| 115 |
+
|
| 116 |
+
# 4. Run inference
|
| 117 |
+
with torch.inference_mode():
|
| 118 |
+
logits = mmnli_model(premise_embs, hypothesis_embs) # returns [batch_size, 3]
|
| 119 |
+
pred_class = torch.argmax(logits, dim=-1).item()
|
| 120 |
+
|
| 121 |
+
print("Prediction:", pred_class)
|
| 122 |
+
# 0 = Entailment, 1 = Neutral, 2 = Contradiction
|
| 123 |
+
```
|
| 124 |
+
|
| 125 |
+
---
|
| 126 |
+
|
| 127 |
+
## Labels
|
| 128 |
+
|
| 129 |
+
- 0 = Entailment
|
| 130 |
+
- 1 = Neutral
|
| 131 |
+
- 2 = Contradiction
|
| 132 |
+
|
| 133 |
+
---
|
| 134 |
+
|
| 135 |
+
## Citation
|
| 136 |
+
|
| 137 |
+
If you use this model, please cite:
|
| 138 |
+
|
| 139 |
+
```bibtex
|
| 140 |
+
@inproceedings{istaiteh2025beyond,
|
| 141 |
+
title={Beyond Similarity Scoring: Detecting Entailment and Contradiction in Multilingual and Multimodal Contexts},
|
| 142 |
+
author={Istaiteh, Othman and Mdhaffar, Salima and Est{\`e}ve, Yannick},
|
| 143 |
+
booktitle={Proc. Interspeech 2025},
|
| 144 |
+
pages={286--290},
|
| 145 |
+
year={2025}
|
| 146 |
+
}
|
config.json
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"activation": "TANH",
|
| 3 |
+
"architectures": ["MMNLIModel"],
|
| 4 |
+
"dropout": 0.1,
|
| 5 |
+
"embedding_dim": 1024,
|
| 6 |
+
"hidden_dims": [3072, 1536],
|
| 7 |
+
"model_type": "mmnli",
|
| 8 |
+
"norm_emb": true,
|
| 9 |
+
"output_dim": 3,
|
| 10 |
+
"transformers_version": "4.56.1",
|
| 11 |
+
"auto_map": {
|
| 12 |
+
"AutoConfig": "modeling_mmnli.MMNLIConfig",
|
| 13 |
+
"AutoModel": "modeling_mmnli.MMNLIModel"
|
| 14 |
+
}
|
| 15 |
+
}
|
model.stateforce
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d1b0f69053bbbb0e4b1a4577014eda15b94030c506dbc212726cf2919128751d
|
| 3 |
+
size 69245364
|
modeling_mmnli.py
ADDED
|
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
import torch.nn.functional as F
|
| 4 |
+
from typing import List, Optional
|
| 5 |
+
from torch import Tensor
|
| 6 |
+
from transformers import PretrainedConfig, PreTrainedModel
|
| 7 |
+
|
| 8 |
+
# ---------------- CONFIG ---------------- #
|
| 9 |
+
class MMNLIConfig(PretrainedConfig):
|
| 10 |
+
model_type = "mmnli"
|
| 11 |
+
|
| 12 |
+
def __init__(
|
| 13 |
+
self,
|
| 14 |
+
embedding_dim: int = 1024,
|
| 15 |
+
hidden_dims: Optional[List[int]] = None,
|
| 16 |
+
dropout: float = 0.1,
|
| 17 |
+
activation: str = "TANH",
|
| 18 |
+
norm_emb: bool = True,
|
| 19 |
+
**kwargs,
|
| 20 |
+
):
|
| 21 |
+
super().__init__(**kwargs)
|
| 22 |
+
self.embedding_dim = embedding_dim
|
| 23 |
+
self.hidden_dims = hidden_dims if hidden_dims is not None else [3072, 1536]
|
| 24 |
+
self.dropout = dropout
|
| 25 |
+
self.activation = activation
|
| 26 |
+
