model documentation
Browse files
README.md
CHANGED
|
@@ -5,9 +5,11 @@ language:
|
|
| 5 |
- fr
|
| 6 |
- it
|
| 7 |
- nl
|
|
|
|
| 8 |
tags:
|
| 9 |
- punctuation prediction
|
| 10 |
- punctuation
|
|
|
|
| 11 |
datasets: wmt/europarl
|
| 12 |
license: mit
|
| 13 |
widget:
|
|
@@ -18,14 +20,103 @@ widget:
|
|
| 18 |
- text: "Ist das eine Frage Frau Müller"
|
| 19 |
example_title: "German"
|
| 20 |
- text: "My name is Clara and I live in Berkeley California"
|
| 21 |
-
example_title: "English"
|
|
|
|
| 22 |
metrics:
|
| 23 |
- f1
|
| 24 |
---
|
| 25 |
|
| 26 |
-
# Work in progress
|
| 27 |
|
| 28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
```
|
| 30 |
precision recall f1-score support
|
| 31 |
|
|
@@ -39,4 +130,94 @@ metrics:
|
|
| 39 |
accuracy 0.98 54504270
|
| 40 |
macro avg 0.83 0.75 0.78 54504270
|
| 41 |
weighted avg 0.98 0.98 0.98 54504270
|
| 42 |
-
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
- fr
|
| 6 |
- it
|
| 7 |
- nl
|
| 8 |
+
|
| 9 |
tags:
|
| 10 |
- punctuation prediction
|
| 11 |
- punctuation
|
| 12 |
+
|
| 13 |
datasets: wmt/europarl
|
| 14 |
license: mit
|
| 15 |
widget:
|
|
|
|
| 20 |
- text: "Ist das eine Frage Frau Müller"
|
| 21 |
example_title: "German"
|
| 22 |
- text: "My name is Clara and I live in Berkeley California"
|
| 23 |
+
example_title: "English"
|
| 24 |
+
|
| 25 |
metrics:
|
| 26 |
- f1
|
| 27 |
---
|
| 28 |
|
|
|
|
| 29 |
|
| 30 |
+
# Model Card for fullstop-punctuation-multilingual-base
|
| 31 |
+
|
| 32 |
+
# Model Details
|
| 33 |
+
|
| 34 |
+
## Model Description
|
| 35 |
+
|
| 36 |
+
The goal of this task consists in training NLP models that can predict the end of sentence (EOS) and punctuation marks on automatically generated or transcribed texts.
|
| 37 |
+
|
| 38 |
+
- **Developed by:** Oliver Guhr
|
| 39 |
+
- **Shared by [Optional]:** Oliver Guhr
|
| 40 |
+
- **Model type:** Token Classification
|
| 41 |
+
- **Language(s) (NLP):** English, German, French, Italian, Dutch
|
| 42 |
+
- **License:** MIT
|
| 43 |
+
- **Parent Model:** xlm-roberta-base
|
| 44 |
+
- **Resources for more information:**
|
| 45 |
+
- [GitHub Repo](https://github.com/oliverguhr/fullstop-deep-punctuation-prediction)
|
| 46 |
+
- [Associated Paper](https://www.researchgate.net/profile/Oliver-Guhr/publication/355038679_FullStop_Multilingual_Deep_Models_for_Punctuation_Prediction/links/615a0ce3a6fae644fbd08724/FullStop-Multilingual-Deep-Models-for-Punctuation-Prediction.pdf)
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
# Uses
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
## Direct Use
|
| 54 |
+
This model can be used for the task of Token Classification
|
| 55 |
+
|
| 56 |
+
## Downstream Use [Optional]
|
| 57 |
+
|
| 58 |
+
More information needed.
|
| 59 |
+
|
| 60 |
+
## Out-of-Scope Use
|
| 61 |
+
|
| 62 |
+
The model should not be used to intentionally create hostile or alienating environments for people.
|
| 63 |
+
|
| 64 |
+
# Bias, Risks, and Limitations
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). Predictions generated by the model may include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups.
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
## Recommendations
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
| 75 |
+
|
| 76 |
+
# Training Details
|
| 77 |
+
|
| 78 |
+
## Training Data
|
| 79 |
+
|
| 80 |
+
The model authors note in the [associated paper](https://www.researchgate.net/profile/Oliver-Guhr/publication/355038679_FullStop_Multilingual_Deep_Models_for_Punctuation_Prediction/links/615a0ce3a6fae644fbd08724/FullStop-Multilingual-Deep-Models-for-Punctuation-Prediction.pdf):
|
| 81 |
+
> The task consists in predicting EOS and punctua- tion marks on unpunctuated lowercased text. The organizers of the SeppNLG shared task provided 470 MB of English, German, French, and Italian text. This data set consists of a training and a de- velopment set.
