Upload README.md with huggingface_hub
Browse files
README.md
ADDED
|
@@ -0,0 +1,194 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language: en
|
| 3 |
+
license: apache-2.0
|
| 4 |
+
model_name: efficientnet-lite4-11-qdq.onnx
|
| 5 |
+
tags:
|
| 6 |
+
- validated
|
| 7 |
+
- vision
|
| 8 |
+
- classification
|
| 9 |
+
- efficientnet-lite4
|
| 10 |
+
---
|
| 11 |
+
<!--- SPDX-License-Identifier: MIT -->
|
| 12 |
+
|
| 13 |
+
# EfficientNet-Lite4
|
| 14 |
+
|
| 15 |
+
## Use Cases
|
| 16 |
+
EfficientNet-Lite4 is an image classification model that achieves state-of-the-art accuracy. It is designed to run on mobile CPU, GPU, and EdgeTPU devices, allowing for applications on mobile and loT, where computational resources are limited.
|
| 17 |
+
|
| 18 |
+
## Description
|
| 19 |
+
EfficientNet-Lite 4 is the largest variant and most accurate of the set of EfficientNet-Lite model. It is an integer-only quantized model that produces the highest accuracy of all of the EfficientNet models. It achieves 80.4% ImageNet top-1 accuracy, while still running in real-time (e.g. 30ms/image) on a Pixel 4 CPU.
|
| 20 |
+
|
| 21 |
+
## Model
|
| 22 |
+
|
| 23 |
+
|Model |Download | Download (with sample test data)|ONNX version|Opset version|Top-1 accuracy (%)|
|
| 24 |
+
|-------------|:--------------|:--------------|:--------------|:--------------|:--------------|
|
| 25 |
+
|EfficientNet-Lite4 | [51.9 MB](model/efficientnet-lite4-11.onnx) | [48.6 MB](model/efficientnet-lite4-11.tar.gz)|1.7.0|11|80.4|
|
| 26 |
+
|EfficientNet-Lite4-int8 | [13.0 MB](model/efficientnet-lite4-11-int8.onnx) | [12.2 MB](model/efficientnet-lite4-11-int8.tar.gz)|1.9.0|11|77.56|
|
| 27 |
+
|EfficientNet-Lite4-qdq | [12.9 MB](model/efficientnet-lite4-11-qdq.onnx) | [9.72 MB](model/efficientnet-lite4-11-qdq.tar.gz) |1.10.0 | 11| 76.90 |
|
| 28 |
+
> The fp32 Top-1 accuracy got by [Intel® Neural Compressor](https://github.com/intel/neural-compressor) is 77.70%, and compared with this value, int8 EfficientNet-Lite4's Top-1 accuracy drop ratio is 0.18% and performance improvement is 1.12x.
|
| 29 |
+
>
|
| 30 |
+
> **Note**
|
| 31 |
+
>
|
| 32 |
+
> The performance depends on the test hardware. Performance data here is collected with Intel® Xeon® Platinum 8280 Processor, 1s 4c per instance, CentOS Linux 8.3, data batch size is 1.
|
| 33 |
+
|
| 34 |
+
### Source
|
| 35 |
+
Tensorflow EfficientNet-Lite4 => ONNX EfficientNet-Lite4
|
| 36 |
+
ONNX EfficientNet-Lite4 => Quantized ONNX EfficientNet-Lite4
|
| 37 |
+
|
| 38 |
+
<hr>
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
## Inference
|
| 42 |
+
|
| 43 |
+
### Running Inference
|
| 44 |
+
The following steps show how to run the inference using onnxruntime.
|
| 45 |
+
|
| 46 |
+
import onnxruntime as rt
|
| 47 |
+
|
| 48 |
+
# load model
|
| 49 |
+
# Start from ORT 1.10, ORT requires explicitly setting the providers parameter if you want to use execution providers
|
| 50 |
+
# other than the default CPU provider (as opposed to the previous behavior of providers getting set/registered by default
|
| 51 |
+
# based on the build flags) when instantiating InferenceSession.
|
| 52 |
+
# For example, if NVIDIA GPU is available and ORT Python package is built with CUDA, then call API as following:
|
| 53 |
+
# rt.InferenceSession(path/to/model, providers=['CUDAExecutionProvider'])
|
| 54 |
+
sess = rt.InferenceSession(MODEL + ".onnx")
|
| 55 |
+
# run inference
|
| 56 |
+
results = sess.run(["Softmax:0"], {"images:0": img_batch})[0]
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
### Input to model
|
| 60 |
+
Input image to model is resized to shape `float32[1,224,224,3]`. The batch size is 1, with 224 x 224 height and width dimensions. The input is an RBG image that has 3 channels: red, green, and blue. Inference was done using a jpg image.
