oodeh commited on
Commit
3490a28
·
verified ·
1 Parent(s): 166435f

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +11 -0
  2. checkpoint-111/README.md +202 -0
  3. checkpoint-111/adapter_config.json +34 -0
  4. checkpoint-111/added_tokens.json +24 -0
  5. checkpoint-111/merges.txt +0 -0
  6. checkpoint-111/special_tokens_map.json +31 -0
  7. checkpoint-111/tokenizer_config.json +209 -0
  8. checkpoint-111/trainer_state.json +921 -0
  9. checkpoint-111/vocab.json +0 -0
  10. checkpoint-148/README.md +202 -0
  11. checkpoint-148/adapter_config.json +34 -0
  12. checkpoint-148/added_tokens.json +24 -0
  13. checkpoint-148/merges.txt +0 -0
  14. checkpoint-148/optimizer.pt +3 -0
  15. checkpoint-148/special_tokens_map.json +31 -0
  16. checkpoint-148/tokenizer_config.json +209 -0
  17. checkpoint-148/trainer_state.json +1217 -0
  18. checkpoint-185/README.md +202 -0
  19. checkpoint-185/adapter_config.json +34 -0
  20. checkpoint-185/adapter_model.safetensors +3 -0
  21. checkpoint-185/added_tokens.json +24 -0
  22. checkpoint-185/optimizer.pt +3 -0
  23. checkpoint-185/tokenizer.json +3 -0
  24. checkpoint-222/README.md +202 -0
  25. checkpoint-222/adapter_model.safetensors +3 -0
  26. checkpoint-222/merges.txt +0 -0
  27. checkpoint-222/tokenizer.json +3 -0
  28. checkpoint-259/README.md +202 -0
  29. checkpoint-259/adapter_model.safetensors +3 -0
  30. checkpoint-259/merges.txt +0 -0
  31. checkpoint-259/special_tokens_map.json +31 -0
  32. checkpoint-259/tokenizer.json +3 -0
  33. checkpoint-259/trainer_state.json +2105 -0
  34. checkpoint-296/README.md +202 -0
  35. checkpoint-296/adapter_config.json +34 -0
  36. checkpoint-296/adapter_model.safetensors +3 -0
  37. checkpoint-296/added_tokens.json +24 -0
  38. checkpoint-296/optimizer.pt +3 -0
  39. checkpoint-296/special_tokens_map.json +31 -0
  40. checkpoint-296/tokenizer.json +3 -0
  41. checkpoint-296/tokenizer_config.json +209 -0
  42. checkpoint-296/trainer_state.json +2401 -0
  43. checkpoint-296/vocab.json +0 -0
  44. checkpoint-333/README.md +202 -0
  45. checkpoint-333/adapter_config.json +34 -0
  46. checkpoint-333/adapter_model.safetensors +3 -0
  47. checkpoint-333/added_tokens.json +24 -0
  48. checkpoint-333/merges.txt +0 -0
  49. checkpoint-333/special_tokens_map.json +31 -0
  50. checkpoint-333/tokenizer.json +3 -0
.gitattributes CHANGED
@@ -33,3 +33,14 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ checkpoint-851/tokenizer.json filter=lfs diff=lfs merge=lfs -text
37
+ checkpoint-888/tokenizer.json filter=lfs diff=lfs merge=lfs -text
38
+ checkpoint-222/tokenizer.json filter=lfs diff=lfs merge=lfs -text
39
+ checkpoint-259/tokenizer.json filter=lfs diff=lfs merge=lfs -text
40
+ checkpoint-74/tokenizer.json filter=lfs diff=lfs merge=lfs -text
41
+ checkpoint-296/tokenizer.json filter=lfs diff=lfs merge=lfs -text
42
+ checkpoint-370/tokenizer.json filter=lfs diff=lfs merge=lfs -text
43
+ checkpoint-407/tokenizer.json filter=lfs diff=lfs merge=lfs -text
44
+ checkpoint-185/tokenizer.json filter=lfs diff=lfs merge=lfs -text
45
+ checkpoint-333/tokenizer.json filter=lfs diff=lfs merge=lfs -text
46
+ checkpoint-444/tokenizer.json filter=lfs diff=lfs merge=lfs -text
checkpoint-111/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: Qwen/Qwen2.5-Coder-14B-Instruct
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.12.0
checkpoint-111/adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "Qwen/Qwen2.5-Coder-14B-Instruct",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 16,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "q_proj",
24
+ "gate_proj",
25
+ "o_proj",
26
+ "k_proj",
27
+ "up_proj",
28
+ "down_proj",
29
+ "v_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
checkpoint-111/added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
checkpoint-111/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-111/special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
checkpoint-111/tokenizer_config.json ADDED
@@ -0,0 +1,209 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ }
181
+ },
182
+ "additional_special_tokens": [
183
+ "<|im_start|>",
184
+ "<|im_end|>",
185
+ "<|object_ref_start|>",
186
+ "<|object_ref_end|>",
187
+ "<|box_start|>",
188
+ "<|box_end|>",
189
+ "<|quad_start|>",
190
+ "<|quad_end|>",
191
+ "<|vision_start|>",
192
+ "<|vision_end|>",
193
+ "<|vision_pad|>",
194
+ "<|image_pad|>",
195
+ "<|video_pad|>"
196
+ ],
197
+ "bos_token": null,
198
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
199
+ "clean_up_tokenization_spaces": false,
200
+ "eos_token": "<|im_end|>",
201
+ "errors": "replace",
202
+ "extra_special_tokens": {},
203
+ "model_max_length": 12000,
204
+ "pad_token": "<|endoftext|>",
205
+ "padding_side": "right",
206
+ "split_special_tokens": false,
207
+ "tokenizer_class": "Qwen2Tokenizer",
208
+ "unk_token": null
209
+ }
checkpoint-111/trainer_state.json ADDED
@@ -0,0 +1,921 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 2.9395973154362416,
5
+ "eval_steps": 500,
6
+ "global_step": 111,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.026845637583892617,
13
+ "grad_norm": 0.04068412259221077,
14
+ "learning_rate": 4.9999899870162604e-05,
15
+ "loss": 0.5189,
16
+ "num_input_tokens_seen": 58440,
17
+ "step": 1
18
+ },
19
+ {
20
+ "epoch": 0.053691275167785234,
21
+ "grad_norm": 0.03802767023444176,
22
+ "learning_rate": 4.999959948145249e-05,
23
+ "loss": 0.5061,
24
+ "num_input_tokens_seen": 112800,
25
+ "step": 2
26
+ },
27
+ {
28
+ "epoch": 0.08053691275167785,
29
+ "grad_norm": 0.0524083748459816,
30
+ "learning_rate": 4.999909883627587e-05,
31
+ "loss": 0.5956,
32
+ "num_input_tokens_seen": 156704,
33
+ "step": 3
34
+ },
35
+ {
36
+ "epoch": 0.10738255033557047,
37
+ "grad_norm": 0.050608448684215546,
38
+ "learning_rate": 4.999839793864313e-05,
39
+ "loss": 0.5222,
40
+ "num_input_tokens_seen": 213952,
41
+ "step": 4
42
+ },
43
+ {
44
+ "epoch": 0.1342281879194631,
45
+ "grad_norm": 0.04771890118718147,
46
+ "learning_rate": 4.9997496794168726e-05,
47
+ "loss": 0.4761,
48
+ "num_input_tokens_seen": 266920,
49
+ "step": 5
50
+ },
51
+ {
52
+ "epoch": 0.1610738255033557,
53
+ "grad_norm": 0.05538628622889519,
54
+ "learning_rate": 4.999639541007116e-05,
55
+ "loss": 0.5221,
56
+ "num_input_tokens_seen": 313560,
57
+ "step": 6
58
+ },
59
+ {
60
+ "epoch": 0.18791946308724833,
61
+ "grad_norm": 0.053944796323776245,
62
+ "learning_rate": 4.999509379517297e-05,
63
+ "loss": 0.4738,
64
+ "num_input_tokens_seen": 349544,
65
+ "step": 7
66
+ },
67
+ {
68
+ "epoch": 0.21476510067114093,
69
+ "grad_norm": 0.05679492652416229,
70
+ "learning_rate": 4.9993591959900566e-05,
71
+ "loss": 0.5576,
72
+ "num_input_tokens_seen": 397952,
73
+ "step": 8
74
+ },
75
+ {
76
+ "epoch": 0.24161073825503357,
77
+ "grad_norm": 0.05358556658029556,
78
+ "learning_rate": 4.999188991628425e-05,
79
+ "loss": 0.4803,
80
+ "num_input_tokens_seen": 452568,
81
+ "step": 9
82
+ },
83
+ {
84
+ "epoch": 0.2684563758389262,
85
+ "grad_norm": 0.05667557194828987,
86
+ "learning_rate": 4.998998767795805e-05,
87
+ "loss": 0.4735,
88
+ "num_input_tokens_seen": 494400,
89
+ "step": 10
90
+ },
91
+ {
92
+ "epoch": 0.2953020134228188,
93
+ "grad_norm": 0.048348862677812576,
94
+ "learning_rate": 4.998788526015961e-05,
95
+ "loss": 0.5054,
96
+ "num_input_tokens_seen": 569352,
97
+ "step": 11
98
+ },
99
+ {
100
+ "epoch": 0.3221476510067114,
101
+ "grad_norm": 0.055022645741701126,
102
+ "learning_rate": 4.998558267973014e-05,
103
+ "loss": 0.494,
104
+ "num_input_tokens_seen": 623680,
105
+ "step": 12
106
+ },
107
+ {
108
+ "epoch": 0.348993288590604,
109
+ "grad_norm": 0.05279555916786194,
110
+ "learning_rate": 4.998307995511418e-05,
111
+ "loss": 0.4411,
112
+ "num_input_tokens_seen": 675784,
113
+ "step": 13
114
+ },
115
+ {
116
+ "epoch": 0.37583892617449666,
117
+ "grad_norm": 0.06557705253362656,
118
+ "learning_rate": 4.998037710635952e-05,
119
+ "loss": 0.5778,
120
+ "num_input_tokens_seen": 728120,
121
+ "step": 14
122
+ },
123
+ {
124
+ "epoch": 0.40268456375838924,
125
+ "grad_norm": 0.06649675220251083,
126
+ "learning_rate": 4.9977474155117045e-05,
127
+ "loss": 0.5217,
128
+ "num_input_tokens_seen": 780392,
129
+ "step": 15
130
+ },
131
+ {
132
+ "epoch": 0.42953020134228187,
133
+ "grad_norm": 0.05616322159767151,
134
+ "learning_rate": 4.997437112464049e-05,
135
+ "loss": 0.4175,
136
+ "num_input_tokens_seen": 841192,
137
+ "step": 16
138
+ },
139
+ {
140
+ "epoch": 0.4563758389261745,
141
+ "grad_norm": 0.07165056467056274,
142
+ "learning_rate": 4.997106803978636e-05,
143
+ "loss": 0.5109,
144
+ "num_input_tokens_seen": 899368,
145
+ "step": 17
146
+ },
147
+ {
148
+ "epoch": 0.48322147651006714,
149
+ "grad_norm": 0.06656442582607269,
150
+ "learning_rate": 4.996756492701362e-05,
151
+ "loss": 0.4066,
152
+ "num_input_tokens_seen": 944400,
153
+ "step": 18
154
+ },
155
+ {
156
+ "epoch": 0.5100671140939598,
157
+ "grad_norm": 0.0628059059381485,
158
+ "learning_rate": 4.996386181438357e-05,
159
+ "loss": 0.4501,
160
+ "num_input_tokens_seen": 997024,
161
+ "step": 19
162
+ },
163
+ {
164
+ "epoch": 0.5369127516778524,
165
+ "grad_norm": 0.06418219953775406,
166
+ "learning_rate": 4.995995873155958e-05,
167
+ "loss": 0.4632,
168
+ "num_input_tokens_seen": 1057264,
169
+ "step": 20
170
+ },
171
+ {
172
+ "epoch": 0.5637583892617449,
173
+ "grad_norm": 0.08489955216646194,
174
+ "learning_rate": 4.9955855709806845e-05,
175
+ "loss": 0.4224,
176
+ "num_input_tokens_seen": 1094144,
177
+ "step": 21
178
+ },
179
+ {
180
+ "epoch": 0.5906040268456376,
181
+ "grad_norm": 0.06560485810041428,
182
+ "learning_rate": 4.9951552781992154e-05,
183
+ "loss": 0.4084,
184
+ "num_input_tokens_seen": 1144376,
185
+ "step": 22
186
+ },
187
+ {
188
+ "epoch": 0.6174496644295302,
189
+ "grad_norm": 0.05338270589709282,
190
+ "learning_rate": 4.9947049982583625e-05,
191
+ "loss": 0.3925,
192
+ "num_input_tokens_seen": 1206272,
193
+ "step": 23
194
+ },
195
+ {
196
+ "epoch": 0.6442953020134228,
197
+ "grad_norm": 0.06893228739500046,
198
+ "learning_rate": 4.994234734765043e-05,
199
+ "loss": 0.3666,
200
+ "num_input_tokens_seen": 1252464,
201
+ "step": 24
202
+ },
203
+ {
204
+ "epoch": 0.6711409395973155,
205
+ "grad_norm": 0.07986386865377426,
206
+ "learning_rate": 4.99374449148625e-05,
207
+ "loss": 0.4105,
208
+ "num_input_tokens_seen": 1295560,
209
+ "step": 25
210
+ },
211
+ {
212
+ "epoch": 0.697986577181208,
213
+ "grad_norm": 0.0721018984913826,
214
+ "learning_rate": 4.99323427234902e-05,
215
+ "loss": 0.3965,
216
+ "num_input_tokens_seen": 1356792,
217
+ "step": 26
218
+ },
219
+ {
220
+ "epoch": 0.7248322147651006,
221
+ "grad_norm": 0.08186662942171097,
222
+ "learning_rate": 4.992704081440407e-05,
223
+ "loss": 0.3867,
224
+ "num_input_tokens_seen": 1408568,
225
+ "step": 27
226
+ },
227
+ {
228
+ "epoch": 0.7516778523489933,
229
+ "grad_norm": 0.07936503738164902,
230
+ "learning_rate": 4.992153923007446e-05,
231
+ "loss": 0.4272,
232
+ "num_input_tokens_seen": 1465984,
233
+ "step": 28
234
+ },
235
+ {
236
+ "epoch": 0.7785234899328859,
237
+ "grad_norm": 0.0778949186205864,
238
+ "learning_rate": 4.9915838014571174e-05,
239
+ "loss": 0.3499,
240
+ "num_input_tokens_seen": 1522568,
241
+ "step": 29
242
+ },
243
+ {
244
+ "epoch": 0.8053691275167785,
245
+ "grad_norm": 0.07632329314947128,
246
+ "learning_rate": 4.9909937213563165e-05,
247
+ "loss": 0.3536,
248
+ "num_input_tokens_seen": 1576592,
249
+ "step": 30
250
+ },
251
+ {
252
+ "epoch": 0.8322147651006712,
253
+ "grad_norm": 0.0791730061173439,
254
+ "learning_rate": 4.9903836874318135e-05,
255
+ "loss": 0.3416,
256
+ "num_input_tokens_seen": 1625336,
257
+ "step": 31
258
+ },
259
+ {
260
+ "epoch": 0.8590604026845637,
261
+ "grad_norm": 0.08963429927825928,
262
+ "learning_rate": 4.9897537045702146e-05,
263
+ "loss": 0.3559,
264
+ "num_input_tokens_seen": 1668736,
265
+ "step": 32
266
+ },
267
+ {
268
+ "epoch": 0.8859060402684564,
269
+ "grad_norm": 0.06969798356294632,
270
+ "learning_rate": 4.989103777817928e-05,
271
+ "loss": 0.358,
272
+ "num_input_tokens_seen": 1725096,
273
+ "step": 33
274
+ },
275
+ {
276
+ "epoch": 0.912751677852349,
277
+ "grad_norm": 0.09034521877765656,
278
+ "learning_rate": 4.988433912381117e-05,
279
+ "loss": 0.354,
280
+ "num_input_tokens_seen": 1768400,
281
+ "step": 34
282
+ },
283
+ {
284
+ "epoch": 0.9395973154362416,
285
+ "grad_norm": 0.07854894548654556,
286
+ "learning_rate": 4.987744113625665e-05,
287
+ "loss": 0.3553,
288
+ "num_input_tokens_seen": 1829224,
289
+ "step": 35
290
+ },
291
+ {
292
+ "epoch": 0.9664429530201343,
293
+ "grad_norm": 0.06981746852397919,
294
+ "learning_rate": 4.9870343870771256e-05,
295
+ "loss": 0.3651,
296
+ "num_input_tokens_seen": 1895440,
297
+ "step": 36
298
+ },
299
+ {
300
+ "epoch": 0.9932885906040269,
301
+ "grad_norm": 1.1971335411071777,
302
+ "learning_rate": 4.9863047384206835e-05,
303
+ "loss": 0.3117,
304
+ "num_input_tokens_seen": 1948776,
305
+ "step": 37
306
+ },
307
+ {
308
+ "epoch": 1.0,
309
+ "grad_norm": 0.13761547207832336,
310
+ "learning_rate": 4.985555173501106e-05,
311
+ "loss": 0.3247,
312
+ "num_input_tokens_seen": 1961808,
313
+ "step": 38
314
+ },
315
+ {
316
+ "epoch": 1.0268456375838926,
317
+ "grad_norm": 0.08985067158937454,
318
+ "learning_rate": 4.9847856983226996e-05,
319
+ "loss": 0.3328,
320
+ "num_input_tokens_seen": 2020584,
321
+ "step": 39
322
+ },
323
+ {
324
+ "epoch": 1.0536912751677852,
325
+ "grad_norm": 0.08735290169715881,
326
+ "learning_rate": 4.9839963190492576e-05,
327
+ "loss": 0.3809,
328
+ "num_input_tokens_seen": 2077264,
329
+ "step": 40
330
+ },
331
+ {
332
+ "epoch": 1.0805369127516777,
333
+ "grad_norm": 0.08123548328876495,
334
+ "learning_rate": 4.9831870420040126e-05,
335
+ "loss": 0.296,
336
+ "num_input_tokens_seen": 2117808,
337
+ "step": 41
338
+ },
339
+ {
340
+ "epoch": 1.1073825503355705,
341
+ "grad_norm": 0.09133706986904144,
342
+ "learning_rate": 4.982357873669589e-05,
343
+ "loss": 0.3045,
344
+ "num_input_tokens_seen": 2157928,
345
+ "step": 42
346
+ },
347
+ {
348
+ "epoch": 1.1342281879194631,
349
+ "grad_norm": 0.07161358743906021,
350
+ "learning_rate": 4.981508820687943e-05,
351
+ "loss": 0.3037,
352
+ "num_input_tokens_seen": 2215144,
353
+ "step": 43
354
+ },
355
+ {
356
+ "epoch": 1.1610738255033557,
357
+ "grad_norm": 0.07848912477493286,
358
+ "learning_rate": 4.9806398898603206e-05,
359
+ "loss": 0.308,
360
+ "num_input_tokens_seen": 2268776,
361
+ "step": 44
362
+ },
363
+ {
364
+ "epoch": 1.1879194630872483,
365
+ "grad_norm": 0.07580725848674774,
366
+ "learning_rate": 4.979751088147192e-05,
367
+ "loss": 0.3095,
368
+ "num_input_tokens_seen": 2316136,
369
+ "step": 45
370
+ },
371
+ {
372
+ "epoch": 1.2147651006711409,
373
+ "grad_norm": 0.13087698817253113,
374
+ "learning_rate": 4.978842422668204e-05,
375
+ "loss": 0.3144,
376
+ "num_input_tokens_seen": 2370888,
377
+ "step": 46
378
+ },
379
+ {
380
+ "epoch": 1.2416107382550337,
381
+ "grad_norm": 0.07428968697786331,
382
+ "learning_rate": 4.9779139007021184e-05,
383
+ "loss": 0.3084,
384
+ "num_input_tokens_seen": 2426656,
385
+ "step": 47
386
+ },
387
+ {
388
+ "epoch": 1.2684563758389262,
389
+ "grad_norm": 0.08130094408988953,
390
+ "learning_rate": 4.9769655296867554e-05,
391
+ "loss": 0.2861,
392
+ "num_input_tokens_seen": 2471944,
393
+ "step": 48
394
+ },
395
+ {
396
+ "epoch": 1.2953020134228188,
397
+ "grad_norm": 0.16188324987888336,
398
+ "learning_rate": 4.9759973172189334e-05,
399
+ "loss": 0.3136,
400
+ "num_input_tokens_seen": 2539888,
401
+ "step": 49
402
+ },
403
+ {
404
+ "epoch": 1.3221476510067114,
405
+ "grad_norm": 0.08185111731290817,
406
+ "learning_rate": 4.975009271054409e-05,
407
+ "loss": 0.26,
408
+ "num_input_tokens_seen": 2581936,
409
+ "step": 50
410
+ },
411
+ {
412
+ "epoch": 1.348993288590604,
413
+ "grad_norm": 0.07140379399061203,
414
+ "learning_rate": 4.974001399107816e-05,
415
+ "loss": 0.3178,
416
+ "num_input_tokens_seen": 2647016,
417
+ "step": 51
418
+ },
419
+ {
420
+ "epoch": 1.3758389261744965,
421
+ "grad_norm": 0.08086609840393066,
422
+ "learning_rate": 4.972973709452597e-05,
423
+ "loss": 0.2853,
424
+ "num_input_tokens_seen": 2694512,
425
+ "step": 52
426
+ },
427
+ {
428
+ "epoch": 1.4026845637583891,
429
+ "grad_norm": 0.08030746877193451,
430
+ "learning_rate": 4.971926210320944e-05,
431
+ "loss": 0.3009,
432
+ "num_input_tokens_seen": 2735672,
433
+ "step": 53
434
+ },
435
+ {
436
+ "epoch": 1.429530201342282,
437
+ "grad_norm": 0.07996731996536255,
438
+ "learning_rate": 4.9708589101037306e-05,
439
+ "loss": 0.2967,
440
+ "num_input_tokens_seen": 2789104,
441
+ "step": 54
442
+ },
443
+ {
444
+ "epoch": 1.4563758389261745,
445
+ "grad_norm": 0.0722445398569107,
446
+ "learning_rate": 4.969771817350445e-05,
447
+ "loss": 0.2741,
448
+ "num_input_tokens_seen": 2836960,
449
+ "step": 55
450
+ },
451
+ {
452
+ "epoch": 1.483221476510067,
453
+ "grad_norm": 0.08382672816514969,
454
+ "learning_rate": 4.968664940769121e-05,
455
+ "loss": 0.3276,
456
+ "num_input_tokens_seen": 2900208,
457
+ "step": 56
458
+ },
459
+ {
460
+ "epoch": 1.5100671140939599,
461
+ "grad_norm": 0.07235248386859894,
462
+ "learning_rate": 4.967538289226267e-05,
463
+ "loss": 0.2721,
464
+ "num_input_tokens_seen": 2964720,
465
+ "step": 57
466
+ },
467
+ {
468
+ "epoch": 1.5369127516778525,
469
+ "grad_norm": 0.07382500171661377,
470
+ "learning_rate": 4.9663918717467996e-05,
471
+ "loss": 0.3084,
472
+ "num_input_tokens_seen": 3029912,
473
+ "step": 58
474
+ },
475
+ {
476
+ "epoch": 1.563758389261745,
477
+ "grad_norm": 0.07173939794301987,
478
+ "learning_rate": 4.965225697513965e-05,
479
+ "loss": 0.2752,
480
+ "num_input_tokens_seen": 3081216,
481
+ "step": 59
482
+ },
483
+ {
484
+ "epoch": 1.5906040268456376,
485
+ "grad_norm": 0.07698569446802139,
486
+ "learning_rate": 4.9640397758692715e-05,
487
+ "loss": 0.2684,
488
+ "num_input_tokens_seen": 3131424,
489
+ "step": 60
490
+ },
491
+ {
492
+ "epoch": 1.6174496644295302,
493
+ "grad_norm": 0.07956692576408386,
494
+ "learning_rate": 4.962834116312409e-05,
495
+ "loss": 0.2663,
496
+ "num_input_tokens_seen": 3183240,
497
+ "step": 61
498
+ },
499
+ {
500
+ "epoch": 1.6442953020134228,
501
+ "grad_norm": 0.09150110185146332,
502
+ "learning_rate": 4.961608728501178e-05,
503
+ "loss": 0.2845,
504
+ "num_input_tokens_seen": 3231192,
505
+ "step": 62
506
+ },
507
+ {
508
+ "epoch": 1.6711409395973154,
509
+ "grad_norm": 0.07471323758363724,
510
+ "learning_rate": 4.960363622251409e-05,
511
+ "loss": 0.2873,
512
+ "num_input_tokens_seen": 3290616,
513
+ "step": 63
514
+ },
515
+ {
516
+ "epoch": 1.697986577181208,
517
+ "grad_norm": 0.08185286819934845,
518
+ "learning_rate": 4.959098807536885e-05,
519
+ "loss": 0.2858,
520
+ "num_input_tokens_seen": 3342512,
521
+ "step": 64
522
+ },
523
+ {
524
+ "epoch": 1.7248322147651005,
525
+ "grad_norm": 0.07076375931501389,
526
+ "learning_rate": 4.957814294489261e-05,
527
+ "loss": 0.2813,
528
+ "num_input_tokens_seen": 3404912,
529
+ "step": 65
530
+ },
531
+ {
532
+ "epoch": 1.7516778523489933,
533
+ "grad_norm": 0.08946257829666138,
534
+ "learning_rate": 4.956510093397983e-05,
535
+ "loss": 0.2417,
536
+ "num_input_tokens_seen": 3444648,
537
+ "step": 66
538
+ },
539
+ {
540
+ "epoch": 1.778523489932886,
541
+ "grad_norm": 0.08985330909490585,
542
+ "learning_rate": 4.955186214710208e-05,
543
+ "loss": 0.303,
544
+ "num_input_tokens_seen": 3493584,
545
+ "step": 67
546
+ },
547
+ {
548
+ "epoch": 1.8053691275167785,
549
+ "grad_norm": 0.0905148983001709,
550
+ "learning_rate": 4.953842669030716e-05,
551
+ "loss": 0.259,
552
+ "num_input_tokens_seen": 3544904,
553
+ "step": 68
554
+ },
555
+ {
556
+ "epoch": 1.8322147651006713,
557
+ "grad_norm": 0.08572433143854141,
558
+ "learning_rate": 4.952479467121827e-05,
559
+ "loss": 0.2709,
560
+ "num_input_tokens_seen": 3591296,
561
+ "step": 69
562
+ },
563
+ {
564
+ "epoch": 1.8590604026845639,
565
+ "grad_norm": 0.09188525378704071,
566
+ "learning_rate": 4.9510966199033174e-05,
567
+ "loss": 0.2615,
568
+ "num_input_tokens_seen": 3655368,
569
+ "step": 70
570
+ },
571
+ {
572
+ "epoch": 1.8859060402684564,
573
+ "grad_norm": 0.0810374766588211,
574
+ "learning_rate": 4.949694138452327e-05,
575
+ "loss": 0.2607,
576
+ "num_input_tokens_seen": 3707872,
577
+ "step": 71
578
+ },
579
+ {
580
+ "epoch": 1.912751677852349,