self.norm_emb = norm_emb
|
| 27 |
+
self.output_dim = 3 # entailment, contradiction, neutral
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
# ---------------- CORE MODEL ---------------- #
|
| 31 |
+
ACTIVATIONS = {"TANH": nn.Tanh, "RELU": nn.ReLU}
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
class MMNLICore(nn.Module):
|
| 35 |
+
def __init__(
|
| 36 |
+
self,
|
| 37 |
+
embedding_dim: int,
|
| 38 |
+
hidden_dims: List[int],
|
| 39 |
+
dropout: float,
|
| 40 |
+
activation: str,
|
| 41 |
+
norm_emb: bool,
|
| 42 |
+
):
|
| 43 |
+
super().__init__()
|
| 44 |
+
self.norm_emb = norm_emb
|
| 45 |
+
|
| 46 |
+
if activation not in ACTIVATIONS:
|
| 47 |
+
raise ValueError(f"Unrecognized activation: {activation}")
|
| 48 |
+
|
| 49 |
+
# Input: concatenation of [p, h, p*h, |p-h|] => 4 * embedding_dim
|
| 50 |
+
input_dim = embedding_dim * 4
|
| 51 |
+
|
| 52 |
+
modules: List[nn.Module] = []
|
| 53 |
+
if dropout > 0:
|
| 54 |
+
modules.append(nn.Dropout(p=dropout))
|
| 55 |
+
|
| 56 |
+
nprev = input_dim
|
| 57 |
+
for h in hidden_dims:
|
| 58 |
+
modules.append(nn.Linear(nprev, h))
|
| 59 |
+
modules.append(ACTIVATIONS[activation]())
|
| 60 |
+
if dropout > 0:
|
| 61 |
+
modules.append(nn.Dropout(p=dropout))
|
| 62 |
+
nprev = h
|
| 63 |
+
|
| 64 |
+
# Final classifier layer: 3-way softmax
|
| 65 |
+
modules.append(nn.Linear(nprev, 3))
|
| 66 |
+
modules.append(nn.Softmax(dim=-1))
|
| 67 |
+
|
| 68 |
+
self.mlp = nn.Sequential(*modules)
|
| 69 |
+
|
| 70 |
+
def _norm(self, emb: Optional[Tensor]) -> Optional[Tensor]:
|
| 71 |
+
return F.normalize(emb) if (emb is not None and self.norm_emb) else emb
|
| 72 |
+
|
| 73 |
+
def featurize(self, premise: Tensor, hypothesis: Tensor) -> Tensor:
|
| 74 |
+
return torch.cat(
|
| 75 |
+
[premise, hypothesis, premise * hypothesis, torch.abs(premise - hypothesis)],
|
| 76 |
+
dim=-1,
|
| 77 |
+
)
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
# ---------------- HF MODEL WRAPPER ---------------- #
|
| 81 |
+
class MMNLIModel(PreTrainedModel):
|
| 82 |
+
config_class = MMNLIConfig
|
| 83 |
+
|
| 84 |
+
def __init__(self, config: MMNLIConfig):
|
| 85 |
+
super().__init__(config)
|
| 86 |
+
self.core = MMNLICore(
|
| 87 |
+
embedding_dim=config.embedding_dim,
|
| 88 |
+
hidden_dims=config.hidden_dims,
|
| 89 |
+
dropout=config.dropout,
|
| 90 |
+
activation=config.activation,
|
| 91 |
+
norm_emb=config.norm_emb,
|
| 92 |
+
)
|
| 93 |
+
|
| 94 |
+
def forward(self, premise: Tensor, hypothesis: Tensor):
|
| 95 |
+
premise = self.core._norm(premise)
|
| 96 |
+
hypothesis = self.core._norm(hypothesis)
|
| 97 |
+
proc = self.core.featurize(premise, hypothesis)
|
| 98 |
+
return self.core.mlp(proc)
|