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
## Training Procedure
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
### Preprocessing
|
| 88 |
+
|
| 89 |
+
More information needed
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
### Speeds, Sizes, Times
|
| 96 |
+
More information needed
|
| 97 |
+
|
| 98 |
+
|
| 99 |
+
# Evaluation
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
## Testing Data, Factors & Metrics
|
| 103 |
+
|
| 104 |
+
### Testing Data
|
| 105 |
+
|
| 106 |
+
More information needed
|
| 107 |
+
|
| 108 |
+
|
| 109 |
+
### Factors
|
| 110 |
+
More information needed
|
| 111 |
+
|
| 112 |
+
### Metrics
|
| 113 |
+
|
| 114 |
+
More information needed
|
| 115 |
+
|
| 116 |
+
|
| 117 |
+
## Results
|
| 118 |
+
|
| 119 |
+
### Classification report over all languages
|
| 120 |
```
|
| 121 |
precision recall f1-score support
|
| 122 |
|
|
|
|
| 130 |
accuracy 0.98 54504270
|
| 131 |
macro avg 0.83 0.75 0.78 54504270
|
| 132 |
weighted avg 0.98 0.98 0.98 54504270
|
| 133 |
+
```
|
| 134 |
+
|
| 135 |
+
|
| 136 |
+
|
| 137 |
+
# Model Examination
|
| 138 |
+
|
| 139 |
+
More information needed
|
| 140 |
+
|
| 141 |
+
# Environmental Impact
|
| 142 |
+
|
| 143 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
| 144 |
+
|
| 145 |
+
- **Hardware Type:** More information needed
|
| 146 |
+
- **Hours used:** More information needed
|
| 147 |
+
- **Cloud Provider:** More information needed
|
| 148 |
+
- **Compute Region:** More information needed
|
| 149 |
+
- **Carbon Emitted:** More information needed
|
| 150 |
+
|
| 151 |
+
# Technical Specifications [optional]
|
| 152 |
+
|
| 153 |
+
## Model Architecture and Objective
|
| 154 |
+
|
| 155 |
+
More information needed
|
| 156 |
+
|
| 157 |
+
## Compute Infrastructure
|
| 158 |
+
|
| 159 |
+
More information needed
|
| 160 |
+
|
| 161 |
+
### Hardware
|
| 162 |
+
|
| 163 |
+
|
| 164 |
+
More information needed
|
| 165 |
+
|
| 166 |
+
### Software
|
| 167 |
+
|
| 168 |
+
More information needed.
|
| 169 |
+
|
| 170 |
+
# Citation
|
| 171 |
+
|
| 172 |
+
|
| 173 |
+
**BibTeX:**
|
| 174 |
+
|
| 175 |
+
|
| 176 |
+
```bibtex
|
| 177 |
+
@article{guhr-EtAl:2021:fullstop,
|
| 178 |
+
title={FullStop: Multilingual Deep Models for Punctuation Prediction},
|
| 179 |
+
author = {Guhr, Oliver and Schumann, Anne-Kathrin and Bahrmann, Frank and Böhme, Hans Joachim},
|
| 180 |
+
booktitle = {Proceedings of the Swiss Text Analytics Conference 2021},
|
| 181 |
+
month = {June},
|
| 182 |
+
year = {2021},
|
| 183 |
+
address = {Winterthur, Switzerland},
|
| 184 |
+
publisher = {CEUR Workshop Proceedings},
|
| 185 |
+
url = {http://ceur-ws.org/Vol-2957/sepp_paper4.pdf}
|
| 186 |
+
}
|
| 187 |
+
```
|
| 188 |
+
|
| 189 |
+
|
| 190 |
+
|
| 191 |
+
|
| 192 |
+
# Glossary [optional]
|
| 193 |
+
More information needed
|
| 194 |
+
|
| 195 |
+
# More Information [optional]
|
| 196 |
+
More information needed
|
| 197 |
+
|
| 198 |
+
|
| 199 |
+
# Model Card Authors [optional]
|
| 200 |
+
|
| 201 |
+
Oliver Guhr in collaboration with Ezi Ozoani and the Hugging Face team
|
| 202 |
+
|
| 203 |
+
|
| 204 |
+
# Model Card Contact
|
| 205 |
+
|
| 206 |
+
More information needed
|
| 207 |
+
|
| 208 |
+
# How to Get Started with the Model
|
| 209 |
+
|
| 210 |
+
Use the code below to get started with the model.
|
| 211 |
+
|
| 212 |
+
<details>
|
| 213 |
+
<summary> Click to expand </summary>
|
| 214 |
+
|
| 215 |
+
```python
|
| 216 |
+
from transformers import AutoTokenizer, AutoModelForTokenClassification
|
| 217 |
+
|
| 218 |
+
tokenizer = AutoTokenizer.from_pretrained("oliverguhr/fullstop-punctuation-multilingual-base")
|
| 219 |
+
|
| 220 |
+
model = AutoModelForTokenClassification.from_pretrained("oliverguhr/fullstop-punctuation-multilingual-base")
|
| 221 |
+
```
|
| 222 |
+
</details>
|
| 223 |
+
|