581
+ "grad_norm": 0.09255556017160416,
582
+ "learning_rate": 4.948272034003275e-05,
583
+ "loss": 0.2876,
584
+ "num_input_tokens_seen": 3755824,
585
+ "step": 72
586
+ },
587
+ {
588
+ "epoch": 1.9395973154362416,
589
+ "grad_norm": 0.07975213974714279,
590
+ "learning_rate": 4.9468303179477706e-05,
591
+ "loss": 0.2429,
592
+ "num_input_tokens_seen": 3810712,
593
+ "step": 73
594
+ },
595
+ {
596
+ "epoch": 1.9664429530201342,
597
+ "grad_norm": 0.09419341385364532,
598
+ "learning_rate": 4.9453690018345144e-05,
599
+ "loss": 0.2672,
600
+ "num_input_tokens_seen": 3861920,
601
+ "step": 74
602
+ },
603
+ {
604
+ "epoch": 1.9932885906040267,
605
+ "grad_norm": 0.10117878019809723,
606
+ "learning_rate": 4.943888097369216e-05,
607
+ "loss": 0.2764,
608
+ "num_input_tokens_seen": 3909768,
609
+ "step": 75
610
+ },
611
+ {
612
+ "epoch": 2.0,
613
+ "grad_norm": 0.16053622961044312,
614
+ "learning_rate": 4.942387616414492e-05,
615
+ "loss": 0.2707,
616
+ "num_input_tokens_seen": 3923616,
617
+ "step": 76
618
+ },
619
+ {
620
+ "epoch": 2.0268456375838926,
621
+ "grad_norm": 0.14125753939151764,
622
+ "learning_rate": 4.940867570989777e-05,
623
+ "loss": 0.2517,
624
+ "num_input_tokens_seen": 3978224,
625
+ "step": 77
626
+ },
627
+ {
628
+ "epoch": 2.053691275167785,
629
+ "grad_norm": 0.08800158649682999,
630
+ "learning_rate": 4.939327973271221e-05,
631
+ "loss": 0.2821,
632
+ "num_input_tokens_seen": 4024096,
633
+ "step": 78
634
+ },
635
+ {
636
+ "epoch": 2.0805369127516777,
637
+ "grad_norm": 0.08880551159381866,
638
+ "learning_rate": 4.9377688355915994e-05,
639
+ "loss": 0.2396,
640
+ "num_input_tokens_seen": 4080656,
641
+ "step": 79
642
+ },
643
+ {
644
+ "epoch": 2.1073825503355703,
645
+ "grad_norm": 0.09785644710063934,
646
+ "learning_rate": 4.936190170440208e-05,
647
+ "loss": 0.2564,
648
+ "num_input_tokens_seen": 4122248,
649
+ "step": 80
650
+ },
651
+ {
652
+ "epoch": 2.134228187919463,
653
+ "grad_norm": 0.10203557461500168,
654
+ "learning_rate": 4.934591990462766e-05,
655
+ "loss": 0.2663,
656
+ "num_input_tokens_seen": 4183624,
657
+ "step": 81
658
+ },
659
+ {
660
+ "epoch": 2.1610738255033555,
661
+ "grad_norm": 0.09022527933120728,
662
+ "learning_rate": 4.932974308461311e-05,
663
+ "loss": 0.2373,
664
+ "num_input_tokens_seen": 4223696,
665
+ "step": 82
666
+ },
667
+ {
668
+ "epoch": 2.1879194630872485,
669
+ "grad_norm": 0.08529677987098694,
670
+ "learning_rate": 4.931337137394105e-05,
671
+ "loss": 0.2743,
672
+ "num_input_tokens_seen": 4282504,
673
+ "step": 83
674
+ },
675
+ {
676
+ "epoch": 2.214765100671141,
677
+ "grad_norm": 0.10522245615720749,
678
+ "learning_rate": 4.92968049037552e-05,
679
+ "loss": 0.2516,
680
+ "num_input_tokens_seen": 4338600,
681
+ "step": 84
682
+ },
683
+ {
684
+ "epoch": 2.2416107382550337,
685
+ "grad_norm": 0.09364143013954163,
686
+ "learning_rate": 4.928004380675941e-05,
687
+ "loss": 0.2463,
688
+ "num_input_tokens_seen": 4385840,
689
+ "step": 85
690
+ },
691
+ {
692
+ "epoch": 2.2684563758389262,
693
+ "grad_norm": 0.10501237958669662,
694
+ "learning_rate": 4.9263088217216544e-05,
695
+ "loss": 0.2578,
696
+ "num_input_tokens_seen": 4440368,
697
+ "step": 86
698
+ },
699
+ {
700
+ "epoch": 2.295302013422819,
701
+ "grad_norm": 0.09559391438961029,
702
+ "learning_rate": 4.9245938270947435e-05,
703
+ "loss": 0.2369,
704
+ "num_input_tokens_seen": 4502040,
705
+ "step": 87
706
+ },
707
+ {
708
+ "epoch": 2.3221476510067114,
709
+ "grad_norm": 0.08705922961235046,
710
+ "learning_rate": 4.922859410532978e-05,
711
+ "loss": 0.3009,
712
+ "num_input_tokens_seen": 4563296,
713
+ "step": 88
714
+ },
715
+ {
716
+ "epoch": 2.348993288590604,
717
+ "grad_norm": 0.08942529559135437,
718
+ "learning_rate": 4.921105585929709e-05,
719
+ "loss": 0.211,
720
+ "num_input_tokens_seen": 4620344,
721
+ "step": 89
722
+ },
723
+ {
724
+ "epoch": 2.3758389261744965,
725
+ "grad_norm": 0.088467076420784,
726
+ "learning_rate": 4.9193323673337476e-05,
727
+ "loss": 0.2463,
728
+ "num_input_tokens_seen": 4675400,
729
+ "step": 90
730
+ },
731
+ {
732
+ "epoch": 2.402684563758389,
733
+ "grad_norm": 0.08302924036979675,
734
+ "learning_rate": 4.9175397689492614e-05,
735
+ "loss": 0.2536,
736
+ "num_input_tokens_seen": 4734696,
737
+ "step": 91
738
+ },
739
+ {
740
+ "epoch": 2.4295302013422817,
741
+ "grad_norm": 0.10511067509651184,
742
+ "learning_rate": 4.915727805135657e-05,
743
+ "loss": 0.2538,
744
+ "num_input_tokens_seen": 4782448,
745
+ "step": 92
746
+ },
747
+ {
748
+ "epoch": 2.4563758389261743,
749
+ "grad_norm": 0.09681275486946106,
750
+ "learning_rate": 4.9138964904074667e-05,
751
+ "loss": 0.2243,
752
+ "num_input_tokens_seen": 4830504,
753
+ "step": 93
754
+ },
755
+ {
756
+ "epoch": 2.4832214765100673,
757
+ "grad_norm": 0.10118114203214645,
758
+ "learning_rate": 4.91204583943423e-05,
759
+ "loss": 0.2701,
760
+ "num_input_tokens_seen": 4886040,
761
+ "step": 94
762
+ },
763
+ {
764
+ "epoch": 2.51006711409396,
765
+ "grad_norm": 0.11683424562215805,
766
+ "learning_rate": 4.910175867040377e-05,
767
+ "loss": 0.2292,
768
+ "num_input_tokens_seen": 4934448,
769
+ "step": 95
770
+ },
771
+ {
772
+ "epoch": 2.5369127516778525,
773
+ "grad_norm": 0.09783443063497543,
774
+ "learning_rate": 4.90828658820511e-05,
775
+ "loss": 0.2398,
776
+ "num_input_tokens_seen": 4987040,
777
+ "step": 96
778
+ },
779
+ {
780
+ "epoch": 2.563758389261745,
781
+ "grad_norm": 0.10438188165426254,
782
+ "learning_rate": 4.9063780180622845e-05,
783
+ "loss": 0.2355,
784
+ "num_input_tokens_seen": 5037360,
785
+ "step": 97
786
+ },
787
+ {
788
+ "epoch": 2.5906040268456376,
789
+ "grad_norm": 0.1034293919801712,
790
+ "learning_rate": 4.9044501719002844e-05,
791
+ "loss": 0.2554,
792
+ "num_input_tokens_seen": 5091640,
793
+ "step": 98
794
+ },
795
+ {
796
+ "epoch": 2.61744966442953,
797
+ "grad_norm": 0.09722857177257538,
798
+ "learning_rate": 4.9025030651619046e-05,
799
+ "loss": 0.2176,
800
+ "num_input_tokens_seen": 5149232,
801
+ "step": 99
802
+ },
803
+ {
804
+ "epoch": 2.6442953020134228,
805
+ "grad_norm": 0.1010555699467659,
806
+ "learning_rate": 4.9005367134442235e-05,
807
+ "loss": 0.2191,
808
+ "num_input_tokens_seen": 5196648,
809
+ "step": 100
810
+ },
811
+ {
812
+ "epoch": 2.6711409395973154,
813
+ "grad_norm": 0.085463747382164,
814
+ "learning_rate": 4.89855113249848e-05,
815
+ "loss": 0.2283,
816
+ "num_input_tokens_seen": 5261568,
817
+ "step": 101
818
+ },
819
+ {
820
+ "epoch": 2.697986577181208,
821
+ "grad_norm": 0.10148970782756805,
822
+ "learning_rate": 4.896546338229945e-05,
823
+ "loss": 0.234,
824
+ "num_input_tokens_seen": 5312104,
825
+ "step": 102
826
+ },
827
+ {
828
+ "epoch": 2.7248322147651005,
829
+ "grad_norm": 0.12468232959508896,
830
+ "learning_rate": 4.894522346697796e-05,
831
+ "loss": 0.2373,
832
+ "num_input_tokens_seen": 5360104,
833
+ "step": 103
834
+ },
835
+ {
836
+ "epoch": 2.751677852348993,
837
+ "grad_norm": 0.11668706685304642,
838
+ "learning_rate": 4.892479174114989e-05,
839
+ "loss": 0.2291,
840
+ "num_input_tokens_seen": 5402856,
841
+ "step": 104
842
+ },
843
+ {
844
+ "epoch": 2.778523489932886,
845
+ "grad_norm": 0.11586510390043259,
846
+ "learning_rate": 4.890416836848127e-05,
847
+ "loss": 0.2297,
848
+ "num_input_tokens_seen": 5445040,
849
+ "step": 105
850
+ },
851
+ {
852
+ "epoch": 2.8053691275167782,
853
+ "grad_norm": 0.09793268144130707,
854
+ "learning_rate": 4.888335351417331e-05,
855
+ "loss": 0.2271,
856
+ "num_input_tokens_seen": 5497368,
857
+ "step": 106
858
+ },
859
+ {
860
+ "epoch": 2.8322147651006713,
861
+ "grad_norm": 0.1202295795083046,
862
+ "learning_rate": 4.886234734496102e-05,
863
+ "loss": 0.261,
864
+ "num_input_tokens_seen": 5560720,
865
+ "step": 107
866
+ },
867
+ {
868
+ "epoch": 2.859060402684564,
869
+ "grad_norm": 0.10316886752843857,
870
+ "learning_rate": 4.884115002911197e-05,
871
+ "loss": 0.2532,
872
+ "num_input_tokens_seen": 5616592,
873
+ "step": 108
874
+ },
875
+ {
876
+ "epoch": 2.8859060402684564,
877
+ "grad_norm": 0.10972882062196732,
878
+ "learning_rate": 4.8819761736424854e-05,
879
+ "loss": 0.2265,
880
+ "num_input_tokens_seen": 5674352,
881
+ "step": 109
882
+ },
883
+ {
884
+ "epoch": 2.912751677852349,
885
+ "grad_norm": 0.11267542093992233,
886
+ "learning_rate": 4.8798182638228166e-05,
887
+ "loss": 0.2356,
888
+ "num_input_tokens_seen": 5710912,
889
+ "step": 110
890
+ },
891
+ {
892
+ "epoch": 2.9395973154362416,
893
+ "grad_norm": 0.11448722332715988,
894
+ "learning_rate": 4.877641290737884e-05,
895
+ "loss": 0.2381,
896
+ "num_input_tokens_seen": 5757920,
897
+ "step": 111
898
+ }
899
+ ],
900
+ "logging_steps": 1.0,
901
+ "max_steps": 1110,
902
+ "num_input_tokens_seen": 5757920,
903
+ "num_train_epochs": 30,
904
+ "save_steps": 37,
905
+ "stateful_callbacks": {
906
+ "TrainerControl": {
907
+ "args": {
908
+ "should_epoch_stop": false,
909
+ "should_evaluate": false,
910
+ "should_log": false,
911
+ "should_save": true,
912
+ "should_training_stop": false
913
+ },
914
+ "attributes": {}
915
+ }
916
+ },
917
+ "total_flos": 4.857477605831475e+17,
918
+ "train_batch_size": 1,
919
+ "trial_name": null,
920
+ "trial_params": null
921
+ }
checkpoint-111/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-148/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: Qwen/Qwen2.5-Coder-14B-Instruct
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.12.0
checkpoint-148/adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "Qwen/Qwen2.5-Coder-14B-Instruct",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 16,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "q_proj",
24
+ "gate_proj",
25
+ "o_proj",
26
+ "k_proj",
27
+ "up_proj",
28
+ "down_proj",
29
+ "v_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
checkpoint-148/added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
checkpoint-148/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-148/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6f8051c45c1e2443a15399f0030b29e1a053773f5e7b3f7b93770621eceb9a9e
3
+ size 551070514
checkpoint-148/special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
checkpoint-148/tokenizer_config.json ADDED
@@ -0,0 +1,209 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ }
181
+ },
182
+ "additional_special_tokens": [
183
+ "<|im_start|>",
184
+ "<|im_end|>",
185
+ "<|object_ref_start|>",
186
+ "<|object_ref_end|>",
187
+ "<|box_start|>",
188
+ "<|box_end|>",
189
+ "<|quad_start|>",
190
+ "<|quad_end|>",
191
+ "<|vision_start|>",
192
+ "<|vision_end|>",
193
+ "<|vision_pad|>",
194
+ "<|image_pad|>",
195
+ "<|video_pad|>"
196
+ ],
197
+ "bos_token": null,
198
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
199
+ "clean_up_tokenization_spaces": false,
200
+ "eos_token": "<|im_end|>",
201
+ "errors": "replace",
202
+ "extra_special_tokens": {},
203
+ "model_max_length": 12000,
204
+ "pad_token": "<|endoftext|>",
205
+ "padding_side": "right",
206
+ "split_special_tokens": false,
207
+ "tokenizer_class": "Qwen2Tokenizer",
208
+ "unk_token": null
209
+ }
checkpoint-148/trainer_state.json ADDED
@@ -0,0 +1,1217 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 3.912751677852349,
5
+ "eval_steps": 500,
6
+ "global_step": 148,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.026845637583892617,
13
+ "grad_norm": 0.04068412259221077,
14
+ "learning_rate": 4.9999899870162604e-05,
15
+ "loss": 0.5189,
16
+ "num_input_tokens_seen": 58440,
17
+ "step": 1
18
+ },
19
+ {
20
+ "epoch": 0.053691275167785234,
21
+ "grad_norm": 0.03802767023444176,
22
+ "learning_rate": 4.999959948145249e-05,
23
+ "loss": 0.5061,
24
+ "num_input_tokens_seen": 112800,
25
+ "step": 2
26
+ },
27
+ {
28
+ "epoch": 0.08053691275167785,
29
+ "grad_norm": 0.0524083748459816,
30
+ "learning_rate": 4.999909883627587e-05,
31
+ "loss": 0.5956,
32
+ "num_input_tokens_seen": 156704,
33
+ "step": 3
34
+ },
35
+ {
36
+ "epoch": 0.10738255033557047,
37
+ "grad_norm": 0.050608448684215546,
38
+ "learning_rate": 4.999839793864313e-05,
39
+ "loss": 0.5222,
40
+ "num_input_tokens_seen": 213952,
41
+ "step": 4
42
+ },
43
+ {
44
+ "epoch": 0.1342281879194631,
45
+ "grad_norm": 0.04771890118718147,
46
+ "learning_rate": 4.9997496794168726e-05,
47
+ "loss": 0.4761,
48
+ "num_input_tokens_seen": 266920,
49
+ "step": 5
50
+ },
51
+ {
52
+ "epoch": 0.1610738255033557,
53
+ "grad_norm": 0.05538628622889519,
54
+ "learning_rate": 4.999639541007116e-05,
55
+ "loss": 0.5221,
56
+ "num_input_tokens_seen": 313560,
57
+ "step": 6
58
+ },
59
+ {
60
+ "epoch": 0.18791946308724833,
61
+ "grad_norm": 0.053944796323776245,
62
+ "learning_rate": 4.999509379517297e-05,
63
+ "loss": 0.4738,
64
+ "num_input_tokens_seen": 349544,
65
+ "step": 7
66
+ },
67
+ {
68
+ "epoch": 0.21476510067114093,
69
+ "grad_norm": 0.05679492652416229,
70
+ "learning_rate": 4.9993591959900566e-05,
71
+ "loss": 0.5576,
72
+ "num_input_tokens_seen": 397952,
73
+ "step": 8
74
+ },
75
+ {
76
+ "epoch": 0.24161073825503357,
77
+ "grad_norm": 0.05358556658029556,
78
+ "learning_rate": 4.999188991628425e-05,
79
+ "loss": 0.4803,
80
+ "num_input_tokens_seen": 452568,
81
+ "step": 9
82
+ },
83
+ {
84
+ "epoch": 0.2684563758389262,
85
+ "grad_norm": 0.05667557194828987,
86
+ "learning_rate": 4.998998767795805e-05,
87
+ "loss": 0.4735,
88
+ "num_input_tokens_seen": 494400,
89
+ "step": 10
90
+ },
91
+ {
92
+ "epoch": 0.2953020134228188,
93
+ "grad_norm": 0.048348862677812576,
94
+ "learning_rate": 4.998788526015961e-05,
95
+ "loss": 0.5054,
96
+ "num_input_tokens_seen": 569352,
97
+ "step": 11
98
+ },
99
+ {
100
+ "epoch": 0.3221476510067114,
101
+ "grad_norm": 0.055022645741701126,
102
+ "learning_rate": 4.998558267973014e-05,
103
+ "loss": 0.494,
104
+ "num_input_tokens_seen": 623680,
105
+ "step": 12
106
+ },
107
+ {
108
+ "epoch": 0.348993288590604,
109
+ "grad_norm": 0.05279555916786194,
110
+ "learning_rate": 4.998307995511418e-05,
111
+ "loss": 0.4411,
112
+ "num_input_tokens_seen": 675784,
113
+ "step": 13
114
+ },
115
+ {
116
+ "epoch": 0.37583892617449666,
117
+ "grad_norm": 0.06557705253362656,
118
+ "learning_rate": 4.998037710635952e-05,
119
+ "loss": 0.5778,
120
+ "num_input_tokens_seen": 728120,
121
+ "step": 14
122
+ },
123
+ {
124
+ "epoch": 0.40268456375838924,
125
+ "grad_norm": 0.06649675220251083,
126
+ "learning_rate": 4.9977474155117045e-05,
127
+ "loss": 0.5217,
128
+ "num_input_tokens_seen": 780392,
129
+ "step": 15
130
+ },
131
+ {
132
+ "epoch": 0.42953020134228187,
133
+ "grad_norm": 0.05616322159767151,
134
+ "learning_rate": 4.997437112464049e-05,
135
+ "loss": 0.4175,
136
+ "num_input_tokens_seen": 841192,
137
+ "step": 16
138
+ },
139
+ {
140
+ "epoch": 0.4563758389261745,
141
+ "grad_norm": 0.07165056467056274,
142
+ "learning_rate": 4.997106803978636e-05,
143
+ "loss": 0.5109,
144
+ "num_input_tokens_seen": 899368,
145
+ "step": 17
146
+ },
147
+ {
148
+ "epoch": 0.48322147651006714,
149
+ "grad_norm": 0.06656442582607269,
150
+ "learning_rate": 4.996756492701362e-05,
151
+ "loss": 0.4066,
152
+ "num_input_tokens_seen": 944400,
153
+ "step": 18
154
+ },
155
+ {
156
+ "epoch": 0.5100671140939598,
157
+ "grad_norm": 0.0628059059381485,
158
+ "learning_rate": 4.996386181438357e-05,
159
+ "loss": 0.4501,
160
+ "num_input_tokens_seen": 997024,
161
+ "step": 19
162
+ },
163
+ {
164
+ "epoch": 0.5369127516778524,
165
+ "grad_norm": 0.06418219953775406,
166
+ "learning_rate": 4.995995873155958e-05,
167
+ "loss": 0.4632,
168
+ "num_input_tokens_seen": 1057264,
169
+ "step": 20
170
+ },
171
+ {
172
+ "epoch": 0.5637583892617449,
173
+ "grad_norm": 0.08489955216646194,
174
+ "learning_rate": 4.9955855709806845e-05,
175
+ "loss": 0.4224,
176
+ "num_input_tokens_seen": 1094144,
177
+ "step": 21
178
+ },
179
+ {
180
+ "epoch": 0.5906040268456376,
181
+ "grad_norm": 0.06560485810041428,
182
+ "learning_rate": 4.9951552781992154e-05,
183
+ "loss": 0.4084,
184
+ "num_input_tokens_seen": 1144376,
185
+ "step": 22
186
+ },
187
+ {
188
+ "epoch": 0.6174496644295302,
189
+ "grad_norm": 0.05338270589709282,
190
+ "learning_rate": 4.9947049982583625e-05,
191
+ "loss": 0.3925,
192
+ "num_input_tokens_seen": 1206272,
193
+ "step": 23
194
+ },
195
+ {
196
+ "epoch": 0.6442953020134228,
197
+ "grad_norm": 0.06893228739500046,
198
+ "learning_rate": 4.994234734765043e-05,
199
+ "loss": 0.3666,
200
+ "num_input_tokens_seen": 1252464,
201
+ "step": 24
202
+ },
203
+ {
204
+ "epoch": 0.6711409395973155,
205
+ "grad_norm": 0.07986386865377426,
206
+ "learning_rate": 4.99374449148625e-05,
207
+ "loss": 0.4105,
208
+ "num_input_tokens_seen": 1295560,
209
+ "step": 25
210
+ },
211
+ {
212
+ "epoch": 0.697986577181208,
213
+ "grad_norm": 0.0721018984913826,
214
+ "learning_rate": 4.99323427234902e-05,
215
+ "loss": 0.3965,
216
+ "num_input_tokens_seen": 1356792,
217
+ "step": 26
218
+ },
219
+ {
220
+ "epoch": 0.7248322147651006,
221
+ "grad_norm": 0.08186662942171097,
222
+ "learning_rate": 4.992704081440407e-05,
223
+ "loss": 0.3867,
224
+ "num_input_tokens_seen": 1408568,
225
+ "step": 27
226
+ },
227
+ {
228
+ "epoch": 0.7516778523489933,
229
+ "grad_norm": 0.07936503738164902,
230
+ "learning_rate": 4.992153923007446e-05,
231
+ "loss": 0.4272,
232
+ "num_input_tokens_seen": 1465984,
233
+ "step": 28
234
+ },
235
+ {
236
+ "epoch": 0.7785234899328859,
237
+ "grad_norm": 0.0778949186205864,
238
+ "learning_rate": 4.9915838014571174e-05,
239
+ "loss": 0.3499,
240
+ "num_input_tokens_seen": 1522568,
241
+ "step": 29
242
+ },
243
+ {
244
+ "epoch": 0.8053691275167785,
245
+ "grad_norm": 0.07632329314947128,
246
+ "learning_rate": 4.9909937213563165e-05,
247
+ "loss": 0.3536,
248
+ "num_input_tokens_seen": 1576592,
249
+ "step": 30
250
+ },
251
+ {
252
+ "epoch": 0.8322147651006712,
253
+ "grad_norm": 0.0791730061173439,
254
+ "learning_rate": 4.9903836874318135e-05,
255
+ "loss": 0.3416,
256
+ "num_input_tokens_seen": 1625336,
257
+ "step": 31
258
+ },
259
+ {
260
+ "epoch": 0.8590604026845637,
261
+ "grad_norm": 0.08963429927825928,
262
+ "learning_rate": 4.9897537045702146e-05,
263
+ "loss": 0.3559,
264
+ "num_input_tokens_seen": 1668736,
265
+ "step": 32
266
+ },
267
+ {
268
+ "epoch": 0.8859060402684564,
269
+ "grad_norm": 0.06969798356294632,
270
+ "learning_rate": 4.989103777817928e-05,
271
+ "loss": 0.358,
272
+ "num_input_tokens_seen": 1725096,
273
+ "step": 33
274
+ },
275
+ {
276
+ "epoch": 0.912751677852349,
277
+ "grad_norm": 0.09034521877765656,
278
+ "learning_rate": 4.988433912381117e-05,
279
+ "loss": 0.354,
280
+ "num_input_tokens_seen": 1768400,
281
+ "step": 34
282
+ },
283
+ {
284
+ "epoch": 0.9395973154362416,
285
+ "grad_norm": 0.07854894548654556,
286
+ "learning_rate": 4.987744113625665e-05,
287
+ "loss": 0.3553,
288
+ "num_input_tokens_seen": 1829224,
289
+ "step": 35
290
+ },
291
+ {
292
+ "epoch": 0.9664429530201343,
293
+ "grad_norm": 0.06981746852397919,
294
+ "learning_rate": 4.9870343870771256e-05,
295
+ "loss": 0.3651,
296
+ "num_input_tokens_seen": 1895440,
297
+ "step": 36
298
+ },
299
+ {
300
+ "epoch": 0.9932885906040269,
301
+ "grad_norm": 1.1971335411071777,
302
+ "learning_rate": 4.9863047384206835e-05,
303
+ "loss": 0.3117,
304
+ "num_input_tokens_seen": 1948776,
305
+ "step": 37
306
+ },
307
+ {
308
+ "epoch": 1.0,
309
+ "grad_norm": 0.13761547207832336,
310
+ "learning_rate": 4.985555173501106e-05,
311
+ "loss": 0.3247,
312
+ "num_input_tokens_seen": 1961808,
313
+ "step": 38
314
+ },
315
+ {
316
+ "epoch": 1.0268456375838926,
317
+ "grad_norm": 0.08985067158937454,
318
+ "learning_rate": 4.9847856983226996e-05,
319
+ "loss": 0.3328,
320
+ "num_input_tokens_seen": 2020584,
321
+ "step": 39
322
+ },
323
+ {
324
+ "epoch": 1.0536912751677852,
325
+ "grad_norm": 0.08735290169715881,
326
+ "learning_rate": 4.9839963190492576e-05,
327
+ "loss": 0.3809,
328
+ "num_input_tokens_seen": 2077264,
329
+ "step": 40
330
+ },
331
+ {
332
+ "epoch": 1.0805369127516777,
333
+ "grad_norm": 0.08123548328876495,
334
+ "learning_rate": 4.9831870420040126e-05,
335
+ "loss": 0.296,
336
+ "num_input_tokens_seen": 2117808,
337
+ "step": 41
338
+ },
339
+ {
340
+ "epoch": 1.1073825503355705,
341
+ "grad_norm": 0.09133706986904144,
342
+ "learning_rate": 4.982357873669589e-05,
343
+ "loss": 0.3045,
344
+ "num_input_tokens_seen": 2157928,
345
+ "step": 42
346
+ },
347
+ {
348
+ "epoch": 1.1342281879194631,
349
+ "grad_norm": 0.07161358743906021,
350
+ "learning_rate": 4.981508820687943e-05,