|
| 61 |
+
|
| 62 |
+
### Preprocessing steps
|
| 63 |
+
The following steps show how to preprocess the input image. For more details visit [this conversion notebook](https://github.com/onnx/tensorflow-onnx/blob/master/tutorials/efficientnet-lite.ipynb).
|
| 64 |
+
|
| 65 |
+
import numpy as np
|
| 66 |
+
import math
|
| 67 |
+
import matplotlib.pyplot as plt
|
| 68 |
+
import onnxruntime as rt
|
| 69 |
+
import cv2
|
| 70 |
+
import json
|
| 71 |
+
|
| 72 |
+
# load the labels text file
|
| 73 |
+
labels = json.load(open("labels_map.txt", "r"))
|
| 74 |
+
|
| 75 |
+
# set image file dimensions to 224x224 by resizing and cropping image from center
|
| 76 |
+
def pre_process_edgetpu(img, dims):
|
| 77 |
+
output_height, output_width, _ = dims
|
| 78 |
+
img = resize_with_aspectratio(img, output_height, output_width, inter_pol=cv2.INTER_LINEAR)
|
| 79 |
+
img = center_crop(img, output_height, output_width)
|
| 80 |
+
img = np.asarray(img, dtype='float32')
|
| 81 |
+
# converts jpg pixel value from [0 - 255] to float array [-1.0 - 1.0]
|
| 82 |
+
img -= [127.0, 127.0, 127.0]
|
| 83 |
+
img /= [128.0, 128.0, 128.0]
|
| 84 |
+
return img
|
| 85 |
+
|
| 86 |
+
# resize the image with a proportional scale
|
| 87 |
+
def resize_with_aspectratio(img, out_height, out_width, scale=87.5, inter_pol=cv2.INTER_LINEAR):
|
| 88 |
+
height, width, _ = img.shape
|
| 89 |
+
new_height = int(100. * out_height / scale)
|
| 90 |
+
new_width = int(100. * out_width / scale)
|
| 91 |
+
if height > width:
|
| 92 |
+
w = new_width
|
| 93 |
+
h = int(new_height * height / width)
|
| 94 |
+
else:
|
| 95 |
+
h = new_height
|
| 96 |
+
w = int(new_width * width / height)
|
| 97 |
+
img = cv2.resize(img, (w, h), interpolation=inter_pol)
|
| 98 |
+
return img
|
| 99 |
+
|
| 100 |
+
# crop the image around the center based on given height and width
|
| 101 |
+
def center_crop(img, out_height, out_width):
|
| 102 |
+
height, width, _ = img.shape
|
| 103 |
+
left = int((width - out_width) / 2)
|
| 104 |
+
right = int((width + out_width) / 2)
|
| 105 |
+
top = int((height - out_height) / 2)
|
| 106 |
+
bottom = int((height + out_height) / 2)
|
| 107 |
+
img = img[top:bottom, left:right]
|
| 108 |
+
return img
|
| 109 |
+
|
| 110 |
+
# read the image
|
| 111 |
+
fname = "image_file"
|
| 112 |
+
img = cv2.imread(fname)
|
| 113 |
+
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
| 114 |
+
|
| 115 |
+
# pre-process the image like mobilenet and resize it to 224x224
|
| 116 |
+
img = pre_process_edgetpu(img, (224, 224, 3))
|
| 117 |
+
plt.axis('off')
|
| 118 |
+
plt.imshow(img)
|
| 119 |
+
plt.show()
|
| 120 |
+
|
| 121 |
+
# create a batch of 1 (that batch size is buned into the saved_model)
|
| 122 |
+
img_batch = np.expand_dims(img, axis=0)
|
| 123 |
+
|
| 124 |
+
### Output of model
|
| 125 |
+
Output of model is an inference score with array shape `float32[1,1000]`. The output references the `labels_map.txt` file which maps an index to a label to classify the type of image.
|
| 126 |
+
|
| 127 |
+
### Postprocessing steps
|
| 128 |
+
The following steps detail how to print the output results of the model.
