Update README.md
Browse files
README.md
CHANGED
|
@@ -30,4 +30,42 @@ datasets:
|
|
| 30 |
- embedding-data/WikiAnswers
|
| 31 |
tags:
|
| 32 |
- feature-extraction
|
| 33 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
- embedding-data/WikiAnswers
|
| 31 |
tags:
|
| 32 |
- feature-extraction
|
| 33 |
+
---
|
| 34 |
+
|
| 35 |
+
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2 with ONNX weights to be compatible with Transformers.js.
|
| 36 |
+
|
| 37 |
+
## Usage (Transformers.js)
|
| 38 |
+
|
| 39 |
+
If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@huggingface/transformers) using:
|
| 40 |
+
```bash
|
| 41 |
+
npm i @huggingface/transformers
|
| 42 |
+
```
|
| 43 |
+
|
| 44 |
+
You can then use the model to compute embeddings like this:
|
| 45 |
+
|
| 46 |
+
```js
|
| 47 |
+
import { pipeline } from '@huggingface/transformers';
|
| 48 |
+
|
| 49 |
+
// Create a feature-extraction pipeline
|
| 50 |
+
const extractor = await pipeline('feature-extraction', 'Xenova/all-MiniLM-L6-v2');
|
| 51 |
+
|
| 52 |
+
// Compute sentence embeddings
|
| 53 |
+
const sentences = ['This is an example sentence', 'Each sentence is converted'];
|
| 54 |
+
const output = await extractor(sentences, { pooling: 'mean', normalize: true });
|
| 55 |
+
console.log(output);
|
| 56 |
+
// Tensor {
|
| 57 |
+
// dims: [ 2, 384 ],
|
| 58 |
+
// type: 'float32',
|
| 59 |
+
// data: Float32Array(768) [ 0.04592696577310562, 0.07328180968761444, ... ],
|
| 60 |
+
// size: 768
|
| 61 |
+
// }
|
| 62 |
+
```
|
| 63 |
+
|
| 64 |
+
You can convert this Tensor to a nested JavaScript array using `.tolist()`:
|
| 65 |
+
```js
|
| 66 |
+
console.log(output.tolist());
|
| 67 |
+
// [
|
| 68 |
+
// [ 0.04592696577310562, 0.07328180968761444, 0.05400655046105385, ... ],
|
| 69 |
+
// [ 0.08188057690858841, 0.10760223120450974, -0.013241755776107311, ... ]
|
| 70 |
+
// ]
|
| 71 |
+
```
|