351
+ "loss": 0.3037,
352
+ "num_input_tokens_seen": 2215144,
353
+ "step": 43
354
+ },
355
+ {
356
+ "epoch": 1.1610738255033557,
357
+ "grad_norm": 0.07848912477493286,
358
+ "learning_rate": 4.9806398898603206e-05,
359
+ "loss": 0.308,
360
+ "num_input_tokens_seen": 2268776,
361
+ "step": 44
362
+ },
363
+ {
364
+ "epoch": 1.1879194630872483,
365
+ "grad_norm": 0.07580725848674774,
366
+ "learning_rate": 4.979751088147192e-05,
367
+ "loss": 0.3095,
368
+ "num_input_tokens_seen": 2316136,
369
+ "step": 45
370
+ },
371
+ {
372
+ "epoch": 1.2147651006711409,
373
+ "grad_norm": 0.13087698817253113,
374
+ "learning_rate": 4.978842422668204e-05,
375
+ "loss": 0.3144,
376
+ "num_input_tokens_seen": 2370888,
377
+ "step": 46
378
+ },
379
+ {
380
+ "epoch": 1.2416107382550337,
381
+ "grad_norm": 0.07428968697786331,
382
+ "learning_rate": 4.9779139007021184e-05,
383
+ "loss": 0.3084,
384
+ "num_input_tokens_seen": 2426656,
385
+ "step": 47
386
+ },
387
+ {
388
+ "epoch": 1.2684563758389262,
389
+ "grad_norm": 0.08130094408988953,
390
+ "learning_rate": 4.9769655296867554e-05,
391
+ "loss": 0.2861,
392
+ "num_input_tokens_seen": 2471944,
393
+ "step": 48
394
+ },
395
+ {
396
+ "epoch": 1.2953020134228188,
397
+ "grad_norm": 0.16188324987888336,
398
+ "learning_rate": 4.9759973172189334e-05,
399
+ "loss": 0.3136,
400
+ "num_input_tokens_seen": 2539888,
401
+ "step": 49
402
+ },
403
+ {
404
+ "epoch": 1.3221476510067114,
405
+ "grad_norm": 0.08185111731290817,
406
+ "learning_rate": 4.975009271054409e-05,
407
+ "loss": 0.26,
408
+ "num_input_tokens_seen": 2581936,
409
+ "step": 50
410
+ },
411
+ {
412
+ "epoch": 1.348993288590604,
413
+ "grad_norm": 0.07140379399061203,
414
+ "learning_rate": 4.974001399107816e-05,
415
+ "loss": 0.3178,
416
+ "num_input_tokens_seen": 2647016,
417
+ "step": 51
418
+ },
419
+ {
420
+ "epoch": 1.3758389261744965,
421
+ "grad_norm": 0.08086609840393066,
422
+ "learning_rate": 4.972973709452597e-05,
423
+ "loss": 0.2853,
424
+ "num_input_tokens_seen": 2694512,
425
+ "step": 52
426
+ },
427
+ {
428
+ "epoch": 1.4026845637583891,
429
+ "grad_norm": 0.08030746877193451,
430
+ "learning_rate": 4.971926210320944e-05,
431
+ "loss": 0.3009,
432
+ "num_input_tokens_seen": 2735672,
433
+ "step": 53
434
+ },
435
+ {
436
+ "epoch": 1.429530201342282,
437
+ "grad_norm": 0.07996731996536255,
438
+ "learning_rate": 4.9708589101037306e-05,
439
+ "loss": 0.2967,
440
+ "num_input_tokens_seen": 2789104,
441
+ "step": 54
442
+ },
443
+ {
444
+ "epoch": 1.4563758389261745,
445
+ "grad_norm": 0.0722445398569107,
446
+ "learning_rate": 4.969771817350445e-05,
447
+ "loss": 0.2741,
448
+ "num_input_tokens_seen": 2836960,
449
+ "step": 55
450
+ },
451
+ {
452
+ "epoch": 1.483221476510067,
453
+ "grad_norm": 0.08382672816514969,
454
+ "learning_rate": 4.968664940769121e-05,
455
+ "loss": 0.3276,
456
+ "num_input_tokens_seen": 2900208,
457
+ "step": 56
458
+ },
459
+ {
460
+ "epoch": 1.5100671140939599,
461
+ "grad_norm": 0.07235248386859894,
462
+ "learning_rate": 4.967538289226267e-05,
463
+ "loss": 0.2721,
464
+ "num_input_tokens_seen": 2964720,
465
+ "step": 57
466
+ },
467
+ {
468
+ "epoch": 1.5369127516778525,
469
+ "grad_norm": 0.07382500171661377,
470
+ "learning_rate": 4.9663918717467996e-05,
471
+ "loss": 0.3084,
472
+ "num_input_tokens_seen": 3029912,
473
+ "step": 58
474
+ },
475
+ {
476
+ "epoch": 1.563758389261745,
477
+ "grad_norm": 0.07173939794301987,
478
+ "learning_rate": 4.965225697513965e-05,
479
+ "loss": 0.2752,
480
+ "num_input_tokens_seen": 3081216,
481
+ "step": 59
482
+ },
483
+ {
484
+ "epoch": 1.5906040268456376,
485
+ "grad_norm": 0.07698569446802139,
486
+ "learning_rate": 4.9640397758692715e-05,
487
+ "loss": 0.2684,
488
+ "num_input_tokens_seen": 3131424,
489
+ "step": 60
490
+ },
491
+ {
492
+ "epoch": 1.6174496644295302,
493
+ "grad_norm": 0.07956692576408386,
494
+ "learning_rate": 4.962834116312409e-05,
495
+ "loss": 0.2663,
496
+ "num_input_tokens_seen": 3183240,
497
+ "step": 61
498
+ },
499
+ {
500
+ "epoch": 1.6442953020134228,
501
+ "grad_norm": 0.09150110185146332,
502
+ "learning_rate": 4.961608728501178e-05,
503
+ "loss": 0.2845,
504
+ "num_input_tokens_seen": 3231192,
505
+ "step": 62
506
+ },
507
+ {
508
+ "epoch": 1.6711409395973154,
509
+ "grad_norm": 0.07471323758363724,
510
+ "learning_rate": 4.960363622251409e-05,
511
+ "loss": 0.2873,
512
+ "num_input_tokens_seen": 3290616,
513
+ "step": 63
514
+ },
515
+ {
516
+ "epoch": 1.697986577181208,
517
+ "grad_norm": 0.08185286819934845,
518
+ "learning_rate": 4.959098807536885e-05,
519
+ "loss": 0.2858,
520
+ "num_input_tokens_seen": 3342512,
521
+ "step": 64
522
+ },
523
+ {
524
+ "epoch": 1.7248322147651005,
525
+ "grad_norm": 0.07076375931501389,
526
+ "learning_rate": 4.957814294489261e-05,
527
+ "loss": 0.2813,
528
+ "num_input_tokens_seen": 3404912,
529
+ "step": 65
530
+ },
531
+ {
532
+ "epoch": 1.7516778523489933,
533
+ "grad_norm": 0.08946257829666138,
534
+ "learning_rate": 4.956510093397983e-05,
535
+ "loss": 0.2417,
536
+ "num_input_tokens_seen": 3444648,
537
+ "step": 66
538
+ },
539
+ {
540
+ "epoch": 1.778523489932886,
541
+ "grad_norm": 0.08985330909490585,
542
+ "learning_rate": 4.955186214710208e-05,
543
+ "loss": 0.303,
544
+ "num_input_tokens_seen": 3493584,
545
+ "step": 67
546
+ },
547
+ {
548
+ "epoch": 1.8053691275167785,
549
+ "grad_norm": 0.0905148983001709,
550
+ "learning_rate": 4.953842669030716e-05,
551
+ "loss": 0.259,
552
+ "num_input_tokens_seen": 3544904,
553
+ "step": 68
554
+ },
555
+ {
556
+ "epoch": 1.8322147651006713,
557
+ "grad_norm": 0.08572433143854141,
558
+ "learning_rate": 4.952479467121827e-05,
559
+ "loss": 0.2709,
560
+ "num_input_tokens_seen": 3591296,
561
+ "step": 69
562
+ },
563
+ {
564
+ "epoch": 1.8590604026845639,
565
+ "grad_norm": 0.09188525378704071,
566
+ "learning_rate": 4.9510966199033174e-05,
567
+ "loss": 0.2615,
568
+ "num_input_tokens_seen": 3655368,
569
+ "step": 70
570
+ },
571
+ {
572
+ "epoch": 1.8859060402684564,
573
+ "grad_norm": 0.0810374766588211,
574
+ "learning_rate": 4.949694138452327e-05,
575
+ "loss": 0.2607,
576
+ "num_input_tokens_seen": 3707872,
577
+ "step": 71
578
+ },
579
+ {
580
+ "epoch": 1.912751677852349,
581
+ "grad_norm": 0.09255556017160416,
582
+ "learning_rate": 4.948272034003275e-05,
583
+ "loss": 0.2876,
584
+ "num_input_tokens_seen": 3755824,
585
+ "step": 72
586
+ },
587
+ {
588
+ "epoch": 1.9395973154362416,
589
+ "grad_norm": 0.07975213974714279,
590
+ "learning_rate": 4.9468303179477706e-05,
591
+ "loss": 0.2429,
592
+ "num_input_tokens_seen": 3810712,
593
+ "step": 73
594
+ },
595
+ {
596
+ "epoch": 1.9664429530201342,
597
+ "grad_norm": 0.09419341385364532,
598
+ "learning_rate": 4.9453690018345144e-05,
599
+ "loss": 0.2672,
600
+ "num_input_tokens_seen": 3861920,
601
+ "step": 74
602
+ },
603
+ {
604
+ "epoch": 1.9932885906040267,
605
+ "grad_norm": 0.10117878019809723,
606
+ "learning_rate": 4.943888097369216e-05,
607
+ "loss": 0.2764,
608
+ "num_input_tokens_seen": 3909768,
609
+ "step": 75
610
+ },
611
+ {
612
+ "epoch": 2.0,
613
+ "grad_norm": 0.16053622961044312,
614
+ "learning_rate": 4.942387616414492e-05,
615
+ "loss": 0.2707,
616
+ "num_input_tokens_seen": 3923616,
617
+ "step": 76
618
+ },
619
+ {
620
+ "epoch": 2.0268456375838926,
621
+ "grad_norm": 0.14125753939151764,
622
+ "learning_rate": 4.940867570989777e-05,
623
+ "loss": 0.2517,
624
+ "num_input_tokens_seen": 3978224,
625
+ "step": 77
626
+ },
627
+ {
628
+ "epoch": 2.053691275167785,
629
+ "grad_norm": 0.08800158649682999,
630
+ "learning_rate": 4.939327973271221e-05,
631
+ "loss": 0.2821,
632
+ "num_input_tokens_seen": 4024096,
633
+ "step": 78
634
+ },
635
+ {
636
+ "epoch": 2.0805369127516777,
637
+ "grad_norm": 0.08880551159381866,
638
+ "learning_rate": 4.9377688355915994e-05,
639
+ "loss": 0.2396,
640
+ "num_input_tokens_seen": 4080656,
641
+ "step": 79
642
+ },
643
+ {
644
+ "epoch": 2.1073825503355703,
645
+ "grad_norm": 0.09785644710063934,
646
+ "learning_rate": 4.936190170440208e-05,
647
+ "loss": 0.2564,
648
+ "num_input_tokens_seen": 4122248,
649
+ "step": 80
650
+ },
651
+ {
652
+ "epoch": 2.134228187919463,
653
+ "grad_norm": 0.10203557461500168,
654
+ "learning_rate": 4.934591990462766e-05,
655
+ "loss": 0.2663,
656
+ "num_input_tokens_seen": 4183624,
657
+ "step": 81
658
+ },
659
+ {
660
+ "epoch": 2.1610738255033555,
661
+ "grad_norm": 0.09022527933120728,
662
+ "learning_rate": 4.932974308461311e-05,
663
+ "loss": 0.2373,
664
+ "num_input_tokens_seen": 4223696,
665
+ "step": 82
666
+ },
667
+ {
668
+ "epoch": 2.1879194630872485,
669
+ "grad_norm": 0.08529677987098694,
670
+ "learning_rate": 4.931337137394105e-05,
671
+ "loss": 0.2743,
672
+ "num_input_tokens_seen": 4282504,
673
+ "step": 83
674
+ },
675
+ {
676
+ "epoch": 2.214765100671141,
677
+ "grad_norm": 0.10522245615720749,
678
+ "learning_rate": 4.92968049037552e-05,
679
+ "loss": 0.2516,
680
+ "num_input_tokens_seen": 4338600,
681
+ "step": 84
682
+ },
683
+ {
684
+ "epoch": 2.2416107382550337,
685
+ "grad_norm": 0.09364143013954163,
686
+ "learning_rate": 4.928004380675941e-05,
687
+ "loss": 0.2463,
688
+ "num_input_tokens_seen": 4385840,
689
+ "step": 85
690
+ },
691
+ {
692
+ "epoch": 2.2684563758389262,
693
+ "grad_norm": 0.10501237958669662,
694
+ "learning_rate": 4.9263088217216544e-05,
695
+ "loss": 0.2578,
696
+ "num_input_tokens_seen": 4440368,
697
+ "step": 86
698
+ },
699
+ {
700
+ "epoch": 2.295302013422819,
701
+ "grad_norm": 0.09559391438961029,
702
+ "learning_rate": 4.9245938270947435e-05,
703
+ "loss": 0.2369,
704
+ "num_input_tokens_seen": 4502040,
705
+ "step": 87
706
+ },
707
+ {
708
+ "epoch": 2.3221476510067114,
709
+ "grad_norm": 0.08705922961235046,
710
+ "learning_rate": 4.922859410532978e-05,
711
+ "loss": 0.3009,
712
+ "num_input_tokens_seen": 4563296,
713
+ "step": 88
714
+ },
715
+ {
716
+ "epoch": 2.348993288590604,
717
+ "grad_norm": 0.08942529559135437,
718
+ "learning_rate": 4.921105585929709e-05,
719
+ "loss": 0.211,
720
+ "num_input_tokens_seen": 4620344,
721
+ "step": 89
722
+ },
723
+ {
724
+ "epoch": 2.3758389261744965,
725
+ "grad_norm": 0.088467076420784,
726
+ "learning_rate": 4.9193323673337476e-05,
727
+ "loss": 0.2463,
728
+ "num_input_tokens_seen": 4675400,
729
+ "step": 90
730
+ },
731
+ {
732
+ "epoch": 2.402684563758389,
733
+ "grad_norm": 0.08302924036979675,
734
+ "learning_rate": 4.9175397689492614e-05,
735
+ "loss": 0.2536,
736
+ "num_input_tokens_seen": 4734696,
737
+ "step": 91
738
+ },
739
+ {
740
+ "epoch": 2.4295302013422817,
741
+ "grad_norm": 0.10511067509651184,
742
+ "learning_rate": 4.915727805135657e-05,
743
+ "loss": 0.2538,
744
+ "num_input_tokens_seen": 4782448,
745
+ "step": 92
746
+ },
747
+ {
748
+ "epoch": 2.4563758389261743,
749
+ "grad_norm": 0.09681275486946106,
750
+ "learning_rate": 4.9138964904074667e-05,
751
+ "loss": 0.2243,
752
+ "num_input_tokens_seen": 4830504,
753
+ "step": 93
754
+ },
755
+ {
756
+ "epoch": 2.4832214765100673,
757
+ "grad_norm": 0.10118114203214645,
758
+ "learning_rate": 4.91204583943423e-05,
759
+ "loss": 0.2701,
760
+ "num_input_tokens_seen": 4886040,
761
+ "step": 94
762
+ },
763
+ {
764
+ "epoch": 2.51006711409396,
765
+ "grad_norm": 0.11683424562215805,
766
+ "learning_rate": 4.910175867040377e-05,
767
+ "loss": 0.2292,
768
+ "num_input_tokens_seen": 4934448,
769
+ "step": 95
770
+ },
771
+ {
772
+ "epoch": 2.5369127516778525,
773
+ "grad_norm": 0.09783443063497543,
774
+ "learning_rate": 4.90828658820511e-05,
775
+ "loss": 0.2398,
776
+ "num_input_tokens_seen": 4987040,
777
+ "step": 96
778
+ },
779
+ {
780
+ "epoch": 2.563758389261745,
781
+ "grad_norm": 0.10438188165426254,
782
+ "learning_rate": 4.9063780180622845e-05,
783
+ "loss": 0.2355,
784
+ "num_input_tokens_seen": 5037360,
785
+ "step": 97
786
+ },
787
+ {
788
+ "epoch": 2.5906040268456376,
789
+ "grad_norm": 0.1034293919801712,
790
+ "learning_rate": 4.9044501719002844e-05,
791
+ "loss": 0.2554,
792
+ "num_input_tokens_seen": 5091640,
793
+ "step": 98
794
+ },
795
+ {
796
+ "epoch": 2.61744966442953,
797
+ "grad_norm": 0.09722857177257538,
798
+ "learning_rate": 4.9025030651619046e-05,
799
+ "loss": 0.2176,
800
+ "num_input_tokens_seen": 5149232,
801
+ "step": 99
802
+ },
803
+ {
804
+ "epoch": 2.6442953020134228,
805
+ "grad_norm": 0.1010555699467659,
806
+ "learning_rate": 4.9005367134442235e-05,
807
+ "loss": 0.2191,
808
+ "num_input_tokens_seen": 5196648,
809
+ "step": 100
810
+ },
811
+ {
812
+ "epoch": 2.6711409395973154,
813
+ "grad_norm": 0.085463747382164,
814
+ "learning_rate": 4.89855113249848e-05,
815
+ "loss": 0.2283,
816
+ "num_input_tokens_seen": 5261568,
817
+ "step": 101
818
+ },
819
+ {
820
+ "epoch": 2.697986577181208,
821
+ "grad_norm": 0.10148970782756805,
822
+ "learning_rate": 4.896546338229945e-05,
823
+ "loss": 0.234,
824
+ "num_input_tokens_seen": 5312104,
825
+ "step": 102
826
+ },
827
+ {
828
+ "epoch": 2.7248322147651005,
829
+ "grad_norm": 0.12468232959508896,
830
+ "learning_rate": 4.894522346697796e-05,
831
+ "loss": 0.2373,
832
+ "num_input_tokens_seen": 5360104,
833
+ "step": 103
834
+ },
835
+ {
836
+ "epoch": 2.751677852348993,
837
+ "grad_norm": 0.11668706685304642,
838
+ "learning_rate": 4.892479174114989e-05,
839
+ "loss": 0.2291,
840
+ "num_input_tokens_seen": 5402856,
841
+ "step": 104
842
+ },
843
+ {
844
+ "epoch": 2.778523489932886,
845
+ "grad_norm": 0.11586510390043259,
846
+ "learning_rate": 4.890416836848127e-05,
847
+ "loss": 0.2297,
848
+ "num_input_tokens_seen": 5445040,
849
+ "step": 105
850
+ },
851
+ {
852
+ "epoch": 2.8053691275167782,
853
+ "grad_norm": 0.09793268144130707,
854
+ "learning_rate": 4.888335351417331e-05,
855
+ "loss": 0.2271,
856
+ "num_input_tokens_seen": 5497368,
857
+ "step": 106
858
+ },
859
+ {
860
+ "epoch": 2.8322147651006713,
861
+ "grad_norm": 0.1202295795083046,
862
+ "learning_rate": 4.886234734496102e-05,
863
+ "loss": 0.261,
864
+ "num_input_tokens_seen": 5560720,
865
+ "step": 107
866
+ },
867
+ {
868
+ "epoch": 2.859060402684564,
869
+ "grad_norm": 0.10316886752843857,
870
+ "learning_rate": 4.884115002911197e-05,
871
+ "loss": 0.2532,
872
+ "num_input_tokens_seen": 5616592,
873
+ "step": 108
874
+ },
875
+ {
876
+ "epoch": 2.8859060402684564,
877
+ "grad_norm": 0.10972882062196732,
878
+ "learning_rate": 4.8819761736424854e-05,
879
+ "loss": 0.2265,
880
+ "num_input_tokens_seen": 5674352,
881
+ "step": 109
882
+ },
883
+ {
884
+ "epoch": 2.912751677852349,
885
+ "grad_norm": 0.11267542093992233,
886
+ "learning_rate": 4.8798182638228166e-05,
887
+ "loss": 0.2356,
888
+ "num_input_tokens_seen": 5710912,
889
+ "step": 110
890
+ },
891
+ {
892
+ "epoch": 2.9395973154362416,
893
+ "grad_norm": 0.11448722332715988,
894
+ "learning_rate": 4.877641290737884e-05,
895
+ "loss": 0.2381,
896
+ "num_input_tokens_seen": 5757920,
897
+ "step": 111
898
+ },
899
+ {
900
+ "epoch": 2.966442953020134,
901
+ "grad_norm": 0.11678655445575714,
902
+ "learning_rate": 4.875445271826084e-05,
903
+ "loss": 0.2288,
904
+ "num_input_tokens_seen": 5802192,
905
+ "step": 112
906
+ },
907
+ {
908
+ "epoch": 2.9932885906040267,
909
+ "grad_norm": 0.11252844333648682,
910
+ "learning_rate": 4.87323022467838e-05,
911
+ "loss": 0.2264,
912
+ "num_input_tokens_seen": 5867304,
913
+ "step": 113
914
+ },
915
+ {
916
+ "epoch": 3.0,
917
+ "grad_norm": 0.19352872669696808,
918
+ "learning_rate": 4.870996167038154e-05,
919
+ "loss": 0.2352,
920
+ "num_input_tokens_seen": 5885424,
921
+ "step": 114
922
+ },
923
+ {
924
+ "epoch": 3.0268456375838926,
925
+ "grad_norm": 0.1173228845000267,
926
+ "learning_rate": 4.868743116801074e-05,
927
+ "loss": 0.2164,
928
+ "num_input_tokens_seen": 5944528,
929
+ "step": 115
930
+ },
931
+ {
932
+ "epoch": 3.053691275167785,
933
+ "grad_norm": 0.11860992014408112,
934
+ "learning_rate": 4.866471092014945e-05,
935
+ "loss": 0.2329,
936
+ "num_input_tokens_seen": 6003480,
937
+ "step": 116
938
+ },
939
+ {
940
+ "epoch": 3.0805369127516777,
941
+ "grad_norm": 0.10296034812927246,
942
+ "learning_rate": 4.864180110879562e-05,
943
+ "loss": 0.2318,
944
+ "num_input_tokens_seen": 6059304,
945
+ "step": 117
946
+ },
947
+ {
948
+ "epoch": 3.1073825503355703,
949
+ "grad_norm": 0.11512338370084763,
950
+ "learning_rate": 4.861870191746573e-05,
951
+ "loss": 0.2054,
952
+ "num_input_tokens_seen": 6117288,
953
+ "step": 118
954
+ },
955
+ {
956
+ "epoch": 3.134228187919463,
957
+ "grad_norm": 0.13150866329669952,
958
+ "learning_rate": 4.859541353119322e-05,
959
+ "loss": 0.2086,
960
+ "num_input_tokens_seen": 6164008,
961
+ "step": 119
962
+ },
963
+ {
964
+ "epoch": 3.1610738255033555,
965
+ "grad_norm": 0.11846304684877396,
966
+ "learning_rate": 4.857193613652711e-05,
967
+ "loss": 0.2353,
968
+ "num_input_tokens_seen": 6224560,
969
+ "step": 120
970
+ },
971
+ {
972
+ "epoch": 3.1879194630872485,
973
+ "grad_norm": 0.12476348876953125,
974
+ "learning_rate": 4.854826992153038e-05,
975
+ "loss": 0.2295,
976
+ "num_input_tokens_seen": 6273248,
977
+ "step": 121
978
+ },
979
+ {
980
+ "epoch": 3.214765100671141,
981
+ "grad_norm": 0.11604316532611847,
982
+ "learning_rate": 4.8524415075778597e-05,
983
+ "loss": 0.1945,
984
+ "num_input_tokens_seen": 6327592,
985
+ "step": 122
986
+ },
987
+ {
988
+ "epoch": 3.2416107382550337,
989
+ "grad_norm": 0.12193804979324341,
990
+ "learning_rate": 4.850037179035829e-05,
991
+ "loss": 0.2389,
992
+ "num_input_tokens_seen": 6389680,
993
+ "step": 123
994
+ },
995
+ {
996
+ "epoch": 3.2684563758389262,
997
+ "grad_norm": 0.12192777544260025,
998
+ "learning_rate": 4.847614025786549e-05,
999
+ "loss": 0.2083,
1000
+ "num_input_tokens_seen": 6441392,
1001
+ "step": 124
1002
+ },
1003
+ {
1004
+ "epoch": 3.295302013422819,
1005
+ "grad_norm": 0.13284096121788025,
1006
+ "learning_rate": 4.845172067240415e-05,
1007
+ "loss": 0.2497,
1008
+ "num_input_tokens_seen": 6483464,
1009
+ "step": 125
1010
+ },
1011
+ {
1012
+ "epoch": 3.3221476510067114,
1013
+ "grad_norm": 0.10930957645177841,
1014
+ "learning_rate": 4.842711322958459e-05,
1015
+ "loss": 0.188,
1016
+ "num_input_tokens_seen": 6536056,
1017
+ "step": 126
1018
+ },
1019
+ {
1020
+ "epoch": 3.348993288590604,
1021
+ "grad_norm": 0.12303247302770615,
1022
+ "learning_rate": 4.840231812652196e-05,
1023
+ "loss": 0.1913,
1024
+ "num_input_tokens_seen": 6583768,
1025
+ "step": 127
1026
+ },
1027
+ {
1028
+ "epoch": 3.3758389261744965,
1029
+ "grad_norm": 0.12305760383605957,
1030
+ "learning_rate": 4.837733556183463e-05,
1031
+ "loss": 0.1926,
1032
+ "num_input_tokens_seen": 6639048,
1033
+ "step": 128
1034
+ },
1035
+ {
1036
+ "epoch": 3.402684563758389,
1037
+ "grad_norm": 0.13311812281608582,
1038
+ "learning_rate": 4.8352165735642604e-05,
1039
+ "loss": 0.2234,
1040
+ "num_input_tokens_seen": 6691360,
1041
+ "step": 129
1042
+ },
1043
+ {
1044
+ "epoch": 3.4295302013422817,
1045
+ "grad_norm": 0.12300640344619751,
1046
+ "learning_rate": 4.8326808849565936e-05,
1047
+ "loss": 0.2332,
1048
+ "num_input_tokens_seen": 6743408,
1049
+ "step": 130
1050
+ },
1051
+ {
1052
+ "epoch": 3.4563758389261743,
1053
+ "grad_norm": 0.1301521509885788,
1054
+ "learning_rate": 4.830126510672309e-05,
1055
+ "loss": 0.18,
1056
+ "num_input_tokens_seen": 6790704,
1057
+ "step": 131
1058
+ },
1059
+ {
1060
+ "epoch": 3.4832214765100673,
1061
+ "grad_norm": 0.1255597174167633,
1062
+ "learning_rate": 4.827553471172935e-05,
1063
+ "loss": 0.1964,
1064
+ "num_input_tokens_seen": 6839200,
1065
+ "step": 132
1066
+ },
1067
+ {
1068
+ "epoch": 3.51006711409396,
1069
+ "grad_norm": 0.13288290798664093,
1070
+ "learning_rate": 4.824961787069511e-05,
1071
+ "loss": 0.2116,
1072
+ "num_input_tokens_seen": 6892832,
1073
+ "step": 133
1074
+ },
1075
+ {
1076
+ "epoch": 3.5369127516778525,
1077
+ "grad_norm": 0.11485302448272705,
1078
+ "learning_rate": 4.822351479122432e-05,
1079
+ "loss": 0.2071,
1080
+ "num_input_tokens_seen": 6949464,
1081
+ "step": 134
1082
+ },
1083
+ {
1084
+ "epoch": 3.563758389261745,
1085
+ "grad_norm": 0.11960192024707794,
1086
+ "learning_rate": 4.819722568241274e-05,
1087
+ "loss": 0.175,
1088
+ "num_input_tokens_seen": 6996480,
1089
+ "step": 135
1090
+ },
1091
+ {
1092
+ "epoch": 3.5906040268456376,
1093
+ "grad_norm": 0.14381754398345947,
1094
+ "learning_rate": 4.817075075484629e-05,
1095
+ "loss": 0.237,
1096
+ "num_input_tokens_seen": 7053720,
1097
+ "step": 136
1098
+ },
1099
+ {
1100