|
| 129 |
+
|
| 130 |
+
# load the model
|
| 131 |
+
# Start from ORT 1.10, ORT requires explicitly setting the providers parameter if you want to use execution providers
|
| 132 |
+
# other than the default CPU provider (as opposed to the previous behavior of providers getting set/registered by default
|
| 133 |
+
# based on the build flags) when instantiating InferenceSession.
|
| 134 |
+
# For example, if NVIDIA GPU is available and ORT Python package is built with CUDA, then call API as following:
|
| 135 |
+
# rt.InferenceSession(path/to/model, providers=['CUDAExecutionProvider'])
|
| 136 |
+
sess = rt.InferenceSession(MODEL + ".onnx")
|
| 137 |
+
# run inference and print results
|
| 138 |
+
results = sess.run(["Softmax:0"], {"images:0": img_batch})[0]
|
| 139 |
+
result = reversed(results[0].argsort()[-5:])
|
| 140 |
+
for r in result:
|
| 141 |
+
print(r, labels[str(r)], results[0][r])
|
| 142 |
+
<hr>
|
| 143 |
+
|
| 144 |
+
## Dataset (Train and validation)
|
| 145 |
+
The model was trained using [COCO 2017 Train Images, Val Images, and Train/Val annotations](https://cocodataset.org/#download).
|
| 146 |
+
<hr>
|
| 147 |
+
|
| 148 |
+
## Validation
|
| 149 |
+
Refer to [efficientnet-lite4 conversion notebook](https://github.com/onnx/tensorflow-onnx/blob/master/tutorials/efficientnet-lite.ipynb) for details of how to use it and reproduce accuracy.
|
| 150 |
+
<hr>
|
| 151 |
+
|
| 152 |
+
## Quantization
|
| 153 |
+
EfficientNet-Lite4-int8 and EfficientNet-Lite4-qdq are obtained by quantizing fp32 CaffeNet model. We use [Intel® Neural Compressor](https://github.com/intel/neural-compressor) with onnxruntime backend to perform quantization. View the [instructions](https://github.com/intel/neural-compressor/blob/master/examples/onnxrt/image_recognition/onnx_model_zoo/efficientnet/quantization/ptq/README.md) to understand how to use Intel® Neural Compressor for quantization.
|
| 154 |
+
|
| 155 |
+
### Environment
|
| 156 |
+
onnx: 1.9.0
|
| 157 |
+
onnxruntime: 1.8.0
|
| 158 |
+
|
| 159 |
+
### Prepare model
|
| 160 |
+
```shell
|
| 161 |
+
wget https://github.com/onnx/models/raw/main/vision/classification/efficientnet-lite4/model/efficientnet-lite4-11.onnx
|
| 162 |
+
```
|
| 163 |
+
|
| 164 |
+
### Model quantize
|
| 165 |
+
Make sure to specify the appropriate dataset path in the configuration file.
|
| 166 |
+
```bash
|
| 167 |
+
bash run_tuning.sh --input_model=path/to/model \ # model path as *.onnx
|
| 168 |
+
--config=efficientnet.yaml \
|
| 169 |
+
--output_model=path/to/save
|
| 170 |
+
```
|
| 171 |
+
<hr>
|
| 172 |
+
|
| 173 |
+
## References
|
| 174 |
+
* Tensorflow to Onnx conversion [tutorial](https://github.com/onnx/tensorflow-onnx/blob/master/tutorials/efficientnet-lite.ipynb). The Juypter Notebook references how to run an evaluation on the efficientnet-lite4 model and export it as a saved model. It also details how to convert the tensorflow model into onnx, and how to run its preprocessing and postprocessing code for the inputs and outputs.
|
| 175 |
+
|
| 176 |
+
* Refer to this [paper](https://arxiv.org/abs/1905.11946) for more details on the model.
|
| 177 |
+
|
| 178 |
+
* [Intel® Neural Compressor](https://github.com/intel/neural-compressor)
|
| 179 |
+
|
| 180 |
+
<hr>
|
| 181 |
+
|
| 182 |
+
## Contributors
|
| 183 |
+
* [Shirley Su](https://github.com/shirleysu8)
|
| 184 |
+
* [mengniwang95](https://github.com/mengniwang95) (Intel)
|
| 185 |
+
* [airMeng](https://github.com/airMeng) (Intel)
|
| 186 |
+
* [ftian1](https://github.com/ftian1) (Intel)
|
| 187 |
+
* [hshen14](https://github.com/hshen14) (Intel)
|
| 188 |
+
|
| 189 |
+
<hr>
|
| 190 |
+
|
| 191 |
+
## License
|
| 192 |
+
MIT License
|
| 193 |
+
<hr>
|
| 194 |
+
|