+ "epoch": 3.61744966442953,
1101
+ "grad_norm": 0.1209937036037445,
1102
+ "learning_rate": 4.8144090220599416e-05,
1103
+ "loss": 0.2176,
1104
+ "num_input_tokens_seen": 7111480,
1105
+ "step": 137
1106
+ },
1107
+ {
1108
+ "epoch": 3.6442953020134228,
1109
+ "grad_norm": 0.13339534401893616,
1110
+ "learning_rate": 4.811724429323329e-05,
1111
+ "loss": 0.2164,
1112
+ "num_input_tokens_seen": 7165728,
1113
+ "step": 138
1114
+ },
1115
+ {
1116
+ "epoch": 3.6711409395973154,
1117
+ "grad_norm": 0.14351628720760345,
1118
+ "learning_rate": 4.809021318779419e-05,
1119
+ "loss": 0.1876,
1120
+ "num_input_tokens_seen": 7207648,
1121
+ "step": 139
1122
+ },
1123
+ {
1124
+ "epoch": 3.697986577181208,
1125
+ "grad_norm": 0.1557406485080719,
1126
+ "learning_rate": 4.806299712081172e-05,
1127
+ "loss": 0.2697,
1128
+ "num_input_tokens_seen": 7254280,
1129
+ "step": 140
1130
+ },
1131
+ {
1132
+ "epoch": 3.7248322147651005,
1133
+ "grad_norm": 0.14036628603935242,
1134
+ "learning_rate": 4.8035596310297124e-05,
1135
+ "loss": 0.1955,
1136
+ "num_input_tokens_seen": 7297912,
1137
+ "step": 141
1138
+ },
1139
+ {
1140
+ "epoch": 3.751677852348993,
1141
+ "grad_norm": 0.1406165212392807,
1142
+ "learning_rate": 4.800801097574149e-05,
1143
+ "loss": 0.2048,
1144
+ "num_input_tokens_seen": 7343304,
1145
+ "step": 142
1146
+ },
1147
+ {
1148
+ "epoch": 3.778523489932886,
1149
+ "grad_norm": 0.1484479159116745,
1150
+ "learning_rate": 4.798024133811403e-05,
1151
+ "loss": 0.2062,
1152
+ "num_input_tokens_seen": 7391688,
1153
+ "step": 143
1154
+ },
1155
+ {
1156
+ "epoch": 3.8053691275167782,
1157
+ "grad_norm": 0.15288512408733368,
1158
+ "learning_rate": 4.795228761986028e-05,
1159
+ "loss": 0.2123,
1160
+ "num_input_tokens_seen": 7448016,
1161
+ "step": 144
1162
+ },
1163
+ {
1164
+ "epoch": 3.8322147651006713,
1165
+ "grad_norm": 0.1407124102115631,
1166
+ "learning_rate": 4.792415004490034e-05,
1167
+ "loss": 0.2128,
1168
+ "num_input_tokens_seen": 7495312,
1169
+ "step": 145
1170
+ },
1171
+ {
1172
+ "epoch": 3.859060402684564,
1173
+ "grad_norm": 0.1452370434999466,
1174
+ "learning_rate": 4.789582883862708e-05,
1175
+ "loss": 0.207,
1176
+ "num_input_tokens_seen": 7552600,
1177
+ "step": 146
1178
+ },
1179
+ {
1180
+ "epoch": 3.8859060402684564,
1181
+ "grad_norm": 0.16543127596378326,
1182
+ "learning_rate": 4.786732422790432e-05,
1183
+ "loss": 0.2227,
1184
+ "num_input_tokens_seen": 7615064,
1185
+ "step": 147
1186
+ },
1187
+ {
1188
+ "epoch": 3.912751677852349,
1189
+ "grad_norm": 0.15252095460891724,
1190
+ "learning_rate": 4.783863644106502e-05,
1191
+ "loss": 0.2296,
1192
+ "num_input_tokens_seen": 7671712,
1193
+ "step": 148
1194
+ }
1195
+ ],
1196
+ "logging_steps": 1.0,
1197
+ "max_steps": 1110,
1198
+ "num_input_tokens_seen": 7671712,
1199
+ "num_train_epochs": 30,
1200
+ "save_steps": 37,
1201
+ "stateful_callbacks": {
1202
+ "TrainerControl": {
1203
+ "args": {
1204
+ "should_epoch_stop": false,
1205
+ "should_evaluate": false,
1206
+ "should_log": false,
1207
+ "should_save": true,
1208
+ "should_training_stop": false
1209
+ },
1210
+ "attributes": {}
1211
+ }
1212
+ },
1213
+ "total_flos": 6.471984530965135e+17,
1214
+ "train_batch_size": 1,
1215
+ "trial_name": null,
1216
+ "trial_params": null
1217
+ }
checkpoint-185/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: Qwen/Qwen2.5-Coder-14B-Instruct
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.12.0
checkpoint-185/adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "Qwen/Qwen2.5-Coder-14B-Instruct",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 16,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "q_proj",
24
+ "gate_proj",
25
+ "o_proj",
26
+ "k_proj",
27
+ "up_proj",
28
+ "down_proj",
29
+ "v_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
checkpoint-185/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1ea0fdc1108a55f6b65035db5112aa0a7266c2f98185455464f1ad0184ce8b36
3
+ size 275341720
checkpoint-185/added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
checkpoint-185/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:187ed4085724cd6925ecf7c9bf747641ee35912fc4de247e3ae3d6380d7f05d1
3
+ size 551070514
checkpoint-185/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c5ae00e602b8860cbd784ba82a8aa14e8feecec692e7076590d014d7b7fdafa
3
+ size 11421896
checkpoint-222/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: Qwen/Qwen2.5-Coder-14B-Instruct
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.12.0
checkpoint-222/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:12611d4a7e1d83a39793b0c227123e83ecc23e84553be501ddf26a29d187bbdc
3
+ size 275341720
checkpoint-222/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-222/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c5ae00e602b8860cbd784ba82a8aa14e8feecec692e7076590d014d7b7fdafa
3
+ size 11421896
checkpoint-259/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: Qwen/Qwen2.5-Coder-14B-Instruct
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.12.0
checkpoint-259/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5ad9df7aad858cb5d95cfc16c940f5ae2c9a76b38d0b0cfd37706357aeed26a1
3
+ size 275341720
checkpoint-259/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-259/special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
checkpoint-259/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c5ae00e602b8860cbd784ba82a8aa14e8feecec692e7076590d014d7b7fdafa
3
+ size 11421896
checkpoint-259/trainer_state.json ADDED
@@ -0,0 +1,2105 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 6.832214765100671,
5
+ "eval_steps": 500,
6
+ "global_step": 259,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.026845637583892617,
13
+ "grad_norm": 0.04068412259221077,
14
+ "learning_rate": 4.9999899870162604e-05,
15
+ "loss": 0.5189,
16
+ "num_input_tokens_seen": 58440,
17
+ "step": 1
18
+ },
19
+ {
20
+ "epoch": 0.053691275167785234,
21
+ "grad_norm": 0.03802767023444176,
22
+ "learning_rate": 4.999959948145249e-05,
23
+ "loss": 0.5061,
24
+ "num_input_tokens_seen": 112800,
25
+ "step": 2
26
+ },
27
+ {
28
+ "epoch": 0.08053691275167785,
29
+ "grad_norm": 0.0524083748459816,
30
+ "learning_rate": 4.999909883627587e-05,
31
+ "loss": 0.5956,
32
+ "num_input_tokens_seen": 156704,
33
+ "step": 3
34
+ },
35
+ {
36
+ "epoch": 0.10738255033557047,
37
+ "grad_norm": 0.050608448684215546,
38
+ "learning_rate": 4.999839793864313e-05,
39
+ "loss": 0.5222,
40
+ "num_input_tokens_seen": 213952,
41
+ "step": 4
42
+ },
43
+ {
44
+ "epoch": 0.1342281879194631,
45
+ "grad_norm": 0.04771890118718147,
46
+ "learning_rate": 4.9997496794168726e-05,
47
+ "loss": 0.4761,
48
+ "num_input_tokens_seen": 266920,
49
+ "step": 5
50
+ },
51
+ {
52
+ "epoch": 0.1610738255033557,
53
+ "grad_norm": 0.05538628622889519,
54
+ "learning_rate": 4.999639541007116e-05,
55
+ "loss": 0.5221,
56
+ "num_input_tokens_seen": 313560,
57
+ "step": 6
58
+ },
59
+ {
60
+ "epoch": 0.18791946308724833,
61
+ "grad_norm": 0.053944796323776245,
62
+ "learning_rate": 4.999509379517297e-05,
63
+ "loss": 0.4738,
64
+ "num_input_tokens_seen": 349544,
65
+ "step": 7
66
+ },
67
+ {
68
+ "epoch": 0.21476510067114093,
69
+ "grad_norm": 0.05679492652416229,
70
+ "learning_rate": 4.9993591959900566e-05,
71
+ "loss": 0.5576,
72
+ "num_input_tokens_seen": 397952,
73
+ "step": 8
74
+ },
75
+ {
76
+ "epoch": 0.24161073825503357,
77
+ "grad_norm": 0.05358556658029556,
78
+ "learning_rate": 4.999188991628425e-05,
79
+ "loss": 0.4803,
80
+ "num_input_tokens_seen": 452568,
81
+ "step": 9
82
+ },
83
+ {
84
+ "epoch": 0.2684563758389262,
85
+ "grad_norm": 0.05667557194828987,
86
+ "learning_rate": 4.998998767795805e-05,
87
+ "loss": 0.4735,
88
+ "num_input_tokens_seen": 494400,
89
+ "step": 10
90
+ },
91
+ {
92
+ "epoch": 0.2953020134228188,
93
+ "grad_norm": 0.048348862677812576,
94
+ "learning_rate": 4.998788526015961e-05,
95
+ "loss": 0.5054,
96
+ "num_input_tokens_seen": 569352,
97
+ "step": 11
98
+ },
99
+ {
100
+ "epoch": 0.3221476510067114,
101
+ "grad_norm": 0.055022645741701126,
102
+ "learning_rate": 4.998558267973014e-05,
103
+ "loss": 0.494,
104
+ "num_input_tokens_seen": 623680,
105
+ "step": 12
106
+ },
107
+ {
108
+ "epoch": 0.348993288590604,
109
+ "grad_norm": 0.05279555916786194,
110
+ "learning_rate": 4.998307995511418e-05,
111
+ "loss": 0.4411,
112
+ "num_input_tokens_seen": 675784,
113
+ "step": 13
114
+ },
115
+ {
116
+ "epoch": 0.37583892617449666,
117
+ "grad_norm": 0.06557705253362656,
118
+ "learning_rate": 4.998037710635952e-05,
119
+ "loss": 0.5778,
120
+ "num_input_tokens_seen": 728120,
121
+ "step": 14
122
+ },
123
+ {
124
+ "epoch": 0.40268456375838924,
125
+ "grad_norm": 0.06649675220251083,
126
+ "learning_rate": 4.9977474155117045e-05,
127
+ "loss": 0.5217,
128
+ "num_input_tokens_seen": 780392,
129
+ "step": 15
130
+ },
131
+ {
132
+ "epoch": 0.42953020134228187,
133
+ "grad_norm": 0.05616322159767151,
134
+ "learning_rate": 4.997437112464049e-05,
135
+ "loss": 0.4175,
136
+ "num_input_tokens_seen": 841192,
137
+ "step": 16
138
+ },
139
+ {
140
+ "epoch": 0.4563758389261745,
141
+ "grad_norm": 0.07165056467056274,
142
+ "learning_rate": 4.997106803978636e-05,
143
+ "loss": 0.5109,
144
+ "num_input_tokens_seen": 899368,
145
+ "step": 17
146
+ },
147
+ {
148
+ "epoch": 0.48322147651006714,
149
+ "grad_norm": 0.06656442582607269,
150
+ "learning_rate": 4.996756492701362e-05,
151
+ "loss": 0.4066,
152
+ "num_input_tokens_seen": 944400,
153
+ "step": 18
154
+ },
155
+ {
156
+ "epoch": 0.5100671140939598,
157
+ "grad_norm": 0.0628059059381485,
158
+ "learning_rate": 4.996386181438357e-05,
159
+ "loss": 0.4501,
160
+ "num_input_tokens_seen": 997024,
161
+ "step": 19
162
+ },
163
+ {
164
+ "epoch": 0.5369127516778524,
165
+ "grad_norm": 0.06418219953775406,
166
+ "learning_rate": 4.995995873155958e-05,
167
+ "loss": 0.4632,
168
+ "num_input_tokens_seen": 1057264,
169
+ "step": 20
170
+ },
171
+ {
172
+ "epoch": 0.5637583892617449,
173
+ "grad_norm": 0.08489955216646194,
174
+ "learning_rate": 4.9955855709806845e-05,
175
+ "loss": 0.4224,
176
+ "num_input_tokens_seen": 1094144,
177
+ "step": 21
178
+ },
179
+ {
180
+ "epoch": 0.5906040268456376,
181
+ "grad_norm": 0.06560485810041428,
182
+ "learning_rate": 4.9951552781992154e-05,
183
+ "loss": 0.4084,
184
+ "num_input_tokens_seen": 1144376,
185
+ "step": 22
186
+ },
187
+ {
188
+ "epoch": 0.6174496644295302,
189
+ "grad_norm": 0.05338270589709282,
190
+ "learning_rate": 4.9947049982583625e-05,
191
+ "loss": 0.3925,
192
+ "num_input_tokens_seen": 1206272,
193
+ "step": 23
194
+ },
195
+ {
196
+ "epoch": 0.6442953020134228,
197
+ "grad_norm": 0.06893228739500046,
198
+ "learning_rate": 4.994234734765043e-05,
199
+ "loss": 0.3666,
200
+ "num_input_tokens_seen": 1252464,
201
+ "step": 24
202
+ },
203
+ {
204
+ "epoch": 0.6711409395973155,
205
+ "grad_norm": 0.07986386865377426,
206
+ "learning_rate": 4.99374449148625e-05,
207
+ "loss": 0.4105,
208
+ "num_input_tokens_seen": 1295560,
209
+ "step": 25
210
+ },
211
+ {
212
+ "epoch": 0.697986577181208,
213
+ "grad_norm": 0.0721018984913826,
214
+ "learning_rate": 4.99323427234902e-05,
215
+ "loss": 0.3965,
216
+ "num_input_tokens_seen": 1356792,
217
+ "step": 26
218
+ },
219
+ {
220
+ "epoch": 0.7248322147651006,
221
+ "grad_norm": 0.08186662942171097,
222
+ "learning_rate": 4.992704081440407e-05,
223
+ "loss": 0.3867,
224
+ "num_input_tokens_seen": 1408568,
225
+ "step": 27
226
+ },
227
+ {
228
+ "epoch": 0.7516778523489933,
229
+ "grad_norm": 0.07936503738164902,
230
+ "learning_rate": 4.992153923007446e-05,
231
+ "loss": 0.4272,
232
+ "num_input_tokens_seen": 1465984,
233
+ "step": 28
234
+ },
235
+ {
236
+ "epoch": 0.7785234899328859,
237
+ "grad_norm": 0.0778949186205864,
238
+ "learning_rate": 4.9915838014571174e-05,
239
+ "loss": 0.3499,
240
+ "num_input_tokens_seen": 1522568,
241
+ "step": 29
242
+ },
243
+ {
244
+ "epoch": 0.8053691275167785,
245
+ "grad_norm": 0.07632329314947128,
246
+ "learning_rate": 4.9909937213563165e-05,
247
+ "loss": 0.3536,
248
+ "num_input_tokens_seen": 1576592,
249
+ "step": 30
250
+ },
251
+ {
252
+ "epoch": 0.8322147651006712,
253
+ "grad_norm": 0.0791730061173439,
254
+ "learning_rate": 4.9903836874318135e-05,
255
+ "loss": 0.3416,
256
+ "num_input_tokens_seen": 1625336,
257
+ "step": 31
258
+ },
259
+ {
260
+ "epoch": 0.8590604026845637,
261
+ "grad_norm": 0.08963429927825928,
262
+ "learning_rate": 4.9897537045702146e-05,
263
+ "loss": 0.3559,
264
+ "num_input_tokens_seen": 1668736,
265
+ "step": 32
266
+ },
267
+ {
268
+ "epoch": 0.8859060402684564,
269
+ "grad_norm": 0.06969798356294632,
270
+ "learning_rate": 4.989103777817928e-05,
271
+ "loss": 0.358,
272
+ "num_input_tokens_seen": 1725096,
273
+ "step": 33
274
+ },
275
+ {
276
+ "epoch": 0.912751677852349,
277
+ "grad_norm": 0.09034521877765656,
278
+ "learning_rate": 4.988433912381117e-05,
279
+ "loss": 0.354,
280
+ "num_input_tokens_seen": 1768400,
281
+ "step": 34
282
+ },
283
+ {
284
+ "epoch": 0.9395973154362416,
285
+ "grad_norm": 0.07854894548654556,
286
+ "learning_rate": 4.987744113625665e-05,
287
+ "loss": 0.3553,
288
+ "num_input_tokens_seen": 1829224,
289
+ "step": 35
290
+ },
291
+ {
292
+ "epoch": 0.9664429530201343,
293
+ "grad_norm": 0.06981746852397919,
294
+ "learning_rate": 4.9870343870771256e-05,
295
+ "loss": 0.3651,
296
+ "num_input_tokens_seen": 1895440,
297
+ "step": 36
298
+ },
299
+ {
300
+ "epoch": 0.9932885906040269,
301
+ "grad_norm": 1.1971335411071777,
302
+ "learning_rate": 4.9863047384206835e-05,
303
+ "loss": 0.3117,
304
+ "num_input_tokens_seen": 1948776,
305
+ "step": 37
306
+ },
307
+ {
308
+ "epoch": 1.0,
309
+ "grad_norm": 0.13761547207832336,
310
+ "learning_rate": 4.985555173501106e-05,
311
+ "loss": 0.3247,
312
+ "num_input_tokens_seen": 1961808,
313
+ "step": 38
314
+ },
315
+ {
316
+ "epoch": 1.0268456375838926,
317
+ "grad_norm": 0.08985067158937454,
318
+ "learning_rate": 4.9847856983226996e-05,
319
+ "loss": 0.3328,
320
+ "num_input_tokens_seen": 2020584,
321
+ "step": 39
322
+ },
323
+ {
324
+ "epoch": 1.0536912751677852,
325
+ "grad_norm": 0.08735290169715881,
326
+ "learning_rate": 4.9839963190492576e-05,
327
+ "loss": 0.3809,
328
+ "num_input_tokens_seen": 2077264,
329
+ "step": 40
330
+ },
331
+ {
332
+ "epoch": 1.0805369127516777,
333
+ "grad_norm": 0.08123548328876495,
334
+ "learning_rate": 4.9831870420040126e-05,
335
+ "loss": 0.296,
336
+ "num_input_tokens_seen": 2117808,
337
+ "step": 41
338
+ },
339
+ {
340
+ "epoch": 1.1073825503355705,
341
+ "grad_norm": 0.09133706986904144,
342
+ "learning_rate": 4.982357873669589e-05,
343
+ "loss": 0.3045,
344
+ "num_input_tokens_seen": 2157928,
345
+ "step": 42
346
+ },
347
+ {
348
+ "epoch": 1.1342281879194631,
349
+ "grad_norm": 0.07161358743906021,
350
+ "learning_rate": 4.981508820687943e-05,
351
+ "loss": 0.3037,
352
+ "num_input_tokens_seen": 2215144,
353
+ "step": 43
354
+ },
355
+ {
356
+ "epoch": 1.1610738255033557,
357
+ "grad_norm": 0.07848912477493286,
358
+ "learning_rate": 4.9806398898603206e-05,
359
+ "loss": 0.308,
360
+ "num_input_tokens_seen": 2268776,
361
+ "step": 44
362
+ },
363
+ {
364
+ "epoch": 1.1879194630872483,
365
+ "grad_norm": 0.07580725848674774,
366
+ "learning_rate": 4.979751088147192e-05,
367
+ "loss": 0.3095,
368
+ "num_input_tokens_seen": 2316136,
369
+ "step": 45
370
+ },
371
+ {
372
+ "epoch": 1.2147651006711409,
373
+ "grad_norm": 0.13087698817253113,
374
+ "learning_rate": 4.978842422668204e-05,
375
+ "loss": 0.3144,
376
+ "num_input_tokens_seen": 2370888,
377
+ "step": 46
378
+ },
379
+ {
380
+ "epoch": 1.2416107382550337,
381
+ "grad_norm": 0.07428968697786331,
382
+ "learning_rate": 4.9779139007021184e-05,
383
+ "loss": 0.3084,
384
+ "num_input_tokens_seen": 2426656,
385
+ "step": 47
386
+ },
387
+ {
388
+ "epoch": 1.2684563758389262,
389
+ "grad_norm": 0.08130094408988953,
390
+ "learning_rate": 4.9769655296867554e-05,
391
+ "loss": 0.2861,
392
+ "num_input_tokens_seen": 2471944,
393
+ "step": 48
394
+ },
395
+ {
396
+ "epoch": 1.2953020134228188,
397
+ "grad_norm": 0.16188324987888336,
398
+ "learning_rate": 4.9759973172189334e-05,
399
+ "loss": 0.3136,
400
+ "num_input_tokens_seen": 2539888,
401
+ "step": 49
402
+ },
403
+ {
404
+ "epoch": 1.3221476510067114,
405
+ "grad_norm": 0.08185111731290817,
406
+ "learning_rate": 4.975009271054409e-05,
407
+ "loss": 0.26,
408
+ "num_input_tokens_seen": 2581936,
409
+ "step": 50
410
+ },
411
+ {
412
+ "epoch": 1.348993288590604,
413
+ "grad_norm": 0.07140379399061203,
414
+ "learning_rate": 4.974001399107816e-05,
415
+ "loss": 0.3178,
416
+ "num_input_tokens_seen": 2647016,
417
+ "step": 51
418
+ },
419
+ {
420
+ "epoch": 1.3758389261744965,
421
+ "grad_norm": 0.08086609840393066,
422
+ "learning_rate": 4.972973709452597e-05,
423
+ "loss": 0.2853,
424
+ "num_input_tokens_seen": 2694512,
425
+ "step": 52
426
+ },
427
+ {
428
+ "epoch": 1.4026845637583891,
429
+ "grad_norm": 0.08030746877193451,
430
+ "learning_rate": 4.971926210320944e-05,
431
+ "loss": 0.3009,
432
+ "num_input_tokens_seen": 2735672,
433
+ "step": 53
434
+ },
435
+ {
436
+ "epoch": 1.429530201342282,
437
+ "grad_norm": 0.07996731996536255,
438
+ "learning_rate": 4.9708589101037306e-05,
439
+ "loss": 0.2967,
440
+ "num_input_tokens_seen": 2789104,
441
+ "step": 54
442
+ },
443
+ {
444
+ "epoch": 1.4563758389261745,
445
+ "grad_norm": 0.0722445398569107,
446
+ "learning_rate": 4.969771817350445e-05,
447
+ "loss": 0.2741,
448
+ "num_input_tokens_seen": 2836960,
449
+ "step": 55
450
+ },
451
+ {
452
+ "epoch": 1.483221476510067,
453
+ "grad_norm": 0.08382672816514969,
454
+ "learning_rate": 4.968664940769121e-05,
455
+ "loss": 0.3276,
456
+ "num_input_tokens_seen": 2900208,
457
+ "step": 56
458
+ },
459
+ {
460
+ "epoch": 1.5100671140939599,
461
+ "grad_norm": 0.07235248386859894,
462
+ "learning_rate": 4.967538289226267e-05,
463
+ "loss": 0.2721,
464
+ "num_input_tokens_seen": 2964720,
465
+ "step": 57
466
+ },
467
+ {
468
+ "epoch": 1.5369127516778525,
469
+ "grad_norm": 0.07382500171661377,
470
+ "learning_rate": 4.9663918717467996e-05,
471
+ "loss": 0.3084,
472
+ "num_input_tokens_seen": 3029912,
473
+ "step": 58
474
+ },
475
+ {
476
+ "epoch": 1.563758389261745,
477
+ "grad_norm": 0.07173939794301987,
478
+ "learning_rate": 4.965225697513965e-05,
479
+ "loss": 0.2752,
480
+ "num_input_tokens_seen": 3081216,
481
+ "step": 59
482
+ },
483
+ {
484
+ "epoch": 1.5906040268456376,
485
+ "grad_norm": 0.07698569446802139,
486
+ "learning_rate": 4.9640397758692715e-05,
487
+ "loss": 0.2684,
488
+ "num_input_tokens_seen": 3131424,
489
+ "step": 60
490
+ },
491
+ {
492
+ "epoch": 1.6174496644295302,
493
+ "grad_norm": 0.07956692576408386,
494
+ "learning_rate": 4.962834116312409e-05,
495
+ "loss": 0.2663,
496
+ "num_input_tokens_seen": 3183240,
497
+ "step": 61
498
+ },
499
+ {
500
+ "epoch": 1.6442953020134228,
501
+ "grad_norm": 0.09150110185146332,
502
+ "learning_rate": 4.961608728501178e-05,
503
+ "loss": 0.2845,
504
+ "num_input_tokens_seen": 3231192,
505
+ "step": 62
506
+ },
507
+ {
508
+ "epoch": 1.6711409395973154,
509
+ "grad_norm": 0.07471323758363724,
510
+ "learning_rate": 4.960363622251409e-05,
511
+ "loss": 0.2873,
512
+ "num_input_tokens_seen": 3290616,
513
+ "step": 63
514
+ },
515
+ {
516
+ "epoch": 1.697986577181208,
517
+ "grad_norm": 0.08185286819934845,
518
+ "learning_rate": 4.959098807536885e-05,
519
+ "loss": 0.2858,
520
+ "num_input_tokens_seen": 3342512,
521
+ "step": 64
522
+ },
523
+ {
524
+ "epoch": 1.7248322147651005,
525
+ "grad_norm": 0.07076375931501389,
526
+ "learning_rate": 4.957814294489261e-05,
527
+ "loss": 0.2813,
528
+ "num_input_tokens_seen": 3404912,
529
+ "step": 65
530
+ },
531
+ {
532
+ "epoch": 1.7516778523489933,
533
+ "grad_norm": 0.08946257829666138,
534
+ "learning_rate": 4.956510093397983e-05,
535
+ "loss": 0.2417,
536
+ "num_input_tokens_seen": 3444648,
537
+ "step": 66
538
+ },
539
+ {
540
+ "epoch": 1.778523489932886,
541
+ "grad_norm": 0.08985330909490585,
542
+ "learning_rate": 4.955186214710208e-05,
543
+ "loss": 0.303,
544
+ "num_input_tokens_seen": 3493584,
545
+ "step": 67
546
+ },
547
+ {
548
+ "epoch": 1.8053691275167785,
549
+ "grad_norm": 0.0905148983001709,
550
+ "learning_rate": 4.953842669030716e-05,
551
+ "loss": 0.259,
552
+ "num_input_tokens_seen": 3544904,
553
+ "step": 68
554
+ },
555
+ {
556
+ "epoch": 1.8322147651006713,
557
+ "grad_norm": 0.08572433143854141,
558
+ "learning_rate": 4.952479467121827e-05,
559
+ "loss": 0.2709,
560
+ "num_input_tokens_seen": 3591296,
561
+ "step": 69
562
+ },
563
+ {
564
+ "epoch": 1.8590604026845639,
565
+ "grad_norm": 0.09188525378704071,
566
+ "learning_rate": 4.9510966199033174e-05,
567
+ "loss": 0.2615,
568
+ "num_input_tokens_seen": 3655368,
569
+ "step": 70
570
+ },
571
+ {
572
+ "epoch": 1.8859060402684564,
573
+ "grad_norm": 0.0810374766588211,
574
+ "learning_rate": 4.949694138452327e-05,
575
+ "loss": 0.2607,
576
+ "num_input_tokens_seen": 3707872,
577
+ "step": 71
578
+ },
579
+ {
580
+ "epoch": 1.912751677852349,
581
+ "grad_norm": 0.09255556017160416,
582
+ "learning_rate": 4.948272034003275e-05,
583
+ "loss": 0.2876,
584
+ "num_input_tokens_seen": 3755824,
585
+ "step": 72
586
+ },
587
+ {
588
+ "epoch": 1.9395973154362416,
589
+ "grad_norm": 0.07975213974714279,
590
+ "learning_rate": 4.9468303179477706e-05,
591
+ "loss": 0.2429,
592
+ "num_input_tokens_seen": 3810712,
593
+ "step": 73
594
+ },
595
+ {
596
+ "epoch": 1.9664429530201342,
597
+ "grad_norm": 0.09419341385364532,
598
+ "learning_rate": 4.9453690018345144e-05,
599
+ "loss": 0.2672,
600
+ "num_input_tokens_seen": 3861920,
601
+ "step": 74
602
+ },
603
+ {
604
+ "epoch": 1.9932885906040267,
605
+ "grad_norm": 0.10117878019809723,
606
+ "learning_rate": 4.943888097369216e-05,
607
+ "loss": 0.2764,
608
+ "num_input_tokens_seen": 3909768,
609
+ "step": 75
610
+ },
611
+ {
612
+ "epoch": 2.0,
613
+ "grad_norm": 0.16053622961044312,
614
+ "learning_rate": 4.942387616414492e-05,
615
+ "loss": 0.2707,
616
+ "num_input_tokens_seen": 3923616,
617
+ "step": 76
618
+ },
619
+ {
620
+ "epoch": 2.0268456375838926,
621
+ "grad_norm": 0.14125753939151764,
622
+ "learning_rate": 4.940867570989777e-05,
623
+ "loss": 0.2517,
624
+ "num_input_tokens_seen": 3978224,
625
+ "step": 77
626
+ },
627
+ {
628
+ "epoch": 2.053691275167785,
629
+ "grad_norm": 0.08800158649682999,
630
+ "learning_rate": 4.939327973271221e-05,
631
+ "loss": 0.2821,
632
+ "num_input_tokens_seen": 4024096,
633
+ "step": 78
634
+ },
635
+ {
636
+ "epoch": 2.0805369127516777,
637
+ "grad_norm": 0.08880551159381866,
638
+ "learning_rate": 4.9377688355915994e-05,
639
+ "loss": 0.2396,
640
+ "num_input_tokens_seen": 4080656,
641
+ "step": 79
642
+ },
643
+ {
644
+ "epoch": 2.1073825503355703,
645
+ "grad_norm": 0.09785644710063934,
646
+ "learning_rate": 4.936190170440208e-05,
647
+ "loss": 0.2564,
648
+ "num_input_tokens_seen": 4122248,
649
+ "step": 80
650
+ },
651
+ {
652
+ "epoch": 2.134228187919463,
653
+ "grad_norm": 0.10203557461500168,
654
+ "learning_rate": 4.934591990462766e-05,
655
+ "loss": 0.2663,
656
+ "num_input_tokens_seen": 4183624,
657
+ "step": 81
658
+ },
659
+ {
660
+ "epoch": 2.1610738255033555,
661
+ "grad_norm": 0.09022527933120728,
662
+ "learning_rate": 4.932974308461311e-05,
663
+ "loss": 0.2373,
664
+ "num_input_tokens_seen": 4223696,
665
+ "step": 82
666
+ },
667
+ {
668
+ "epoch": 2.1879194630872485,
669
+ "grad_norm": 0.08529677987098694,
670
+ "learning_rate": 4.931337137394105e-05,
671
+ "loss": 0.2743,
672
+ "num_input_tokens_seen": 4282504,
673
+ "step": 83
674
+ },
675
+ {
676
+ "epoch": 2.214765100671141,
677
+ "grad_norm": 0.10522245615720749,
678
+ "learning_rate": 4.92968049037552e-05,
679
+ "loss": 0.2516,
680
+ "num_input_tokens_seen": 4338600,
681
+ "step": 84
682
+ },
683
+ {
684
+ "epoch": 2.2416107382550337,
685
+ "grad_norm": 0.09364143013954163,
686
+ "learning_rate": 4.928004380675941e-05,
687
+ "loss": 0.2463,
688
+ "num_input_tokens_seen": 4385840,
689
+ "step": 85
690
+ },
691
+ {
692
+ "epoch": 2.2684563758389262,
693
+ "grad_norm": 0.10501237958669662,
694
+ "learning_rate": 4.9263088217216544e-05,
695
+ "loss": 0.2578,
696
+ "num_input_tokens_seen": 4440368,
697
+ "step": 86
698
+ },
699
+ {
700
+ "epoch": 2.295302013422819,
701
+ "grad_norm": 0.09559391438961029,
702
+ "learning_rate": 4.9245938270947435e-05,
703
+ "loss": 0.2369,
704
+ "num_input_tokens_seen": 4502040,
705
+ "step": 87
706
+ },
707
+ {
708
+ "epoch": 2.3221476510067114,
709
+ "grad_norm": 0.08705922961235046,
710
+ "learning_rate": 4.922859410532978e-05,
711
+ "loss": 0.3009,
712
+ "num_input_tokens_seen": 4563296,
713
+ "step": 88
714
+ },
715
+ {
716
+ "epoch": 2.348993288590604,
717
+ "grad_norm": 0.08942529559135437,
718
+ "learning_rate": 4.921105585929709e-05,
719
+ "loss": 0.211,
720
+ "num_input_tokens_seen": 4620344,
721
+ "step": 89
722
+ },
723
+ {
724
+ "epoch": 2.3758389261744965,
725
+ "grad_norm": 0.088467076420784,
726
+ "learning_rate": 4.9193323673337476e-05,
727
+ "loss": 0.2463,
728
+ "num_input_tokens_seen": 4675400,
729
+ "step": 90
730
+ },
731
+ {
732
+ "epoch": 2.402684563758389,
733
+ "grad_norm": 0.08302924036979675,
734
+ "learning_rate": 4.9175397689492614e-05,
735
+ "loss": 0.2536,
736
+ "num_input_tokens_seen": 4734696,
737
+ "step": 91
738
+ },
739
+ {
740
+ "epoch": 2.4295302013422817,
741
+ "grad_norm": 0.10511067509651184,
742
+ "learning_rate": 4.915727805135657e-05,
743
+ "loss": 0.2538,
744
+ "num_input_tokens_seen": 4782448,
745
+ "step": 92
746
+ },
747
+ {
748
+ "epoch": 2.4563758389261743,
749
+ "grad_norm": 0.09681275486946106,
750
+ "learning_rate": 4.9138964904074667e-05,
751
+ "loss": 0.2243,
752
+ "num_input_tokens_seen": 4830504,
753
+ "step": 93
754
+ },
755
+ {
756
+ "epoch": 2.4832214765100673,
757
+ "grad_norm": 0.10118114203214645,
758
+ "learning_rate": 4.91204583943423e-05,
759
+ "loss": 0.2701,
760
+ "num_input_tokens_seen": 4886040,
761
+ "step": 94
762
+ },
763
+ {
764
+ "epoch": 2.51006711409396,
765
+ "grad_norm": 0.11683424562215805,
766
+ "learning_rate": 4.910175867040377e-05,
767
+ "loss": 0.2292,
768
+ "num_input_tokens_seen": 4934448,
769
+ "step": 95
770
+ },
771
+ {
772
+ "epoch": 2.5369127516778525,
773
+ "grad_norm": 0.09783443063497543,
774
+ "learning_rate": 4.90828658820511e-05,
775
+ "loss": 0.2398,
776
+ "num_input_tokens_seen": 4987040,
777
+ "step": 96
778
+ },
779
+ {
780
+ "epoch": 2.563758389261745,
781
+ "grad_norm": 0.10438188165426254,
782
+ "learning_rate": 4.9063780180622845e-05,
783
+ "loss": 0.2355,
784
+ "num_input_tokens_seen": 5037360,
785
+ "step": 97
786
+ },
787
+ {
788
+ "epoch": 2.5906040268456376,
789
+ "grad_norm": 0.1034293919801712,
790
+ "learning_rate": 4.9044501719002844e-05,
791
+ "loss": 0.2554,
792
+ "num_input_tokens_seen": 5091640,
793
+ "step": 98
794
+ },
795
+ {
796
+ "epoch": 2.61744966442953,
797
+ "grad_norm": 0.09722857177257538,
798
+ "learning_rate": 4.9025030651619046e-05,
799
+ "loss": 0.2176,
800
+ "num_input_tokens_seen": 5149232,
801
+ "step": 99
802
+ },
803
+ {
804
+ "epoch": 2.6442953020134228,
805
+ "grad_norm": 0.1010555699467659,
806
+ "learning_rate": 4.9005367134442235e-05,
807
+ "loss": 0.2191,
808
+ "num_input_tokens_seen": 5196648,
809
+ "step": 100
810
+ },
811
+ {
812
+ "epoch": 2.6711409395973154,
813
+ "grad_norm": 0.085463747382164,
814
+ "learning_rate": 4.89855113249848e-05,
815
+ "loss": 0.2283,
816
+ "num_input_tokens_seen": 5261568,
817
+ "step": 101
818
+ },
819
+ {
820
+ "epoch": 2.697986577181208,
821
+ "grad_norm": 0.10148970782756805,
822
+ "learning_rate": 4.896546338229945e-05,
823
+ "loss": 0.234,
824
+ "num_input_tokens_seen": 5312104,
825
+ "step": 102
826
+ },
827
+ {
828
+ "epoch": 2.7248322147651005,
829
+ "grad_norm": 0.12468232959508896,
830
+ "learning_rate": 4.894522346697796e-05,
831
+ "loss": 0.2373,
832
+ "num_input_tokens_seen": 5360104,
833
+ "step": 103
834
+ },
835
+ {
836
+ "epoch": 2.751677852348993,
837
+ "grad_norm": 0.11668706685304642,
838
+ "learning_rate": 4.892479174114989e-05,
839
+ "loss": 0.2291,
840
+ "num_input_tokens_seen": 5402856,
841
+ "step": 104
842
+ },
843
+ {
844
+ "epoch": 2.778523489932886,
845
+ "grad_norm": 0.11586510390043259,
846
+ "learning_rate": 4.890416836848127e-05,
847
+ "loss": 0.2297,
848
+ "num_input_tokens_seen": 5445040,
849
+ "step": 105
850
+ },
851
+ {
852
+ "epoch": 2.8053691275167782,
853
+ "grad_norm": 0.09793268144130707,
854
+ "learning_rate": 4.888335351417331e-05,
855
+ "loss": 0.2271,
856
+ "num_input_tokens_seen": 5497368,
857
+ "step": 106
858
+ },
859
+ {
860
+ "epoch": 2.8322147651006713,
861
+ "grad_norm": 0.1202295795083046,
862
+ "learning_rate": 4.886234734496102e-05,
863
+ "loss": 0.261,
864
+ "num_input_tokens_seen": 5560720,
865
+ "step": 107
866
+ },
867
+ {
868
+ "epoch": 2.859060402684564,
869
+ "grad_norm": 0.10316886752843857,
870
+ "learning_rate": 4.884115002911197e-05,
871
+ "loss": 0.2532,
872
+ "num_input_tokens_seen": 5616592,
873
+ "step": 108
874
+ },
875
+ {
876
+ "epoch": 2.8859060402684564,
877
+ "grad_norm": 0.10972882062196732,
878
+ "learning_rate": 4.8819761736424854e-05,
879
+ "loss": 0.2265,
880
+ "num_input_tokens_seen": 5674352,
881
+ "step": 109
882
+ },
883
+ {
884
+ "epoch": 2.912751677852349,
885
+ "grad_norm": 0.11267542093992233,
886
+ "learning_rate": 4.8798182638228166e-05,
887
+ "loss": 0.2356,
888
+ "num_input_tokens_seen": 5710912,
889
+ "step": 110
890
+ },
891
+ {
892
+ "epoch": 2.9395973154362416,
893
+ "grad_norm": 0.11448722332715988,
894
+ "learning_rate": 4.877641290737884e-05,
895
+ "loss": 0.2381,
896
+ "num_input_tokens_seen": 5757920,
897
+ "step": 111
898
+ },
899
+ {
900
+ "epoch": 2.966442953020134,
901
+ "grad_norm": 0.11678655445575714,
902
+ "learning_rate": 4.875445271826084e-05,
903
+ "loss": 0.2288,
904
+ "num_input_tokens_seen": 5802192,
905
+ "step": 112
906
+ },
907
+ {
908
+ "epoch": 2.9932885906040267,
909
+ "grad_norm": 0.11252844333648682,
910
+ "learning_rate": 4.87323022467838e-05,
911
+ "loss": 0.2264,
912
+ "num_input_tokens_seen": 5867304,
913
+ "step": 113
914
+ },
915
+ {
916
+ "epoch": 3.0,
917
+ "grad_norm": 0.19352872669696808,
918
+ "learning_rate": 4.870996167038154e-05,
919
+ "loss": 0.2352,
920
+ "num_input_tokens_seen": 5885424,
921
+ "step": 114
922
+ },
923
+ {
924
+ "epoch": 3.0268456375838926,
925
+ "grad_norm": 0.1173228845000267,
926
+ "learning_rate": 4.868743116801074e-05,
927
+ "loss": 0.2164,
928
+ "num_input_tokens_seen": 5944528,
929
+ "step": 115
930
+ },
931
+ {
932
+ "epoch": 3.053691275167785,
933
+ "grad_norm": 0.11860992014408112,
934
+ "learning_rate": 4.866471092014945e-05,
935
+ "loss": 0.2329,
936
+ "num_input_tokens_seen": 6003480,
937
+ "step": 116
938
+ },
939
+ {
940
+ "epoch": 3.0805369127516777,
941
+ "grad_norm": 0.10296034812927246,
942
+ "learning_rate": 4.864180110879562e-05,
943
+ "loss": 0.2318,
944
+ "num_input_tokens_seen": 6059304,
945
+ "step": 117
946
+ },
947
+ {
948
+ "epoch": 3.1073825503355703,
949
+ "grad_norm": 0.11512338370084763,
950
+ "learning_rate": 4.861870191746573e-05,
951
+ "loss": 0.2054,
952
+ "num_input_tokens_seen": 6117288,
953
+ "step": 118
954
+ },
955
+ {
956
+ "epoch": 3.134228187919463,
957
+ "grad_norm": 0.13150866329669952,
958
+ "learning_rate": 4.859541353119322e-05,
959
+ "loss": 0.2086,
960
+ "num_input_tokens_seen": 6164008,
961
+ "step": 119
962
+ },
963
+ {
964
+ "epoch": 3.1610738255033555,
965
+ "grad_norm": 0.11846304684877396,
966
+ "learning_rate": 4.857193613652711e-05,
967
+ "loss": 0.2353,
968
+ "num_input_tokens_seen": 6224560,
969
+ "step": 120
970
+ },
971
+ {
972
+ "epoch": 3.1879194630872485,
973
+ "grad_norm": 0.12476348876953125,
974
+ "learning_rate": 4.854826992153038e-05,
975
+ "loss": 0.2295,
976
+ "num_input_tokens_seen": 6273248,
977
+ "step": 121
978
+ },
979
+ {
980
+ "epoch": 3.214765100671141,
981
+ "grad_norm": 0.11604316532611847,
982
+ "learning_rate": 4.8524415075778597e-05,
983
+ "loss": 0.1945,
984
+ "num_input_tokens_seen": 6327592,
985
+ "step": 122
986
+ },
987
+ {
988
+ "epoch": 3.2416107382550337,
989
+ "grad_norm": 0.12193804979324341,
990
+ "learning_rate": 4.850037179035829e-05,
991
+ "loss": 0.2389,
992
+ "num_input_tokens_seen": 6389680,
993
+ "step": 123
994
+ },
995
+ {
996
+ "epoch": 3.2684563758389262,
997
+ "grad_norm": 0.12192777544260025,
998
+ "learning_rate": 4.847614025786549e-05,
999
+ "loss": 0.2083,
1000
+ "num_input_tokens_seen": 6441392,
1001
+ "step": 124
1002
+ },
1003
+ {
1004
+ "epoch": 3.295302013422819,
1005
+ "grad_norm": 0.13284096121788025,
1006
+ "learning_rate": 4.845172067240415e-05,
1007
+ "loss": 0.2497,
1008
+ "num_input_tokens_seen": 6483464,
1009
+ "step": 125
1010
+ },
1011
+ {
1012
+ "epoch": 3.3221476510067114,
1013
+ "grad_norm": 0.10930957645177841,
1014
+ "learning_rate": 4.842711322958459e-05,
1015
+ "loss": 0.188,
1016
+ "num_input_tokens_seen": 6536056,
1017
+ "step": 126
1018
+ },
1019
+ {
1020
+ "epoch": 3.348993288590604,
1021
+ "grad_norm": 0.12303247302770615,
1022
+ "learning_rate": 4.840231812652196e-05,
1023
+ "loss": 0.1913,
1024
+ "num_input_tokens_seen": 6583768,
1025
+ "step": 127
1026
+ },
1027
+ {
1028
+ "epoch": 3.3758389261744965,
1029
+ "grad_norm": 0.12305760383605957,
1030
+ "learning_rate": 4.837733556183463e-05,
1031
+ "loss": 0.1926,
1032
+ "num_input_tokens_seen": 6639048,
1033
+ "step": 128
1034
+ },
1035
+ {
1036
+ "epoch": 3.402684563758389,
1037
+ "grad_norm": 0.13311812281608582,
1038
+ "learning_rate": 4.8352165735642604e-05,
1039
+ "loss": 0.2234,
1040
+ "num_input_tokens_seen": 6691360,
1041
+ "step": 129
1042
+ },
1043
+ {
1044
+ "epoch": 3.4295302013422817,
1045
+ "grad_norm": 0.12300640344619751,
1046
+ "learning_rate": 4.8326808849565936e-05,
1047
+ "loss": 0.2332,
1048
+ "num_input_tokens_seen": 6743408,
1049
+ "step": 130
1050
+ },
1051
+ {
1052
+ "epoch": 3.4563758389261743,
1053
+ "grad_norm": 0.1301521509885788,
1054
+ "learning_rate": 4.830126510672309e-05,
1055
+ "loss": 0.18,
1056
+ "num_input_tokens_seen": 6790704,
1057
+ "step": 131
1058
+ },
1059
+ {
1060
+ "epoch": 3.4832214765100673,
1061
+ "grad_norm": 0.1255597174167633,
1062
+ "learning_rate": 4.827553471172935e-05,
1063
+ "loss": 0.1964,
1064
+ "num_input_tokens_seen": 6839200,
1065
+ "step": 132
1066
+ },
1067
+ {
1068
+ "epoch": 3.51006711409396,
1069
+ "grad_norm": 0.13288290798664093,
1070
+ "learning_rate": 4.824961787069511e-05,
1071
+ "loss": 0.2116,
1072
+ "num_input_tokens_seen": 6892832,
1073
+ "step": 133
1074
+ },
1075
+ {
1076
+ "epoch": 3.5369127516778525,
1077
+ "grad_norm": 0.11485302448272705,
1078
+ "learning_rate": 4.822351479122432e-05,
1079
+ "loss": 0.2071,
1080
+ "num_input_tokens_seen": 6949464,
1081
+ "step": 134
1082
+ },
1083
+ {
1084
+ "epoch": 3.563758389261745,
1085
+ "grad_norm": 0.11960192024707794,
1086
+ "learning_rate": 4.819722568241274e-05,
1087
+ "loss": 0.175,
1088
+ "num_input_tokens_seen": 6996480,
1089
+ "step": 135
1090
+ },
1091
+ {
1092
+ "epoch": 3.5906040268456376,
1093
+ "grad_norm": 0.14381754398345947,
1094
+ "learning_rate": 4.817075075484629e-05,
1095
+ "loss": 0.237,
1096
+ "num_input_tokens_seen": 7053720,
1097
+ "step": 136
1098
+ },
1099
+ {
1100
+ "epoch": 3.61744966442953,
1101
+ "grad_norm": 0.1209937036037445,
1102
+ "learning_rate": 4.8144090220599416e-05,
1103
+ "loss": 0.2176,
1104
+ "num_input_tokens_seen": 7111480,
1105
+ "step": 137
1106
+ },
1107
+ {
1108
+ "epoch": 3.6442953020134228,
1109
+ "grad_norm": 0.13339534401893616,
1110
+ "learning_rate": 4.811724429323329e-05,
1111
+ "loss": 0.2164,
1112
+ "num_input_tokens_seen": 7165728,
1113
+ "step": 138
1114
+ },
1115
+ {
1116
+ "epoch": 3.6711409395973154,
1117
+ "grad_norm": 0.14351628720760345,
1118
+ "learning_rate": 4.809021318779419e-05,
1119
+ "loss": 0.1876,
1120
+ "num_input_tokens_seen": 7207648,
1121
+ "step": 139
1122
+ },
1123
+ {
1124
+ "epoch": 3.697986577181208,
1125
+ "grad_norm": 0.1557406485080719,
1126
+ "learning_rate": 4.806299712081172e-05,
1127
+ "loss": 0.2697,
1128
+ "num_input_tokens_seen": 7254280,
1129
+ "step": 140
1130
+ },
1131
+ {
1132
+ "epoch": 3.7248322147651005,
1133
+ "grad_norm": 0.14036628603935242,
1134
+ "learning_rate": 4.8035596310297124e-05,
1135
+ "loss": 0.1955,
1136
+ "num_input_tokens_seen": 7297912,
1137
+ "step": 141
1138
+ },
1139
+ {
1140
+ "epoch": 3.751677852348993,
1141
+ "grad_norm": 0.1406165212392807,
1142
+ "learning_rate": 4.800801097574149e-05,
1143
+ "loss": 0.2048,
1144
+ "num_input_tokens_seen": 7343304,
1145
+ "step": 142
1146
+ },
1147
+ {
1148
+ "epoch": 3.778523489932886,
1149
+ "grad_norm": 0.1484479159116745,
1150
+ "learning_rate": 4.798024133811403e-05,
1151
+ "loss": 0.2062,
1152
+ "num_input_tokens_seen": 7391688,
1153
+ "step": 143
1154
+ },
1155
+ {
1156
+ "epoch": 3.8053691275167782,
1157
+ "grad_norm": 0.15288512408733368,
1158
+ "learning_rate": 4.795228761986028e-05,
1159
+ "loss": 0.2123,
1160
+ "num_input_tokens_seen": 7448016,
1161
+ "step": 144
1162
+ },
1163
+ {
1164
+ "epoch": 3.8322147651006713,
1165
+ "grad_norm": 0.1407124102115631,
1166
+ "learning_rate": 4.792415004490034e-05,
1167
+ "loss": 0.2128,
1168
+ "num_input_tokens_seen": 7495312,
1169
+ "step": 145
1170
+ },
1171
+ {
1172
+ "epoch": 3.859060402684564,
1173
+ "grad_norm": 0.1452370434999466,
1174
+ "learning_rate": 4.789582883862708e-05,
1175
+ "loss": 0.207,
1176
+ "num_input_tokens_seen": 7552600,
1177
+ "step": 146
1178
+ },
1179
+ {
1180
+ "epoch": 3.8859060402684564,
1181
+ "grad_norm": 0.16543127596378326,
1182
+ "learning_rate": 4.786732422790432e-05,
1183
+ "loss": 0.2227,
1184
+ "num_input_tokens_seen": 7615064,
1185
+ "step": 147
1186
+ },
1187
+ {
1188
+ "epoch": 3.912751677852349,
1189
+ "grad_norm": 0.15252095460891724,
1190
+ "learning_rate": 4.783863644106502e-05,
1191
+ "loss": 0.2296,
1192
+ "num_input_tokens_seen": 7671712,
1193
+ "step": 148
1194
+ },
1195
+ {
1196
+ "epoch": 3.9395973154362416,
1197
+ "grad_norm": 0.1682525873184204,
1198
+ "learning_rate": 4.780976570790947e-05,
1199
+ "loss": 0.1989,
1200
+ "num_input_tokens_seen": 7713880,
1201
+ "step": 149
1202
+ },
1203
+ {
1204
+ "epoch": 3.966442953020134,
1205
+ "grad_norm": 0.15517935156822205,
1206
+ "learning_rate": 4.77807122597034e-05,
1207
+ "loss": 0.2485,
1208
+ "num_input_tokens_seen": 7766672,
1209
+ "step": 150
1210
+ },
1211
+ {
1212
+ "epoch": 3.9932885906040267,
1213
+ "grad_norm": 0.13144247233867645,
1214
+ "learning_rate": 4.775147632917617e-05,
1215
+ "loss": 0.1962,
1216
+ "num_input_tokens_seen": 7835800,
1217
+ "step": 151
1218
+ },
1219
+ {
1220
+ "epoch": 4.0,
1221
+ "grad_norm": 0.3006974160671234,
1222
+ "learning_rate": 4.7722058150518914e-05,
1223
+ "loss": 0.2309,
1224
+ "num_input_tokens_seen": 7847232,
1225
+ "step": 152
1226
+ },
1227
+ {
1228
+ "epoch": 4.026845637583893,
1229
+ "grad_norm": 0.1415897011756897,
1230
+ "learning_rate": 4.769245795938261e-05,
1231
+ "loss": 0.2234,
1232
+ "num_input_tokens_seen": 7894656,
1233
+ "step": 153
1234
+ },
1235
+ {
1236
+ "epoch": 4.053691275167785,
1237
+ "grad_norm": 0.15622243285179138,
1238
+ "learning_rate": 4.766267599287625e-05,
1239
+ "loss": 0.1936,
1240
+ "num_input_tokens_seen": 7957712,
1241
+ "step": 154
1242
+ },
1243
+ {
1244
+ "epoch": 4.080536912751678,
1245
+ "grad_norm": 0.152387797832489,
1246
+ "learning_rate": 4.7632712489564926e-05,
1247
+ "loss": 0.1859,
1248
+ "num_input_tokens_seen": 8005344,
1249
+ "step": 155
1250
+ },
1251
+ {
1252
+ "epoch": 4.10738255033557,
1253
+ "grad_norm": 0.13995884358882904,
1254
+ "learning_rate": 4.760256768946787e-05,
1255
+ "loss": 0.1705,
1256
+ "num_input_tokens_seen": 8065064,
1257
+ "step": 156
1258
+ },
1259
+ {
1260
+ "epoch": 4.134228187919463,
1261
+ "grad_norm": 0.15024860203266144,
1262
+ "learning_rate": 4.7572241834056616e-05,
1263
+ "loss": 0.1845,
1264
+ "num_input_tokens_seen": 8122464,
1265
+ "step": 157
1266
+ },
1267
+ {
1268
+ "epoch": 4.1610738255033555,
1269
+ "grad_norm": 0.16085512936115265,
1270
+ "learning_rate": 4.7541735166252986e-05,
1271
+ "loss": 0.2019,
1272
+ "num_input_tokens_seen": 8169408,
1273
+ "step": 158
1274
+ },
1275
+ {
1276
+ "epoch": 4.1879194630872485,
1277
+ "grad_norm": 0.15862515568733215,
1278
+ "learning_rate": 4.751104793042722e-05,
1279
+ "loss": 0.2003,
1280
+ "num_input_tokens_seen": 8226728,
1281
+ "step": 159
1282
+ },
1283
+ {
1284
+ "epoch": 4.214765100671141,
1285
+ "grad_norm": 0.1638798713684082,
1286
+ "learning_rate": 4.748018037239592e-05,
1287
+ "loss": 0.1931,
1288
+ "num_input_tokens_seen": 8285288,
1289
+ "step": 160
1290
+ },
1291
+ {
1292
+ "epoch": 4.241610738255034,
1293
+ "grad_norm": 0.16194795072078705,
1294
+ "learning_rate": 4.74491327394202e-05,
1295
+ "loss": 0.2145,
1296
+ "num_input_tokens_seen": 8329624,
1297
+ "step": 161
1298
+ },
1299
+ {
1300
+ "epoch": 4.268456375838926,
1301
+ "grad_norm": 0.14317141473293304,
1302
+ "learning_rate": 4.7417905280203594e-05,
1303
+ "loss": 0.1892,
1304
+ "num_input_tokens_seen": 8375536,
1305
+ "step": 162
1306
+ },
1307
+ {
1308
+ "epoch": 4.295302013422819,
1309
+ "grad_norm": 0.174782857298851,
1310
+ "learning_rate": 4.7386498244890146e-05,
1311
+ "loss": 0.206,
1312
+ "num_input_tokens_seen": 8433088,
1313
+ "step": 163
1314
+ },
1315
+ {
1316
+ "epoch": 4.322147651006711,
1317
+ "grad_norm": 0.1592899113893509,
1318
+ "learning_rate": 4.735491188506237e-05,
1319
+ "loss": 0.1692,
1320
+ "num_input_tokens_seen": 8480984,
1321
+ "step": 164
1322
+ },
1323
+ {
1324
+ "epoch": 4.348993288590604,
1325
+ "grad_norm": 0.17513258755207062,
1326
+ "learning_rate": 4.732314645373921e-05,
1327
+ "loss": 0.2201,
1328
+ "num_input_tokens_seen": 8532168,
1329
+ "step": 165
1330
+ },
1331
+ {
1332
+ "epoch": 4.375838926174497,
1333
+ "grad_norm": 0.1629508137702942,
1334
+ "learning_rate": 4.7291202205374086e-05,
1335
+ "loss": 0.1763,
1336
+ "num_input_tokens_seen": 8579384,
1337
+ "step": 166
1338
+ },
1339
+ {
1340
+ "epoch": 4.402684563758389,
1341
+ "grad_norm": 0.15738122165203094,
1342
+ "learning_rate": 4.7259079395852776e-05,
1343
+ "loss": 0.1781,
1344
+ "num_input_tokens_seen": 8626592,
1345
+ "step": 167
1346
+ },
1347
+ {
1348
+ "epoch": 4.429530201342282,
1349
+ "grad_norm": 0.18833334743976593,
1350
+ "learning_rate": 4.7226778282491424e-05,
1351
+ "loss": 0.2067,
1352
+ "num_input_tokens_seen": 8680320,
1353
+ "step": 168
1354
+ },
1355
+ {
1356
+ "epoch": 4.456375838926174,
1357
+ "grad_norm": 0.14375615119934082,
1358
+ "learning_rate": 4.719429912403445e-05,
1359
+ "loss": 0.1795,
1360
+ "num_input_tokens_seen": 8740824,
1361
+ "step": 169
1362
+ },
1363
+ {
1364
+ "epoch": 4.483221476510067,
1365
+ "grad_norm": 0.17458012700080872,
1366
+ "learning_rate": 4.7161642180652464e-05,
1367
+ "loss": 0.2021,
1368
+ "num_input_tokens_seen": 8789312,
1369
+ "step": 170
1370
+ },
1371
+ {
1372
+ "epoch": 4.510067114093959,
1373
+ "grad_norm": 0.17704319953918457,
1374
+ "learning_rate": 4.712880771394024e-05,
1375
+ "loss": 0.1916,
1376
+ "num_input_tokens_seen": 8838400,
1377
+ "step": 171
1378
+ },
1379
+ {
1380
+ "epoch": 4.5369127516778525,
1381
+ "grad_norm": 0.1582602709531784,
1382
+ "learning_rate": 4.709579598691456e-05,
1383
+ "loss": 0.1852,
1384
+ "num_input_tokens_seen": 8883320,
1385
+ "step": 172
1386
+ },
1387
+ {
1388
+ "epoch": 4.563758389261745,
1389
+ "grad_norm": 0.16678012907505035,
1390
+ "learning_rate": 4.7062607264012124e-05,
1391
+ "loss": 0.162,
1392
+ "num_input_tokens_seen": 8931240,
1393
+ "step": 173
1394
+ },
1395
+ {
1396
+ "epoch": 4.590604026845638,
1397
+ "grad_norm": 0.15457355976104736,
1398
+ "learning_rate": 4.7029241811087457e-05,
1399
+ "loss": 0.1763,
1400
+ "num_input_tokens_seen": 8982280,
1401
+ "step": 174
1402
+ },
1403
+ {
1404
+ "epoch": 4.617449664429531,
1405
+ "grad_norm": 0.16706790030002594,
1406
+ "learning_rate": 4.699569989541074e-05,
1407
+ "loss": 0.2005,
1408
+ "num_input_tokens_seen": 9027824,
1409
+ "step": 175
1410
+ },
1411
+ {
1412
+ "epoch": 4.644295302013423,
1413
+ "grad_norm": 0.16770173609256744,
1414
+ "learning_rate": 4.69619817856657e-05,
1415
+ "loss": 0.1985,
1416
+ "num_input_tokens_seen": 9081584,
1417
+ "step": 176
1418
+ },
1419
+ {
1420
+ "epoch": 4.671140939597316,
1421
+ "grad_norm": 0.19141702353954315,
1422
+ "learning_rate": 4.692808775194745e-05,
1423
+ "loss": 0.1963,
1424
+ "num_input_tokens_seen": 9142112,
1425
+ "step": 177
1426
+ },
1427
+ {
1428
+ "epoch": 4.697986577181208,
1429
+ "grad_norm": 0.15951097011566162,
1430
+ "learning_rate": 4.68940180657603e-05,
1431
+ "loss": 0.1691,
1432
+ "num_input_tokens_seen": 9190280,
1433
+ "step": 178
1434
+ },
1435
+ {
1436
+ "epoch": 4.724832214765101,
1437
+ "grad_norm": 0.16681668162345886,
1438
+ "learning_rate": 4.685977300001565e-05,
1439
+ "loss": 0.1896,
1440
+ "num_input_tokens_seen": 9240592,
1441
+ "step": 179
1442
+ },
1443
+ {
1444
+ "epoch": 4.751677852348993,
1445
+ "grad_norm": 0.16679206490516663,
1446
+ "learning_rate": 4.6825352829029705e-05,
1447
+ "loss": 0.1724,
1448
+ "num_input_tokens_seen": 9294464,
1449
+ "step": 180
1450
+ },
1451
+ {
1452
+ "epoch": 4.778523489932886,
1453
+ "grad_norm": 0.16181506216526031,
1454
+ "learning_rate": 4.679075782852137e-05,
1455
+ "loss": 0.1698,
1456
+ "num_input_tokens_seen": 9349552,
1457
+ "step": 181
1458
+ },
1459
+ {
1460
+ "epoch": 4.805369127516778,
1461
+ "grad_norm": 0.16370564699172974,
1462
+ "learning_rate": 4.675598827560998e-05,
1463
+ "loss": 0.2092,
1464
+ "num_input_tokens_seen": 9409136,
1465
+ "step": 182
1466
+ },
1467
+ {
1468
+ "epoch": 4.832214765100671,
1469
+ "grad_norm": 0.18401412665843964,
1470
+ "learning_rate": 4.67210444488131e-05,
1471
+ "loss": 0.1763,
1472
+ "num_input_tokens_seen": 9444096,
1473
+ "step": 183
1474
+ },
1475
+ {
1476
+ "epoch": 4.859060402684563,
1477
+ "grad_norm": 0.21891450881958008,
1478
+ "learning_rate": 4.668592662804432e-05,
1479
+ "loss": 0.219,
1480
+ "num_input_tokens_seen": 9508552,
1481
+ "step": 184
1482
+ },
1483
+ {
1484
+ "epoch": 4.885906040268456,
1485
+ "grad_norm": 0.19035810232162476,
1486
+ "learning_rate": 4.665063509461097e-05,
1487
+ "loss": 0.1856,
1488
+ "num_input_tokens_seen": 9564224,
1489
+ "step": 185
1490
+ },
1491
+ {
1492
+ "epoch": 4.912751677852349,
1493
+ "grad_norm": 0.16957947611808777,
1494
+ "learning_rate": 4.661517013121189e-05,
1495
+ "loss": 0.1747,
1496
+ "num_input_tokens_seen": 9620384,
1497
+ "step": 186
1498
+ },
1499
+ {
1500
+ "epoch": 4.939597315436242,
1501
+ "grad_norm": 0.16003385186195374,
1502
+ "learning_rate": 4.657953202193516e-05,
1503
+ "loss": 0.1685,
1504
+ "num_input_tokens_seen": 9679824,
1505
+ "step": 187
1506
+ },
1507
+ {
1508
+ "epoch": 4.966442953020135,
1509
+ "grad_norm": 0.1679641157388687,
1510
+ "learning_rate": 4.654372105225583e-05,
1511
+ "loss": 0.1636,
1512
+ "num_input_tokens_seen": 9732328,
1513
+ "step": 188
1514
+ },
1515
+ {
1516
+ "epoch": 4.993288590604027,
1517
+ "grad_norm": 0.15429595112800598,
1518
+ "learning_rate": 4.650773750903363e-05,
1519
+ "loss": 0.1429,
1520
+ "num_input_tokens_seen": 9793456,
1521
+ "step": 189
1522
+ },
1523
+ {
1524
+ "epoch": 5.0,
1525
+ "grad_norm": 0.30234482884407043,
1526
+ "learning_rate": 4.647158168051066e-05,
1527
+ "loss": 0.1757,
1528
+ "num_input_tokens_seen": 9809040,
1529
+ "step": 190
1530
+ },
1531
+ {
1532
+ "epoch": 5.026845637583893,
1533
+ "grad_norm": 0.19254004955291748,
1534
+ "learning_rate": 4.6435253856309094e-05,
1535
+ "loss": 0.1711,
1536
+ "num_input_tokens_seen": 9863696,
1537
+ "step": 191
1538
+ },
1539
+ {
1540
+ "epoch": 5.053691275167785,
1541
+ "grad_norm": 0.16591961681842804,
1542
+ "learning_rate": 4.639875432742886e-05,
1543
+ "loss": 0.156,
1544
+ "num_input_tokens_seen": 9906912,
1545
+ "step": 192
1546
+ },
1547
+ {
1548
+ "epoch": 5.080536912751678,
1549
+ "grad_norm": 0.18133562803268433,
1550
+ "learning_rate": 4.636208338624533e-05,
1551
+ "loss": 0.17,
1552
+ "num_input_tokens_seen": 9950056,
1553
+ "step": 193
1554
+ },
1555
+ {
1556
+ "epoch": 5.10738255033557,
1557
+ "grad_norm": 0.19608290493488312,
1558
+ "learning_rate": 4.6325241326506915e-05,
1559
+ "loss": 0.1882,
1560
+ "num_input_tokens_seen": 10001296,
1561
+ "step": 194
1562
+ },
1563
+ {
1564
+ "epoch": 5.134228187919463,
1565
+ "grad_norm": 0.2348538637161255,
1566
+ "learning_rate": 4.628822844333278e-05,
1567
+ "loss": 0.1564,
1568
+ "num_input_tokens_seen": 10052888,
1569
+ "step": 195
1570
+ },
1571
+ {
1572
+ "epoch": 5.1610738255033555,
1573
+ "grad_norm": 0.17895568907260895,
1574
+ "learning_rate": 4.625104503321045e-05,
1575
+ "loss": 0.1606,
1576
+ "num_input_tokens_seen": 10109912,
1577
+ "step": 196
1578
+ },
1579
+ {
1580
+ "epoch": 5.1879194630872485,
1581
+ "grad_norm": 0.1882435381412506,
1582
+ "learning_rate": 4.621369139399341e-05,
1583
+ "loss": 0.1722,
1584
+ "num_input_tokens_seen": 10151104,
1585
+ "step": 197
1586
+ },
1587
+ {
1588
+ "epoch": 5.214765100671141,
1589
+ "grad_norm": 0.18267786502838135,
1590
+ "learning_rate": 4.6176167824898773e-05,
1591
+ "loss": 0.1679,
1592
+ "num_input_tokens_seen": 10196304,
1593
+ "step": 198
1594
+ },
1595
+ {
1596
+ "epoch": 5.241610738255034,
1597
+ "grad_norm": 0.16710643470287323,
1598
+ "learning_rate": 4.613847462650486e-05,
1599
+ "loss": 0.1548,
1600
+ "num_input_tokens_seen": 10255152,
1601
+ "step": 199
1602
+ },
1603
+ {
1604
+ "epoch": 5.268456375838926,
1605
+ "grad_norm": 0.19108474254608154,
1606
+ "learning_rate": 4.6100612100748765e-05,
1607
+ "loss": 0.166,
1608
+ "num_input_tokens_seen": 10294912,
1609
+ "step": 200
1610
+ },
1611
+ {
1612
+ "epoch": 5.295302013422819,
1613
+ "grad_norm": 0.16066554188728333,
1614
+ "learning_rate": 4.606258055092397e-05,
1615
+ "loss": 0.1648,
1616
+ "num_input_tokens_seen": 10357248,
1617
+ "step": 201
1618
+ },
1619
+ {
1620
+ "epoch": 5.322147651006711,
1621
+ "grad_norm": 0.18054331839084625,
1622
+ "learning_rate": 4.602438028167792e-05,
1623
+ "loss": 0.1419,
1624
+ "num_input_tokens_seen": 10411456,
1625
+ "step": 202
1626
+ },
1627
+ {
1628
+ "epoch": 5.348993288590604,
1629
+ "grad_norm": 0.22617101669311523,
1630
+ "learning_rate": 4.5986011599009544e-05,
1631
+ "loss": 0.1935,
1632
+ "num_input_tokens_seen": 10462080,
1633
+ "step": 203
1634
+ },
1635
+ {
1636
+ "epoch": 5.375838926174497,
1637
+ "grad_norm": 0.1666952520608902,
1638
+ "learning_rate": 4.594747481026684e-05,
1639
+ "loss": 0.1449,
1640
+ "num_input_tokens_seen": 10530312,
1641
+ "step": 204
1642
+ },
1643
+ {
1644
+ "epoch": 5.402684563758389,
1645
+ "grad_norm": 0.16662774980068207,
1646
+ "learning_rate": 4.59087702241444e-05,
1647
+ "loss": 0.1548,
1648
+ "num_input_tokens_seen": 10593232,
1649
+ "step": 205
1650
+ },
1651
+ {
1652
+ "epoch": 5.429530201342282,
1653
+ "grad_norm": 0.1743718981742859,
1654
+ "learning_rate": 4.586989815068095e-05,
1655
+ "loss": 0.2084,
1656
+ "num_input_tokens_seen": 10661464,
1657
+ "step": 206
1658
+ },
1659
+ {
1660
+ "epoch": 5.456375838926174,
1661
+ "grad_norm": 0.191987544298172,
1662
+ "learning_rate": 4.5830858901256826e-05,
1663
+ "loss": 0.1527,
1664
+ "num_input_tokens_seen": 10704912,
1665
+ "step": 207
1666
+ },
1667
+ {
1668
+ "epoch": 5.483221476510067,
1669
+ "grad_norm": 0.19640536606311798,
1670
+ "learning_rate": 4.579165278859152e-05,
1671
+ "loss": 0.1515,
1672
+ "num_input_tokens_seen": 10750792,
1673
+ "step": 208
1674
+ },
1675
+ {
1676
+ "epoch": 5.510067114093959,
1677
+ "grad_norm": 0.22779090702533722,
1678
+ "learning_rate": 4.575228012674118e-05,
1679
+ "loss": 0.155,
1680
+ "num_input_tokens_seen": 10818288,
1681
+ "step": 209
1682
+ },
1683
+ {
1684
+ "epoch": 5.5369127516778525,
1685
+ "grad_norm": 0.18574051558971405,
1686
+ "learning_rate": 4.571274123109606e-05,
1687
+ "loss": 0.1514,
1688
+ "num_input_tokens_seen": 10871488,
1689
+ "step": 210
1690
+ },
1691
+ {
1692
+ "epoch": 5.563758389261745,
1693
+ "grad_norm": 0.20689000189304352,
1694
+ "learning_rate": 4.5673036418378006e-05,
1695
+ "loss": 0.1645,
1696
+ "num_input_tokens_seen": 10925024,
1697
+ "step": 211
1698
+ },
1699
+ {
1700
+ "epoch": 5.590604026845638,
1701
+ "grad_norm": 0.20517326891422272,
1702
+ "learning_rate": 4.563316600663795e-05,
1703
+ "loss": 0.1532,
1704
+ "num_input_tokens_seen": 10982200,
1705
+ "step": 212
1706
+ },
1707
+ {
1708
+ "epoch": 5.617449664429531,
1709
+ "grad_norm": 0.19169899821281433,
1710
+ "learning_rate": 4.559313031525331e-05,
1711
+ "loss": 0.1754,
1712
+ "num_input_tokens_seen": 11029976,
1713
+ "step": 213
1714
+ },
1715
+ {
1716
+ "epoch": 5.644295302013423,
1717
+ "grad_norm": 0.19880560040473938,
1718
+ "learning_rate": 4.555292966492547e-05,
1719
+ "loss": 0.1611,
1720
+ "num_input_tokens_seen": 11085192,
1721
+ "step": 214
1722
+ },
1723
+ {
1724
+ "epoch": 5.671140939597316,
1725
+ "grad_norm": 0.2045927792787552,
1726
+ "learning_rate": 4.551256437767719e-05,
1727
+ "loss": 0.1856,
1728
+ "num_input_tokens_seen": 11132072,
1729
+ "step": 215
1730
+ },
1731
+ {
1732
+ "epoch": 5.697986577181208,
1733
+ "grad_norm": 0.18255843222141266,
1734
+ "learning_rate": 4.547203477685005e-05,
1735
+ "loss": 0.1658,
1736
+ "num_input_tokens_seen": 11195808,
1737
+ "step": 216
1738
+ },
1739
+ {
1740
+ "epoch": 5.724832214765101,
1741
+ "grad_norm": 0.19551897048950195,
1742
+ "learning_rate": 4.543134118710184e-05,
1743
+ "loss": 0.1649,
1744
+ "num_input_tokens_seen": 11244688,
1745
+ "step": 217
1746
+ },
1747
+ {
1748
+ "epoch": 5.751677852348993,
1749
+ "grad_norm": 0.19608667492866516,
1750
+ "learning_rate": 4.539048393440395e-05,
1751
+ "loss": 0.1582,
1752
+ "num_input_tokens_seen": 11298888,
1753
+ "step": 218
1754
+ },
1755
+ {
1756
+ "epoch": 5.778523489932886,
1757
+ "grad_norm": 0.2286413460969925,
1758
+ "learning_rate": 4.534946334603879e-05,
1759
+ "loss": 0.1624,
1760
+ "num_input_tokens_seen": 11345304,
1761
+ "step": 219
1762
+ },
1763
+ {
1764
+ "epoch": 5.805369127516778,
1765
+ "grad_norm": 0.21048720180988312,
1766
+ "learning_rate": 4.530827975059715e-05,
1767
+ "loss": 0.1548,
1768
+ "num_input_tokens_seen": 11387752,
1769
+ "step": 220
1770
+ },
1771
+ {
1772
+ "epoch": 5.832214765100671,
1773
+ "grad_norm": 0.1970525085926056,
1774
+ "learning_rate": 4.526693347797557e-05,
1775
+ "loss": 0.1478,
1776
+ "num_input_tokens_seen": 11432728,
1777
+ "step": 221
1778
+ },
1779
+ {
1780
+ "epoch": 5.859060402684563,
1781
+ "grad_norm": 0.18459273874759674,
1782
+ "learning_rate": 4.522542485937369e-05,
1783
+ "loss": 0.1313,
1784
+ "num_input_tokens_seen": 11493064,
1785
+ "step": 222
1786
+ },
1787
+ {
1788
+ "epoch": 5.885906040268456,
1789
+ "grad_norm": 0.22195135056972504,
1790
+ "learning_rate": 4.518375422729161e-05,
1791
+ "loss": 0.1719,
1792
+ "num_input_tokens_seen": 11542392,
1793
+ "step": 223
1794
+ },
1795
+ {
1796
+ "epoch": 5.912751677852349,
1797
+ "grad_norm": 0.21980145573616028,
1798
+ "learning_rate": 4.5141921915527216e-05,
1799
+ "loss": 0.1587,
1800
+ "num_input_tokens_seen": 11596408,
1801
+ "step": 224
1802
+ },
1803
+ {
1804
+ "epoch": 5.939597315436242,
1805
+ "grad_norm": 0.21877101063728333,
1806
+ "learning_rate": 4.5099928259173516e-05,
1807
+ "loss": 0.1751,
1808
+ "num_input_tokens_seen": 11657288,
1809
+ "step": 225
1810
+ },
1811
+ {
1812
+ "epoch": 5.966442953020135,
1813
+ "grad_norm": 0.21569234132766724,
1814
+ "learning_rate": 4.505777359461595e-05,
1815
+ "loss": 0.1532,
1816
+ "num_input_tokens_seen": 11714680,
1817
+ "step": 226
1818
+ },
1819
+ {
1820
+ "epoch": 5.993288590604027,
1821
+ "grad_norm": 0.2067164033651352,
1822
+ "learning_rate": 4.50154582595297e-05,
1823
+ "loss": 0.1638,
1824
+ "num_input_tokens_seen": 11751840,
1825
+ "step": 227
1826
+ },
1827
+ {
1828
+ "epoch": 6.0,
1829
+ "grad_norm": 0.31630751490592957,
1830
+ "learning_rate": 4.497298259287696e-05,
1831
+ "loss": 0.118,
1832
+ "num_input_tokens_seen": 11770848,
1833
+ "step": 228
1834
+ },
1835
+ {
1836
+ "epoch": 6.026845637583893,
1837
+ "grad_norm": 0.2094467580318451,
1838
+ "learning_rate": 4.493034693490427e-05,
1839
+ "loss": 0.1428,
1840
+ "num_input_tokens_seen": 11821848,
1841
+ "step": 229
1842
+ },
1843
+ {
1844
+ "epoch": 6.053691275167785,
1845
+ "grad_norm": 0.20361250638961792,
1846
+ "learning_rate": 4.488755162713975e-05,
1847
+ "loss": 0.1504,
1848
+ "num_input_tokens_seen": 11869152,
1849
+ "step": 230
1850
+ },
1851
+ {
1852
+ "epoch": 6.080536912751678,
1853
+ "grad_norm": 0.22751058638095856,
1854
+ "learning_rate": 4.484459701239038e-05,
1855
+ "loss": 0.161,
1856
+ "num_input_tokens_seen": 11917464,
1857
+ "step": 231
1858
+ },
1859
+ {
1860
+ "epoch": 6.10738255033557,
1861
+ "grad_norm": 0.21245698630809784,
1862
+ "learning_rate": 4.480148343473923e-05,
1863
+ "loss": 0.1354,
1864
+ "num_input_tokens_seen": 11962184,
1865
+ "step": 232
1866
+ },
1867
+ {
1868
+ "epoch": 6.134228187919463,
1869
+ "grad_norm": 0.2415906935930252,
1870
+ "learning_rate": 4.475821123954275e-05,
1871
+ "loss": 0.1328,
1872
+ "num_input_tokens_seen": 12005088,
1873
+ "step": 233
1874
+ },
1875
+ {
1876
+ "epoch": 6.1610738255033555,
1877
+ "grad_norm": 0.22683894634246826,
1878
+ "learning_rate": 4.471478077342798e-05,
1879
+ "loss": 0.1532,
1880
+ "num_input_tokens_seen": 12058808,
1881
+ "step": 234
1882
+ },
1883
+ {
1884
+ "epoch": 6.1879194630872485,
1885
+ "grad_norm": 0.22128812968730927,
1886
+ "learning_rate": 4.467119238428975e-05,
1887
+ "loss": 0.1316,
1888
+ "num_input_tokens_seen": 12126248,
1889
+ "step": 235
1890
+ },
1891
+ {
1892
+ "epoch": 6.214765100671141,
1893
+ "grad_norm": 0.19066843390464783,
1894
+ "learning_rate": 4.4627446421287935e-05,
1895
+ "loss": 0.1279,
1896
+ "num_input_tokens_seen": 12186960,
1897
+ "step": 236
1898
+ },
1899
+ {
1900
+ "epoch": 6.241610738255034,
1901
+ "grad_norm": 0.21822784841060638,
1902
+ "learning_rate": 4.4583543234844616e-05,
1903
+ "loss": 0.1389,
1904
+ "num_input_tokens_seen": 12246416,
1905
+ "step": 237
1906
+ },
1907
+ {
1908
+ "epoch": 6.268456375838926,
1909
+ "grad_norm": 0.3152228593826294,
1910
+ "learning_rate": 4.4539483176641304e-05,
1911
+ "loss": 0.1439,
1912
+ "num_input_tokens_seen": 12301360,
1913
+ "step": 238
1914
+ },
1915
+ {
1916
+ "epoch": 6.295302013422819,
1917
+ "grad_norm": 0.2345726042985916,
1918
+ "learning_rate": 4.4495266599616136e-05,
1919
+ "loss": 0.1386,
1920
+ "num_input_tokens_seen": 12347960,
1921
+ "step": 239
1922
+ },
1923
+ {
1924
+ "epoch": 6.322147651006711,
1925
+ "grad_norm": 0.27413222193717957,
1926
+ "learning_rate": 4.445089385796099e-05,
1927
+ "loss": 0.1562,
1928
+ "num_input_tokens_seen": 12399640,
1929
+ "step": 240
1930
+ },
1931
+ {
1932
+ "epoch": 6.348993288590604,
1933
+ "grad_norm": 0.21653778851032257,
1934
+ "learning_rate": 4.4406365307118703e-05,
1935
+ "loss": 0.1364,
1936
+ "num_input_tokens_seen": 12451256,
1937
+ "step": 241
1938
+ },
1939
+ {
1940
+ "epoch": 6.375838926174497,
1941
+ "grad_norm": 0.21994851529598236,
1942
+ "learning_rate": 4.4361681303780195e-05,
1943
+ "loss": 0.1404,
1944
+ "num_input_tokens_seen": 12497184,
1945
+ "step": 242
1946
+ },
1947
+ {
1948
+ "epoch": 6.402684563758389,
1949
+ "grad_norm": 0.20164069533348083,
1950
+ "learning_rate": 4.431684220588163e-05,
1951
+ "loss": 0.1622,
1952
+ "num_input_tokens_seen": 12551512,
1953
+ "step": 243
1954
+ },
1955
+ {
1956
+ "epoch": 6.429530201342282,
1957
+ "grad_norm": 0.23192667961120605,
1958
+ "learning_rate": 4.427184837260153e-05,
1959
+ "loss": 0.1497,
1960
+ "num_input_tokens_seen": 12595808,
1961
+ "step": 244
1962
+ },
1963
+ {
1964
+ "epoch": 6.456375838926174,
1965
+ "grad_norm": 0.22512899339199066,
1966
+ "learning_rate": 4.422670016435792e-05,
1967
+ "loss": 0.1504,
1968
+ "num_input_tokens_seen": 12649504,
1969
+ "step": 245
1970
+ },
1971
+ {
1972
+ "epoch": 6.483221476510067,
1973
+ "grad_norm": 0.2125946432352066,
1974
+ "learning_rate": 4.418139794280541e-05,
1975
+ "loss": 0.129,
1976
+ "num_input_tokens_seen": 12694312,
1977
+ "step": 246
1978
+ },
1979
+ {
1980
+ "epoch": 6.510067114093959,
1981
+ "grad_norm": 0.2329980880022049,
1982
+ "learning_rate": 4.413594207083234e-05,
1983
+ "loss": 0.1363,
1984
+ "num_input_tokens_seen": 12741872,
1985
+ "step": 247
1986
+ },
1987
+ {
1988
+ "epoch": 6.5369127516778525,
1989
+ "grad_norm": 0.23576146364212036,
1990
+ "learning_rate": 4.409033291255782e-05,
1991
+ "loss": 0.1325,
1992
+ "num_input_tokens_seen": 12799032,
1993
+ "step": 248
1994
+ },
1995
+ {
1996
+ "epoch": 6.563758389261745,
1997
+ "grad_norm": 0.3069142997264862,
1998
+ "learning_rate": 4.404457083332886e-05,
1999
+ "loss": 0.1501,
2000
+ "num_input_tokens_seen": 12860432,
2001
+ "step": 249
2002
+ },
2003
+ {
2004
+ "epoch": 6.590604026845638,
2005
+ "grad_norm": 0.24110864102840424,
2006
+ "learning_rate": 4.3998656199717435e-05,
2007
+ "loss": 0.1375,
2008
+ "num_input_tokens_seen": 12906592,
2009
+ "step": 250
2010
+ },
2011
+ {
2012
+ "epoch": 6.617449664429531,
2013
+ "grad_norm": 0.2534135580062866,
2014
+ "learning_rate": 4.395258937951753e-05,
2015
+ "loss": 0.1387,
2016
+ "num_input_tokens_seen": 12966808,
2017
+ "step": 251
2018
+ },
2019
+ {
2020
+ "epoch": 6.644295302013423,
2021
+ "grad_norm": 0.20937450230121613,
2022
+ "learning_rate": 4.3906370741742186e-05,
2023
+ "loss": 0.1627,
2024
+ "num_input_tokens_seen": 13026504,
2025
+ "step": 252
2026
+ },
2027
+ {
2028
+ "epoch": 6.671140939597316,
2029
+ "grad_norm": 0.2298954874277115,
2030
+ "learning_rate": 4.386000065662059e-05,
2031
+ "loss": 0.1509,
2032
+ "num_input_tokens_seen": 13070176,
2033
+ "step": 253
2034
+ },
2035
+ {
2036
+ "epoch": 6.697986577181208,
2037
+ "grad_norm": 0.22058549523353577,
2038
+ "learning_rate": 4.381347949559506e-05,
2039
+ "loss": 0.1298,
2040
+ "num_input_tokens_seen": 13126104,
2041
+ "step": 254
2042
+ },
2043
+ {
2044
+ "epoch": 6.724832214765101,
2045
+ "grad_norm": 0.22921989858150482,
2046
+ "learning_rate": 4.3766807631318106e-05,
2047
+ "loss": 0.1396,
2048
+ "num_input_tokens_seen": 13178312,
2049
+ "step": 255
2050
+ },
2051
+ {
2052
+ "epoch": 6.751677852348993,
2053
+ "grad_norm": 0.20291879773139954,
2054
+ "learning_rate": 4.371998543764943e-05,
2055
+ "loss": 0.1206,
2056
+ "num_input_tokens_seen": 13236216,
2057
+ "step": 256
2058
+ },
2059
+ {
2060
+ "epoch": 6.778523489932886,
2061
+ "grad_norm": 0.1957395225763321,
2062
+ "learning_rate": 4.367301328965291e-05,
2063
+ "loss": 0.1168,
2064
+ "num_input_tokens_seen": 13291752,
2065
+ "step": 257
2066
+ },
2067
+ {
2068
+ "epoch": 6.805369127516778,
2069
+ "grad_norm": 0.241806298494339,
2070
+ "learning_rate": 4.3625891563593626e-05,
2071
+ "loss": 0.1435,
2072
+ "num_input_tokens_seen": 13349872,
2073
+ "step": 258
2074
+ },
2075
+ {
2076
+ "epoch": 6.832214765100671,
2077
+ "grad_norm": 0.2894677519798279,
2078
+ "learning_rate": 4.357862063693486e-05,
2079
+ "loss": 0.1216,
2080
+ "num_input_tokens_seen": 13406328,
2081
+ "step": 259
2082
+ }
2083
+ ],
2084
+ "logging_steps": 1.0,
2085
+ "max_steps": 1110,
2086
+ "num_input_tokens_seen": 13406328,
2087
+ "num_train_epochs": 30,
2088
+ "save_steps": 37,
2089
+ "stateful_callbacks": {
2090
+ "TrainerControl": {
2091
+ "args": {
2092
+ "should_epoch_stop": false,
2093
+ "should_evaluate": false,
2094
+ "should_log": false,
2095
+ "should_save": true,
2096
+ "should_training_stop": false
2097
+ },
2098
+ "attributes": {}
2099
+ }
2100
+ },
2101
+ "total_flos": 1.1309802532676567e+18,
2102
+ "train_batch_size": 1,
2103
+ "trial_name": null,
2104
+ "trial_params": null
2105
+ }
checkpoint-296/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: Qwen/Qwen2.5-Coder-14B-Instruct
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.12.0
checkpoint-296/adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "Qwen/Qwen2.5-Coder-14B-Instruct",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 16,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "q_proj",
24
+ "gate_proj",
25
+ "o_proj",
26
+ "k_proj",
27
+ "up_proj",
28
+ "down_proj",
29
+ "v_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
checkpoint-296/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:42743fafdf4a7ef74e25627697921cb3ba466388ddc69115845c18e5db161c5e
3
+ size 275341720
checkpoint-296/added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
checkpoint-296/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ef3df7dc49d894f4365beb67b537292793540c4cba0e73580a0682cdad27c8bb
3
+ size 551070514
checkpoint-296/special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
checkpoint-296/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c5ae00e602b8860cbd784ba82a8aa14e8feecec692e7076590d014d7b7fdafa
3
+ size 11421896
checkpoint-296/tokenizer_config.json ADDED
@@ -0,0 +1,209 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ }
181
+ },
182
+ "additional_special_tokens": [
183
+ "<|im_start|>",
184
+ "<|im_end|>",
185
+ "<|object_ref_start|>",
186
+ "<|object_ref_end|>",
187
+ "<|box_start|>",
188
+ "<|box_end|>",
189
+ "<|quad_start|>",
190
+ "<|quad_end|>",
191
+ "<|vision_start|>",
192
+ "<|vision_end|>",
193
+ "<|vision_pad|>",
194
+ "<|image_pad|>",
195
+ "<|video_pad|>"
196
+ ],
197
+ "bos_token": null,
198
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
199
+ "clean_up_tokenization_spaces": false,
200
+ "eos_token": "<|im_end|>",
201
+ "errors": "replace",
202
+ "extra_special_tokens": {},
203
+ "model_max_length": 12000,
204
+ "pad_token": "<|endoftext|>",
205
+ "padding_side": "right",
206
+ "split_special_tokens": false,
207
+ "tokenizer_class": "Qwen2Tokenizer",
208
+ "unk_token": null
209
+ }
checkpoint-296/trainer_state.json ADDED
@@ -0,0 +1,2401 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 7.805369127516778,
5
+ "eval_steps": 500,
6
+ "global_step": 296,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.026845637583892617,
13
+ "grad_norm": 0.04068412259221077,
14
+ "learning_rate": 4.9999899870162604e-05,
15
+ "loss": 0.5189,
16
+ "num_input_tokens_seen": 58440,
17
+ "step": 1
18
+ },
19
+ {
20
+ "epoch": 0.053691275167785234,
21
+ "grad_norm": 0.03802767023444176,
22
+ "learning_rate": 4.999959948145249e-05,
23
+ "loss": 0.5061,
24
+ "num_input_tokens_seen": 112800,
25
+ "step": 2
26
+ },
27
+ {
28
+ "epoch": 0.08053691275167785,
29
+ "grad_norm": 0.0524083748459816,
30
+ "learning_rate": 4.999909883627587e-05,
31
+ "loss": 0.5956,
32
+ "num_input_tokens_seen": 156704,
33
+ "step": 3
34
+ },
35
+ {
36
+ "epoch": 0.10738255033557047,
37
+ "grad_norm": 0.050608448684215546,
38
+ "learning_rate": 4.999839793864313e-05,
39
+ "loss": 0.5222,
40
+ "num_input_tokens_seen": 213952,
41
+ "step": 4
42
+ },
43
+ {
44
+ "epoch": 0.1342281879194631,
45
+ "grad_norm": 0.04771890118718147,
46
+ "learning_rate": 4.9997496794168726e-05,
47
+ "loss": 0.4761,
48
+ "num_input_tokens_seen": 266920,
49
+ "step": 5
50
+ },
51
+ {
52
+ "epoch": 0.1610738255033557,
53
+ "grad_norm": 0.05538628622889519,
54
+ "learning_rate": 4.999639541007116e-05,
55
+ "loss": 0.5221,
56
+ "num_input_tokens_seen": 313560,
57
+ "step": 6
58
+ },
59
+ {
60
+ "epoch": 0.18791946308724833,
61
+ "grad_norm": 0.053944796323776245,
62
+ "learning_rate": 4.999509379517297e-05,
63
+ "loss": 0.4738,
64
+ "num_input_tokens_seen": 349544,
65
+ "step": 7
66
+ },
67
+ {
68
+ "epoch": 0.21476510067114093,
69
+ "grad_norm": 0.05679492652416229,
70
+ "learning_rate": 4.9993591959900566e-05,
71
+ "loss": 0.5576,
72
+ "num_input_tokens_seen": 397952,
73
+ "step": 8
74
+ },
75
+ {
76
+ "epoch": 0.24161073825503357,
77
+ "grad_norm": 0.05358556658029556,
78
+ "learning_rate": 4.999188991628425e-05,
79
+ "loss": 0.4803,
80
+ "num_input_tokens_seen": 452568,
81
+ "step": 9
82
+ },
83
+ {
84
+ "epoch": 0.2684563758389262,
85
+ "grad_norm": 0.05667557194828987,
86
+ "learning_rate": 4.998998767795805e-05,
87
+ "loss": 0.4735,
88
+ "num_input_tokens_seen": 494400,
89
+ "step": 10
90
+ },
91
+ {
92
+ "epoch": 0.2953020134228188,
93
+ "grad_norm": 0.048348862677812576,
94
+ "learning_rate": 4.998788526015961e-05,
95
+ "loss": 0.5054,
96
+ "num_input_tokens_seen": 569352,
97
+ "step": 11
98
+ },
99
+ {
100
+ "epoch": 0.3221476510067114,
101
+ "grad_norm": 0.055022645741701126,
102
+ "learning_rate": 4.998558267973014e-05,
103
+ "loss": 0.494,
104
+ "num_input_tokens_seen": 623680,
105
+ "step": 12
106
+ },
107
+ {
108
+ "epoch": 0.348993288590604,
109
+ "grad_norm": 0.05279555916786194,
110
+ "learning_rate": 4.998307995511418e-05,
111
+ "loss": 0.4411,
112
+ "num_input_tokens_seen": 675784,
113
+ "step": 13
114
+ },
115
+ {
116
+ "epoch": 0.37583892617449666,
117
+ "grad_norm": 0.06557705253362656,
118
+ "learning_rate": 4.998037710635952e-05,
119
+ "loss": 0.5778,
120
+ "num_input_tokens_seen": 728120,
121
+ "step": 14
122
+ },
123
+ {
124
+ "epoch": 0.40268456375838924,
125
+ "grad_norm": 0.06649675220251083,
126
+ "learning_rate": 4.9977474155117045e-05,
127
+ "loss": 0.5217,
128
+ "num_input_tokens_seen": 780392,
129
+ "step": 15
130
+ },
131
+ {
132
+ "epoch": 0.42953020134228187,
133
+ "grad_norm": 0.05616322159767151,
134
+ "learning_rate": 4.997437112464049e-05,
135
+ "loss": 0.4175,
136
+ "num_input_tokens_seen": 841192,
137
+ "step": 16
138
+ },
139
+ {
140
+ "epoch": 0.4563758389261745,
141
+ "grad_norm": 0.07165056467056274,
142
+ "learning_rate": 4.997106803978636e-05,
143
+ "loss": 0.5109,
144
+ "num_input_tokens_seen": 899368,
145
+ "step": 17
146
+ },
147
+ {
148
+ "epoch": 0.48322147651006714,
149
+ "grad_norm": 0.06656442582607269,
150
+ "learning_rate": 4.996756492701362e-05,
151
+ "loss": 0.4066,
152
+ "num_input_tokens_seen": 944400,
153
+ "step": 18
154
+ },
155
+ {
156
+ "epoch": 0.5100671140939598,
157
+ "grad_norm": 0.0628059059381485,
158
+ "learning_rate": 4.996386181438357e-05,
159
+ "loss": 0.4501,
160
+ "num_input_tokens_seen": 997024,
161
+ "step": 19
162
+ },
163
+ {
164
+ "epoch": 0.5369127516778524,
165
+ "grad_norm": 0.06418219953775406,
166
+ "learning_rate": 4.995995873155958e-05,
167
+ "loss": 0.4632,
168
+ "num_input_tokens_seen": 1057264,
169
+ "step": 20
170
+ },
171
+ {
172
+ "epoch": 0.5637583892617449,
173
+ "grad_norm": 0.08489955216646194,
174
+ "learning_rate": 4.9955855709806845e-05,
175
+ "loss": 0.4224,
176
+ "num_input_tokens_seen": 1094144,
177
+ "step": 21
178
+ },
179
+ {
180
+ "epoch": 0.5906040268456376,
181
+ "grad_norm": 0.06560485810041428,
182
+ "learning_rate": 4.9951552781992154e-05,
183
+ "loss": 0.4084,
184
+ "num_input_tokens_seen": 1144376,
185
+ "step": 22
186
+ },
187
+ {
188
+ "epoch": 0.6174496644295302,
189
+ "grad_norm": 0.05338270589709282,
190
+ "learning_rate": 4.9947049982583625e-05,
191
+ "loss": 0.3925,
192
+ "num_input_tokens_seen": 1206272,
193
+ "step": 23
194
+ },
195
+ {
196
+ "epoch": 0.6442953020134228,
197
+ "grad_norm": 0.06893228739500046,
198
+ "learning_rate": 4.994234734765043e-05,
199
+ "loss": 0.3666,
200
+ "num_input_tokens_seen": 1252464,
201
+ "step": 24
202
+ },
203
+ {
204
+ "epoch": 0.6711409395973155,
205
+ "grad_norm": 0.07986386865377426,
206
+ "learning_rate": 4.99374449148625e-05,
207
+ "loss": 0.4105,
208
+ "num_input_tokens_seen": 1295560,
209
+ "step": 25
210
+ },
211
+ {
212
+ "epoch": 0.697986577181208,
213
+ "grad_norm": 0.0721018984913826,
214
+ "learning_rate": 4.99323427234902e-05,
215
+ "loss": 0.3965,
216
+ "num_input_tokens_seen": 1356792,
217
+ "step": 26
218
+ },
219
+ {
220
+ "epoch": 0.7248322147651006,
221
+ "grad_norm": 0.08186662942171097,
222
+ "learning_rate": 4.992704081440407e-05,
223
+ "loss": 0.3867,
224
+ "num_input_tokens_seen": 1408568,
225
+ "step": 27
226
+ },
227
+ {
228
+ "epoch": 0.7516778523489933,
229
+ "grad_norm": 0.07936503738164902,
230
+ "learning_rate": 4.992153923007446e-05,
231
+ "loss": 0.4272,
232
+ "num_input_tokens_seen": 1465984,
233
+ "step": 28
234
+ },
235
+ {
236
+ "epoch": 0.7785234899328859,
237
+ "grad_norm": 0.0778949186205864,
238
+ "learning_rate": 4.9915838014571174e-05,
239
+ "loss": 0.3499,
240
+ "num_input_tokens_seen": 1522568,
241
+ "step": 29
242
+ },
243
+ {
244
+ "epoch": 0.8053691275167785,
245
+ "grad_norm": 0.07632329314947128,
246
+ "learning_rate": 4.9909937213563165e-05,
247
+ "loss": 0.3536,
248
+ "num_input_tokens_seen": 1576592,
249
+ "step": 30
250
+ },
251
+ {
252
+ "epoch": 0.8322147651006712,
253
+ "grad_norm": 0.0791730061173439,
254
+ "learning_rate": 4.9903836874318135e-05,
255
+ "loss": 0.3416,
256
+ "num_input_tokens_seen": 1625336,
257
+ "step": 31
258
+ },
259
+ {
260
+ "epoch": 0.8590604026845637,
261
+ "grad_norm": 0.08963429927825928,
262
+ "learning_rate": 4.9897537045702146e-05,
263
+ "loss": 0.3559,
264
+ "num_input_tokens_seen": 1668736,
265
+ "step": 32
266
+ },
267
+ {
268
+ "epoch": 0.8859060402684564,
269
+ "grad_norm": 0.06969798356294632,
270
+ "learning_rate": 4.989103777817928e-05,
271
+ "loss": 0.358,
272
+ "num_input_tokens_seen": 1725096,
273
+ "step": 33
274
+ },
275
+ {
276
+ "epoch": 0.912751677852349,
277
+ "grad_norm": 0.09034521877765656,
278
+ "learning_rate": 4.988433912381117e-05,
279
+ "loss": 0.354,
280
+ "num_input_tokens_seen": 1768400,
281
+ "step": 34
282
+ },
283
+ {
284
+ "epoch": 0.9395973154362416,
285
+ "grad_norm": 0.07854894548654556,
286
+ "learning_rate": 4.987744113625665e-05,
287
+ "loss": 0.3553,
288
+ "num_input_tokens_seen": 1829224,
289
+ "step": 35
290
+ },
291
+ {
292
+ "epoch": 0.9664429530201343,
293
+ "grad_norm": 0.06981746852397919,
294
+ "learning_rate": 4.9870343870771256e-05,
295
+ "loss": 0.3651,
296
+ "num_input_tokens_seen": 1895440,
297
+ "step": 36
298
+ },
299
+ {
300
+ "epoch": 0.9932885906040269,
301
+ "grad_norm": 1.1971335411071777,
302
+ "learning_rate": 4.9863047384206835e-05,
303
+ "loss": 0.3117,
304
+ "num_input_tokens_seen": 1948776,
305
+ "step": 37
306
+ },
307
+ {
308
+ "epoch": 1.0,
309
+ "grad_norm": 0.13761547207832336,
310
+ "learning_rate": 4.985555173501106e-05,
311
+ "loss": 0.3247,
312
+ "num_input_tokens_seen": 1961808,
313
+ "step": 38
314
+ },
315
+ {
316
+ "epoch": 1.0268456375838926,
317
+ "grad_norm": 0.08985067158937454,
318
+ "learning_rate": 4.9847856983226996e-05,
319
+ "loss": 0.3328,
320
+ "num_input_tokens_seen": 2020584,
321
+ "step": 39
322
+ },
323
+ {
324
+ "epoch": 1.0536912751677852,
325
+ "grad_norm": 0.08735290169715881,
326
+ "learning_rate": 4.9839963190492576e-05,
327
+ "loss": 0.3809,
328
+ "num_input_tokens_seen": 2077264,
329
+ "step": 40
330
+ },
331
+ {
332
+ "epoch": 1.0805369127516777,
333
+ "grad_norm": 0.08123548328876495,
334
+ "learning_rate": 4.9831870420040126e-05,
335
+ "loss": 0.296,
336
+ "num_input_tokens_seen": 2117808,
337
+ "step": 41
338
+ },
339
+ {
340
+ "epoch": 1.1073825503355705,
341
+ "grad_norm": 0.09133706986904144,
342
+ "learning_rate": 4.982357873669589e-05,
343
+ "loss": 0.3045,
344
+ "num_input_tokens_seen": 2157928,
345
+ "step": 42
346
+ },
347
+ {
348
+ "epoch": 1.1342281879194631,
349
+ "grad_norm": 0.07161358743906021,
350
+ "learning_rate": 4.981508820687943e-05,
351
+ "loss": 0.3037,
352
+ "num_input_tokens_seen": 2215144,
353
+ "step": 43
354
+ },
355
+ {
356
+ "epoch": 1.1610738255033557,
357
+ "grad_norm": 0.07848912477493286,
358
+ "learning_rate": 4.9806398898603206e-05,
359
+ "loss": 0.308,
360
+ "num_input_tokens_seen": 2268776,
361
+ "step": 44
362
+ },
363
+ {
364
+ "epoch": 1.1879194630872483,
365
+ "grad_norm": 0.07580725848674774,
366
+ "learning_rate": 4.979751088147192e-05,
367
+ "loss": 0.3095,
368
+ "num_input_tokens_seen": 2316136,
369
+ "step": 45
370
+ },
371
+ {
372
+ "epoch": 1.2147651006711409,
373
+ "grad_norm": 0.13087698817253113,
374
+ "learning_rate": 4.978842422668204e-05,
375
+ "loss": 0.3144,
376
+ "num_input_tokens_seen": 2370888,
377
+ "step": 46
378
+ },
379
+ {
380
+ "epoch": 1.2416107382550337,
381
+ "grad_norm": 0.07428968697786331,
382
+ "learning_rate": 4.9779139007021184e-05,
383
+ "loss": 0.3084,
384
+ "num_input_tokens_seen": 2426656,
385
+ "step": 47
386
+ },
387
+ {
388
+ "epoch": 1.2684563758389262,
389
+ "grad_norm": 0.08130094408988953,
390
+ "learning_rate": 4.9769655296867554e-05,
391
+ "loss": 0.2861,
392
+ "num_input_tokens_seen": 2471944,
393
+ "step": 48
394
+ },
395
+ {
396
+ "epoch": 1.2953020134228188,
397
+ "grad_norm": 0.16188324987888336,
398
+ "learning_rate": 4.9759973172189334e-05,
399
+ "loss": 0.3136,
400
+ "num_input_tokens_seen": 2539888,
401
+ "step": 49
402
+ },
403
+ {
404
+ "epoch": 1.3221476510067114,
405
+ "grad_norm": 0.08185111731290817,
406
+ "learning_rate": 4.975009271054409e-05,
407
+ "loss": 0.26,
408
+ "num_input_tokens_seen": 2581936,
409
+ "step": 50
410
+ },
411
+ {
412
+ "epoch": 1.348993288590604,
413
+ "grad_norm": 0.07140379399061203,
414
+ "learning_rate": 4.974001399107816e-05,
415
+ "loss": 0.3178,
416
+ "num_input_tokens_seen": 2647016,
417
+ "step": 51
418
+ },
419
+ {
420
+ "epoch": 1.3758389261744965,
421
+ "grad_norm": 0.08086609840393066,
422
+ "learning_rate": 4.972973709452597e-05,
423
+ "loss": 0.2853,
424
+ "num_input_tokens_seen": 2694512,
425
+ "step": 52
426
+ },
427
+ {
428
+ "epoch": 1.4026845637583891,
429
+ "grad_norm": 0.08030746877193451,
430
+ "learning_rate": 4.971926210320944e-05,
431
+ "loss": 0.3009,
432
+ "num_input_tokens_seen": 2735672,
433
+ "step": 53
434
+ },
435
+ {
436
+ "epoch": 1.429530201342282,
437
+ "grad_norm": 0.07996731996536255,
438
+ "learning_rate": 4.9708589101037306e-05,
439
+ "loss": 0.2967,
440
+ "num_input_tokens_seen": 2789104,
441
+ "step": 54
442
+ },
443
+ {
444
+ "epoch": 1.4563758389261745,
445
+ "grad_norm": 0.0722445398569107,
446
+ "learning_rate": 4.969771817350445e-05,
447
+ "loss": 0.2741,
448
+ "num_input_tokens_seen": 2836960,
449
+ "step": 55
450
+ },
451
+ {
452
+ "epoch": 1.483221476510067,
453
+ "grad_norm": 0.08382672816514969,
454
+ "learning_rate": 4.968664940769121e-05,
455
+ "loss": 0.3276,
456
+ "num_input_tokens_seen": 2900208,
457
+ "step": 56
458
+ },
459
+ {
460
+ "epoch": 1.5100671140939599,
461
+ "grad_norm": 0.07235248386859894,
462
+ "learning_rate": 4.967538289226267e-05,
463
+ "loss": 0.2721,
464
+ "num_input_tokens_seen": 2964720,
465
+ "step": 57
466
+ },
467
+ {
468
+ "epoch": 1.5369127516778525,
469
+ "grad_norm": 0.07382500171661377,
470
+ "learning_rate": 4.9663918717467996e-05,
471
+ "loss": 0.3084,
472
+ "num_input_tokens_seen": 3029912,
473
+ "step": 58
474
+ },
475
+ {
476
+ "epoch": 1.563758389261745,
477
+ "grad_norm": 0.07173939794301987,
478
+ "learning_rate": 4.965225697513965e-05,
479
+ "loss": 0.2752,
480
+ "num_input_tokens_seen": 3081216,
481
+ "step": 59
482
+ },
483
+ {
484
+ "epoch": 1.5906040268456376,
485
+ "grad_norm": 0.07698569446802139,
486
+ "learning_rate": 4.9640397758692715e-05,
487
+ "loss": 0.2684,
488
+ "num_input_tokens_seen": 3131424,
489
+ "step": 60
490
+ },
491
+ {
492
+ "epoch": 1.6174496644295302,
493
+ "grad_norm": 0.07956692576408386,
494
+ "learning_rate": 4.962834116312409e-05,
495
+ "loss": 0.2663,
496
+ "num_input_tokens_seen": 3183240,
497
+ "step": 61
498
+ },
499
+ {
500
+ "epoch": 1.6442953020134228,
501
+ "grad_norm": 0.09150110185146332,
502
+ "learning_rate": 4.961608728501178e-05,
503
+ "loss": 0.2845,
504
+ "num_input_tokens_seen": 3231192,
505
+ "step": 62
506
+ },
507
+ {
508
+ "epoch": 1.6711409395973154,
509
+ "grad_norm": 0.07471323758363724,
510
+ "learning_rate": 4.960363622251409e-05,
511
+ "loss": 0.2873,
512
+ "num_input_tokens_seen": 3290616,
513
+ "step": 63
514
+ },
515
+ {
516
+ "epoch": 1.697986577181208,
517
+ "grad_norm": 0.08185286819934845,
518
+ "learning_rate": 4.959098807536885e-05,
519
+ "loss": 0.2858,
520
+ "num_input_tokens_seen": 3342512,
521
+ "step": 64
522
+ },
523
+ {
524
+ "epoch": 1.7248322147651005,
525
+ "grad_norm": 0.07076375931501389,
526
+ "learning_rate": 4.957814294489261e-05,
527
+ "loss": 0.2813,
528
+ "num_input_tokens_seen": 3404912,
529
+ "step": 65
530
+ },
531
+ {
532
+ "epoch": 1.7516778523489933,
533
+ "grad_norm": 0.08946257829666138,
534
+ "learning_rate": 4.956510093397983e-05,
535
+ "loss": 0.2417,
536
+ "num_input_tokens_seen": 3444648,
537
+ "step": 66
538
+ },
539
+ {
540
+ "epoch": 1.778523489932886,
541
+ "grad_norm": 0.08985330909490585,
542
+ "learning_rate": 4.955186214710208e-05,
543
+ "loss": 0.303,
544
+ "num_input_tokens_seen": 3493584,
545
+ "step": 67
546
+ },
547
+ {
548
+ "epoch": 1.8053691275167785,
549
+ "grad_norm": 0.0905148983001709,
550
+ "learning_rate": 4.953842669030716e-05,
551
+ "loss": 0.259,
552
+ "num_input_tokens_seen": 3544904,
553
+ "step": 68
554
+ },
555
+ {
556
+ "epoch": 1.8322147651006713,
557
+ "grad_norm": 0.08572433143854141,
558
+ "learning_rate": 4.952479467121827e-05,
559
+ "loss": 0.2709,
560
+ "num_input_tokens_seen": 3591296,
561
+ "step": 69
562
+ },
563
+ {
564
+ "epoch": 1.8590604026845639,
565
+ "grad_norm": 0.09188525378704071,
566
+ "learning_rate": 4.9510966199033174e-05,
567
+ "loss": 0.2615,
568
+ "num_input_tokens_seen": 3655368,
569
+ "step": 70
570
+ },
571
+ {
572
+ "epoch": 1.8859060402684564,
573
+ "grad_norm": 0.0810374766588211,
574
+ "learning_rate": 4.949694138452327e-05,
575
+ "loss": 0.2607,
576
+ "num_input_tokens_seen": 3707872,
577
+ "step": 71
578
+ },
579
+ {
580
+ "epoch": 1.912751677852349,
581
+ "grad_norm": 0.09255556017160416,
582
+ "learning_rate": 4.948272034003275e-05,
583
+ "loss": 0.2876,
584
+ "num_input_tokens_seen": 3755824,
585
+ "step": 72
586
+ },
587
+ {
588
+ "epoch": 1.9395973154362416,
589
+ "grad_norm": 0.07975213974714279,
590
+ "learning_rate": 4.9468303179477706e-05,
591
+ "loss": 0.2429,
592
+ "num_input_tokens_seen": 3810712,
593
+ "step": 73
594
+ },
595
+ {
596
+ "epoch": 1.9664429530201342,
597
+ "grad_norm": 0.09419341385364532,
598
+ "learning_rate": 4.9453690018345144e-05,
599
+ "loss": 0.2672,
600
+ "num_input_tokens_seen": 3861920,
601
+ "step": 74
602
+ },
603
+ {
604
+ "epoch": 1.9932885906040267,
605
+ "grad_norm": 0.10117878019809723,
606
+ "learning_rate": 4.943888097369216e-05,
607
+ "loss": 0.2764,
608
+ "num_input_tokens_seen": 3909768,
609
+ "step": 75
610
+ },
611
+ {
612
+ "epoch": 2.0,
613
+ "grad_norm": 0.16053622961044312,
614
+ "learning_rate": 4.942387616414492e-05,
615
+ "loss": 0.2707,
616
+ "num_input_tokens_seen": 3923616,
617
+ "step": 76
618
+ },
619
+ {
620
+ "epoch": 2.0268456375838926,
621
+ "grad_norm": 0.14125753939151764,
622
+ "learning_rate": 4.940867570989777e-05,
623
+ "loss": 0.2517,
624
+ "num_input_tokens_seen": 3978224,
625
+ "step": 77
626
+ },
627
+ {
628
+ "epoch": 2.053691275167785,
629
+ "grad_norm": 0.08800158649682999,
630
+ "learning_rate": 4.939327973271221e-05,
631
+ "loss": 0.2821,
632
+ "num_input_tokens_seen": 4024096,
633
+ "step": 78
634
+ },
635
+ {
636
+ "epoch": 2.0805369127516777,
637
+ "grad_norm": 0.08880551159381866,
638
+ "learning_rate": 4.9377688355915994e-05,
639
+ "loss": 0.2396,
640
+ "num_input_tokens_seen": 4080656,
641
+ "step": 79
642
+ },
643
+ {
644
+ "epoch": 2.1073825503355703,
645
+ "grad_norm": 0.09785644710063934,
646
+ "learning_rate": 4.936190170440208e-05,
647
+ "loss": 0.2564,
648
+ "num_input_tokens_seen": 4122248,
649
+ "step": 80
650
+ },
651
+ {
652
+ "epoch": 2.134228187919463,
653
+ "grad_norm": 0.10203557461500168,
654
+ "learning_rate": 4.934591990462766e-05,
655
+ "loss": 0.2663,
656
+ "num_input_tokens_seen": 4183624,
657
+ "step": 81
658
+ },
659
+ {
660
+ "epoch": 2.1610738255033555,
661
+ "grad_norm": 0.09022527933120728,
662
+ "learning_rate": 4.932974308461311e-05,
663
+ "loss": 0.2373,
664
+ "num_input_tokens_seen": 4223696,
665
+ "step": 82
666
+ },
667
+ {
668
+ "epoch": 2.1879194630872485,
669
+ "grad_norm": 0.08529677987098694,
670
+ "learning_rate": 4.931337137394105e-05,
671
+ "loss": 0.2743,
672
+ "num_input_tokens_seen": 4282504,
673
+ "step": 83
674
+ },
675
+ {
676
+ "epoch": 2.214765100671141,
677
+ "grad_norm": 0.10522245615720749,
678
+ "learning_rate": 4.92968049037552e-05,
679
+ "loss": 0.2516,
680
+ "num_input_tokens_seen": 4338600,
681
+ "step": 84
682
+ },
683
+ {
684
+ "epoch": 2.2416107382550337,
685
+ "grad_norm": 0.09364143013954163,
686
+ "learning_rate": 4.928004380675941e-05,
687
+ "loss": 0.2463,
688
+ "num_input_tokens_seen": 4385840,
689
+ "step": 85
690
+ },
691
+ {
692
+ "epoch": 2.2684563758389262,
693
+ "grad_norm": 0.10501237958669662,
694
+ "learning_rate": 4.9263088217216544e-05,
695
+ "loss": 0.2578,
696
+ "num_input_tokens_seen": 4440368,
697
+ "step": 86
698
+ },
699
+ {
700
+ "epoch": 2.295302013422819,
701
+ "grad_norm": 0.09559391438961029,
702
+ "learning_rate": 4.9245938270947435e-05,
703
+ "loss": 0.2369,
704
+ "num_input_tokens_seen": 4502040,
705
+ "step": 87
706
+ },
707
+ {
708
+ "epoch": 2.3221476510067114,
709
+ "grad_norm": 0.08705922961235046,
710
+ "learning_rate": 4.922859410532978e-05,
711
+ "loss": 0.3009,
712
+ "num_input_tokens_seen": 4563296,
713
+ "step": 88
714
+ },
715
+ {
716
+ "epoch": 2.348993288590604,
717
+ "grad_norm": 0.08942529559135437,
718
+ "learning_rate": 4.921105585929709e-05,
719
+ "loss": 0.211,
720
+ "num_input_tokens_seen": 4620344,
721
+ "step": 89
722
+ },
723
+ {
724
+ "epoch": 2.3758389261744965,
725
+ "grad_norm": 0.088467076420784,
726
+ "learning_rate": 4.9193323673337476e-05,
727
+ "loss": 0.2463,
728
+ "num_input_tokens_seen": 4675400,
729
+ "step": 90
730
+ },
731
+ {
732
+ "epoch": 2.402684563758389,
733
+ "grad_norm": 0.08302924036979675,
734
+ "learning_rate": 4.9175397689492614e-05,
735
+ "loss": 0.2536,
736
+ "num_input_tokens_seen": 4734696,
737
+ "step": 91
738
+ },
739
+ {
740
+ "epoch": 2.4295302013422817,
741
+ "grad_norm": 0.10511067509651184,
742
+ "learning_rate": 4.915727805135657e-05,
743
+ "loss": 0.2538,
744
+ "num_input_tokens_seen": 4782448,
745
+ "step": 92
746
+ },
747
+ {
748
+ "epoch": 2.4563758389261743,
749
+ "grad_norm": 0.09681275486946106,
750
+ "learning_rate": 4.9138964904074667e-05,
751
+ "loss": 0.2243,
752
+ "num_input_tokens_seen": 4830504,
753
+ "step": 93
754
+ },
755
+ {
756
+ "epoch": 2.4832214765100673,
757
+ "grad_norm": 0.10118114203214645,
758
+ "learning_rate": 4.91204583943423e-05,
759
+ "loss": 0.2701,
760
+ "num_input_tokens_seen": 4886040,
761
+ "step": 94
762
+ },
763
+ {
764
+ "epoch": 2.51006711409396,
765
+ "grad_norm": 0.11683424562215805,
766
+ "learning_rate": 4.910175867040377e-05,
767
+ "loss": 0.2292,
768
+ "num_input_tokens_seen": 4934448,
769
+ "step": 95
770
+ },
771
+ {
772
+ "epoch": 2.5369127516778525,
773
+ "grad_norm": 0.09783443063497543,
774
+ "learning_rate": 4.90828658820511e-05,
775
+ "loss": 0.2398,
776
+ "num_input_tokens_seen": 4987040,
777
+ "step": 96
778
+ },
779
+ {
780
+ "epoch": 2.563758389261745,
781
+ "grad_norm": 0.10438188165426254,
782
+ "learning_rate": 4.9063780180622845e-05,
783
+ "loss": 0.2355,
784
+ "num_input_tokens_seen": 5037360,
785
+ "step": 97
786
+ },
787
+ {
788
+ "epoch": 2.5906040268456376,
789
+ "grad_norm": 0.1034293919801712,
790
+ "learning_rate": 4.9044501719002844e-05,
791
+ "loss": 0.2554,
792
+ "num_input_tokens_seen": 5091640,
793
+ "step": 98
794
+ },
795
+ {
796
+ "epoch": 2.61744966442953,
797
+ "grad_norm": 0.09722857177257538,
798
+ "learning_rate": 4.9025030651619046e-05,
799
+ "loss": 0.2176,
800
+ "num_input_tokens_seen": 5149232,
801
+ "step": 99
802
+ },
803
+ {
804
+ "epoch": 2.6442953020134228,
805
+ "grad_norm": 0.1010555699467659,
806
+ "learning_rate": 4.9005367134442235e-05,
807
+ "loss": 0.2191,
808
+ "num_input_tokens_seen": 5196648,
809
+ "step": 100
810
+ },
811
+ {
812
+ "epoch": 2.6711409395973154,
813
+ "grad_norm": 0.085463747382164,
814
+ "learning_rate": 4.89855113249848e-05,
815
+ "loss": 0.2283,
816
+ "num_input_tokens_seen": 5261568,
817
+ "step": 101
818
+ },
819
+ {
820
+ "epoch": 2.697986577181208,
821
+ "grad_norm": 0.10148970782756805,
822
+ "learning_rate": 4.896546338229945e-05,
823
+ "loss": 0.234,
824
+ "num_input_tokens_seen": 5312104,
825
+ "step": 102
826
+ },
827
+ {
828
+ "epoch": 2.7248322147651005,
829
+ "grad_norm": 0.12468232959508896,
830
+ "learning_rate": 4.894522346697796e-05,
831
+ "loss": 0.2373,
832
+ "num_input_tokens_seen": 5360104,
833
+ "step": 103
834
+ },
835
+ {
836
+ "epoch": 2.751677852348993,
837
+ "grad_norm": 0.11668706685304642,
838
+ "learning_rate": 4.892479174114989e-05,
839
+ "loss": 0.2291,
840
+ "num_input_tokens_seen": 5402856,
841
+ "step": 104
842
+ },
843
+ {
844
+ "epoch": 2.778523489932886,
845
+ "grad_norm": 0.11586510390043259,
846
+ "learning_rate": 4.890416836848127e-05,
847
+ "loss": 0.2297,
848
+ "num_input_tokens_seen": 5445040,
849
+ "step": 105
850
+ },
851
+ {
852
+ "epoch": 2.8053691275167782,
853
+ "grad_norm": 0.09793268144130707,
854
+ "learning_rate": 4.888335351417331e-05,
855
+ "loss": 0.2271,
856
+ "num_input_tokens_seen": 5497368,
857
+ "step": 106
858
+ },
859
+ {
860
+ "epoch": 2.8322147651006713,
861
+ "grad_norm": 0.1202295795083046,
862
+ "learning_rate": 4.886234734496102e-05,
863
+ "loss": 0.261,
864
+ "num_input_tokens_seen": 5560720,
865
+ "step": 107
866
+ },
867
+ {
868
+ "epoch": 2.859060402684564,
869
+ "grad_norm": 0.10316886752843857,
870
+ "learning_rate": 4.884115002911197e-05,
871
+ "loss": 0.2532,
872
+ "num_input_tokens_seen": 5616592,
873
+ "step": 108
874
+ },
875
+ {
876
+ "epoch": 2.8859060402684564,
877
+ "grad_norm": 0.10972882062196732,
878
+ "learning_rate": 4.8819761736424854e-05,
879
+ "loss": 0.2265,
880
+ "num_input_tokens_seen": 5674352,
881
+ "step": 109
882
+ },
883
+ {
884
+ "epoch": 2.912751677852349,
885
+ "grad_norm": 0.11267542093992233,
886
+ "learning_rate": 4.8798182638228166e-05,
887
+ "loss": 0.2356,
888
+ "num_input_tokens_seen": 5710912,
889
+ "step": 110
890
+ },
891
+ {
892
+ "epoch": 2.9395973154362416,
893
+ "grad_norm": 0.11448722332715988,
894
+ "learning_rate": 4.877641290737884e-05,
895
+ "loss": 0.2381,
896
+ "num_input_tokens_seen": 5757920,
897
+ "step": 111
898
+ },
899
+ {
900
+ "epoch": 2.966442953020134,
901
+ "grad_norm": 0.11678655445575714,
902
+ "learning_rate": 4.875445271826084e-05,
903
+ "loss": 0.2288,
904
+ "num_input_tokens_seen": 5802192,
905
+ "step": 112
906
+ },
907
+ {
908
+ "epoch": 2.9932885906040267,
909
+ "grad_norm": 0.11252844333648682,
910
+ "learning_rate": 4.87323022467838e-05,
911
+ "loss": 0.2264,
912
+ "num_input_tokens_seen": 5867304,
913
+ "step": 113
914
+ },
915
+ {
916
+ "epoch": 3.0,
917
+ "grad_norm": 0.19352872669696808,
918
+ "learning_rate": 4.870996167038154e-05,
919
+ "loss": 0.2352,
920
+ "num_input_tokens_seen": 5885424,
921
+ "step": 114
922
+ },
923
+ {
924
+ "epoch": 3.0268456375838926,
925
+ "grad_norm": 0.1173228845000267,
926
+ "learning_rate": 4.868743116801074e-05,
927
+ "loss": 0.2164,
928
+ "num_input_tokens_seen": 5944528,
929
+ "step": 115
930
+ },
931
+ {
932
+ "epoch": 3.053691275167785,
933
+ "grad_norm": 0.11860992014408112,
934
+ "learning_rate": 4.866471092014945e-05,
935
+ "loss": 0.2329,
936
+ "num_input_tokens_seen": 6003480,
937
+ "step": 116
938
+ },
939
+ {
940
+ "epoch": 3.0805369127516777,
941
+ "grad_norm": 0.10296034812927246,
942
+ "learning_rate": 4.864180110879562e-05,
943
+ "loss": 0.2318,
944
+ "num_input_tokens_seen": 6059304,
945
+ "step": 117
946
+ },
947
+ {
948
+ "epoch": 3.1073825503355703,
949
+ "grad_norm": 0.11512338370084763,
950
+ "learning_rate": 4.861870191746573e-05,
951
+ "loss": 0.2054,
952
+ "num_input_tokens_seen": 6117288,
953
+ "step": 118
954
+ },
955
+ {
956
+ "epoch": 3.134228187919463,
957
+ "grad_norm": 0.13150866329669952,
958
+ "learning_rate": 4.859541353119322e-05,
959
+ "loss": 0.2086,
960
+ "num_input_tokens_seen": 6164008,
961
+ "step": 119
962
+ },
963
+ {
964
+ "epoch": 3.1610738255033555,
965
+ "grad_norm": 0.11846304684877396,
966
+ "learning_rate": 4.857193613652711e-05,
967
+ "loss": 0.2353,
968
+ "num_input_tokens_seen": 6224560,
969
+ "step": 120
970
+ },
971
+ {
972
+ "epoch": 3.1879194630872485,
973
+ "grad_norm": 0.12476348876953125,
974
+ "learning_rate": 4.854826992153038e-05,
975
+ "loss": 0.2295,
976
+ "num_input_tokens_seen": 6273248,
977
+ "step": 121
978
+ },
979
+ {
980
+ "epoch": 3.214765100671141,
981
+ "grad_norm": 0.11604316532611847,
982
+ "learning_rate": 4.8524415075778597e-05,
983
+ "loss": 0.1945,
984
+ "num_input_tokens_seen": 6327592,
985
+ "step": 122
986
+ },
987
+ {
988
+ "epoch": 3.2416107382550337,
989
+ "grad_norm": 0.12193804979324341,
990
+ "learning_rate": 4.850037179035829e-05,
991
+ "loss": 0.2389,
992
+ "num_input_tokens_seen": 6389680,
993
+ "step": 123
994
+ },
995
+ {
996
+ "epoch": 3.2684563758389262,
997
+ "grad_norm": 0.12192777544260025,
998
+ "learning_rate": 4.847614025786549e-05,
999
+ "loss": 0.2083,
1000
+ "num_input_tokens_seen": 6441392,
1001
+ "step": 124
1002
+ },
1003
+ {
1004
+ "epoch": 3.295302013422819,
1005
+ "grad_norm": 0.13284096121788025,
1006
+ "learning_rate": 4.845172067240415e-05,
1007
+ "loss": 0.2497,
1008
+ "num_input_tokens_seen": 6483464,
1009
+ "step": 125
1010
+ },
1011
+ {
1012
+ "epoch": 3.3221476510067114,
1013
+ "grad_norm": 0.10930957645177841,
1014
+ "learning_rate": 4.842711322958459e-05,
1015
+ "loss": 0.188,
1016
+ "num_input_tokens_seen": 6536056,
1017
+ "step": 126
1018
+ },
1019
+ {
1020
+ "epoch": 3.348993288590604,
1021
+ "grad_norm": 0.12303247302770615,
1022
+ "learning_rate": 4.840231812652196e-05,
1023
+ "loss": 0.1913,
1024
+ "num_input_tokens_seen": 6583768,
1025
+ "step": 127
1026
+ },
1027
+ {
1028
+ "epoch": 3.3758389261744965,
1029
+ "grad_norm": 0.12305760383605957,
1030
+ "learning_rate": 4.837733556183463e-05,
1031
+ "loss": 0.1926,
1032
+ "num_input_tokens_seen": 6639048,
1033
+ "step": 128
1034
+ },
1035
+ {
1036
+ "epoch": 3.402684563758389,
1037
+ "grad_norm": 0.13311812281608582,
1038
+ "learning_rate": 4.8352165735642604e-05,
1039
+ "loss": 0.2234,
1040
+ "num_input_tokens_seen": 6691360,
1041
+ "step": 129
1042
+ },
1043
+ {
1044
+ "epoch": 3.4295302013422817,
1045
+ "grad_norm": 0.12300640344619751,
1046
+ "learning_rate": 4.8326808849565936e-05,
1047
+ "loss": 0.2332,
1048
+ "num_input_tokens_seen": 6743408,
1049
+ "step": 130
1050
+ },
1051
+ {
1052
+ "epoch": 3.4563758389261743,
1053
+ "grad_norm": 0.1301521509885788,
1054
+ "learning_rate": 4.830126510672309e-05,
1055
+ "loss": 0.18,
1056
+ "num_input_tokens_seen": 6790704,
1057
+ "step": 131
1058
+ },
1059
+ {
1060
+ "epoch": 3.4832214765100673,
1061
+ "grad_norm": 0.1255597174167633,
1062
+ "learning_rate": 4.827553471172935e-05,
1063
+ "loss": 0.1964,
1064
+ "num_input_tokens_seen": 6839200,
1065
+ "step": 132
1066
+ },
1067
+ {
1068
+ "epoch": 3.51006711409396,
1069
+ "grad_norm": 0.13288290798664093,
1070
+ "learning_rate": 4.824961787069511e-05,
1071
+ "loss": 0.2116,
1072
+ "num_input_tokens_seen": 6892832,
1073
+ "step": 133
1074
+ },
1075
+ {
1076
+ "epoch": 3.5369127516778525,
1077
+ "grad_norm": 0.11485302448272705,
1078
+ "learning_rate": 4.822351479122432e-05,
1079
+ "loss": 0.2071,
1080
+ "num_input_tokens_seen": 6949464,
1081
+ "step": 134
1082
+ },
1083
+ {
1084
+ "epoch": 3.563758389261745,
1085
+ "grad_norm": 0.11960192024707794,
1086
+ "learning_rate": 4.819722568241274e-05,
1087
+ "loss": 0.175,
1088
+ "num_input_tokens_seen": 6996480,
1089
+ "step": 135
1090
+ },
1091
+ {
1092
+ "epoch": 3.5906040268456376,
1093
+ "grad_norm": 0.14381754398345947,
1094
+ "learning_rate": 4.817075075484629e-05,
1095
+ "loss": 0.237,
1096
+ "num_input_tokens_seen": 7053720,
1097
+ "step": 136
1098
+ },
1099
+ {
1100
+ "epoch": 3.61744966442953,
1101
+ "grad_norm": 0.1209937036037445,
1102
+ "learning_rate": 4.8144090220599416e-05,
1103
+ "loss": 0.2176,
1104
+ "num_input_tokens_seen": 7111480,
1105
+ "step": 137
1106
+ },
1107
+ {
1108
+ "epoch": 3.6442953020134228,
1109
+ "grad_norm": 0.13339534401893616,
1110
+ "learning_rate": 4.811724429323329e-05,
1111
+ "loss": 0.2164,
1112
+ "num_input_tokens_seen": 7165728,
1113
+ "step": 138
1114
+ },
1115
+ {
1116
+ "epoch": 3.6711409395973154,
1117
+ "grad_norm": 0.14351628720760345,
1118
+ "learning_rate": 4.809021318779419e-05,
1119
+ "loss": 0.1876,
1120
+ "num_input_tokens_seen": 7207648,
1121
+ "step": 139
1122
+ },
1123
+ {
1124
+ "epoch": 3.697986577181208,
1125
+ "grad_norm": 0.1557406485080719,
1126
+ "learning_rate": 4.806299712081172e-05,
1127
+ "loss": 0.2697,
1128
+ "num_input_tokens_seen": 7254280,
1129
+ "step": 140
1130
+ },
1131
+ {
1132
+ "epoch": 3.7248322147651005,
1133
+ "grad_norm": 0.14036628603935242,
1134
+ "learning_rate": 4.8035596310297124e-05,
1135
+ "loss": 0.1955,
1136
+ "num_input_tokens_seen": 7297912,
1137
+ "step": 141
1138
+ },
1139
+ {
1140
+ "epoch": 3.751677852348993,
1141
+ "grad_norm": 0.1406165212392807,
1142
+ "learning_rate": 4.800801097574149e-05,
1143
+ "loss": 0.2048,
1144
+ "num_input_tokens_seen": 7343304,
1145
+ "step": 142
1146
+ },
1147
+ {
1148
+ "epoch": 3.778523489932886,
1149
+ "grad_norm": 0.1484479159116745,
1150
+ "learning_rate": 4.798024133811403e-05,
1151
+ "loss": 0.2062,
1152
+ "num_input_tokens_seen": 7391688,
1153
+ "step": 143
1154
+ },
1155
+ {
1156
+ "epoch": 3.8053691275167782,
1157
+ "grad_norm": 0.15288512408733368,
1158
+ "learning_rate": 4.795228761986028e-05,
1159
+ "loss": 0.2123,
1160
+ "num_input_tokens_seen": 7448016,
1161
+ "step": 144
1162
+ },
1163
+ {
1164
+ "epoch": 3.8322147651006713,
1165
+ "grad_norm": 0.1407124102115631,
1166
+ "learning_rate": 4.792415004490034e-05,
1167
+ "loss": 0.2128,
1168
+ "num_input_tokens_seen": 7495312,
1169
+ "step": 145
1170
+ },
1171
+ {
1172
+ "epoch": 3.859060402684564,
1173
+ "grad_norm": 0.1452370434999466,
1174
+ "learning_rate": 4.789582883862708e-05,
1175
+ "loss": 0.207,
1176
+ "num_input_tokens_seen": 7552600,
1177
+ "step": 146
1178
+ },
1179
+ {
1180
+ "epoch": 3.8859060402684564,
1181
+ "grad_norm": 0.16543127596378326,
1182
+ "learning_rate": 4.786732422790432e-05,
1183
+ "loss": 0.2227,
1184
+ "num_input_tokens_seen": 7615064,
1185
+ "step": 147
1186
+ },
1187
+ {
1188
+ "epoch": 3.912751677852349,
1189
+ "grad_norm": 0.15252095460891724,
1190
+ "learning_rate": 4.783863644106502e-05,
1191
+ "loss": 0.2296,
1192
+ "num_input_tokens_seen": 7671712,
1193
+ "step": 148
1194
+ },
1195
+ {
1196
+ "epoch": 3.9395973154362416,
1197
+ "grad_norm": 0.1682525873184204,
1198
+ "learning_rate": 4.780976570790947e-05,
1199
+ "loss": 0.1989,
1200
+ "num_input_tokens_seen": 7713880,
1201
+ "step": 149
1202
+ },
1203
+ {
1204
+ "epoch": 3.966442953020134,
1205
+ "grad_norm": 0.15517935156822205,
1206
+ "learning_rate": 4.77807122597034e-05,
1207
+ "loss": 0.2485,
1208
+ "num_input_tokens_seen": 7766672,
1209
+ "step": 150
1210
+ },
1211
+ {
1212
+ "epoch": 3.9932885906040267,
1213
+ "grad_norm": 0.13144247233867645,
1214
+ "learning_rate": 4.775147632917617e-05,
1215
+ "loss": 0.1962,
1216
+ "num_input_tokens_seen": 7835800,
1217
+ "step": 151
1218
+ },
1219
+ {
1220
+ "epoch": 4.0,
1221
+ "grad_norm": 0.3006974160671234,
1222
+ "learning_rate": 4.7722058150518914e-05,
1223
+ "loss": 0.2309,
1224
+ "num_input_tokens_seen": 7847232,
1225
+ "step": 152
1226
+ },
1227
+ {
1228
+ "epoch": 4.026845637583893,
1229
+ "grad_norm": 0.1415897011756897,
1230
+ "learning_rate": 4.769245795938261e-05,
1231
+ "loss": 0.2234,
1232
+ "num_input_tokens_seen": 7894656,
1233
+ "step": 153
1234
+ },
1235
+ {
1236
+ "epoch": 4.053691275167785,
1237
+ "grad_norm": 0.15622243285179138,
1238
+ "learning_rate": 4.766267599287625e-05,
1239
+ "loss": 0.1936,
1240
+ "num_input_tokens_seen": 7957712,
1241
+ "step": 154
1242
+ },
1243
+ {
1244
+ "epoch": 4.080536912751678,
1245
+ "grad_norm": 0.152387797832489,
1246
+ "learning_rate": 4.7632712489564926e-05,
1247
+ "loss": 0.1859,
1248
+ "num_input_tokens_seen": 8005344,
1249
+ "step": 155
1250
+ },
1251
+ {
1252
+ "epoch": 4.10738255033557,
1253
+ "grad_norm": 0.13995884358882904,
1254
+ "learning_rate": 4.760256768946787e-05,
1255
+ "loss": 0.1705,
1256
+ "num_input_tokens_seen": 8065064,
1257
+ "step": 156
1258
+ },
1259
+ {
1260
+ "epoch": 4.134228187919463,
1261
+ "grad_norm": 0.15024860203266144,
1262
+ "learning_rate": 4.7572241834056616e-05,
1263
+ "loss": 0.1845,
1264
+ "num_input_tokens_seen": 8122464,
1265
+ "step": 157
1266
+ },
1267
+ {
1268
+ "epoch": 4.1610738255033555,
1269
+ "grad_norm": 0.16085512936115265,
1270
+ "learning_rate": 4.7541735166252986e-05,
1271
+ "loss": 0.2019,
1272
+ "num_input_tokens_seen": 8169408,
1273
+ "step": 158
1274
+ },
1275
+ {
1276
+ "epoch": 4.1879194630872485,
1277
+ "grad_norm": 0.15862515568733215,
1278
+ "learning_rate": 4.751104793042722e-05,
1279
+ "loss": 0.2003,
1280
+ "num_input_tokens_seen": 8226728,
1281
+ "step": 159
1282
+ },
1283
+ {
1284
+ "epoch": 4.214765100671141,
1285
+ "grad_norm": 0.1638798713684082,
1286
+ "learning_rate": 4.748018037239592e-05,
1287
+ "loss": 0.1931,
1288
+ "num_input_tokens_seen": 8285288,
1289
+ "step": 160
1290
+ },
1291
+ {
1292
+ "epoch": 4.241610738255034,
1293
+ "grad_norm": 0.16194795072078705,
1294
+ "learning_rate": 4.74491327394202e-05,
1295
+ "loss": 0.2145,
1296
+ "num_input_tokens_seen": 8329624,
1297
+ "step": 161
1298
+ },
1299
+ {
1300
+ "epoch": 4.268456375838926,
1301
+ "grad_norm": 0.14317141473293304,
1302
+ "learning_rate": 4.7417905280203594e-05,
1303
+ "loss": 0.1892,
1304
+ "num_input_tokens_seen": 8375536,
1305
+ "step": 162
1306
+ },
1307
+ {
1308
+ "epoch": 4.295302013422819,
1309
+ "grad_norm": 0.174782857298851,
1310
+ "learning_rate": 4.7386498244890146e-05,
1311
+ "loss": 0.206,
1312
+ "num_input_tokens_seen": 8433088,
1313
+ "step": 163
1314
+ },
1315
+ {
1316
+ "epoch": 4.322147651006711,
1317
+ "grad_norm": 0.1592899113893509,
1318
+ "learning_rate": 4.735491188506237e-05,
1319
+ "loss": 0.1692,
1320
+ "num_input_tokens_seen": 8480984,
1321
+ "step": 164
1322
+ },
1323
+ {
1324
+ "epoch": 4.348993288590604,
1325
+ "grad_norm": 0.17513258755207062,
1326
+ "learning_rate": 4.732314645373921e-05,
1327
+ "loss": 0.2201,
1328
+ "num_input_tokens_seen": 8532168,
1329
+ "step": 165
1330
+ },
1331
+ {
1332
+ "epoch": 4.375838926174497,
1333
+ "grad_norm": 0.1629508137702942,
1334
+ "learning_rate": 4.7291202205374086e-05,
1335
+ "loss": 0.1763,
1336
+ "num_input_tokens_seen": 8579384,
1337
+ "step": 166
1338
+ },
1339
+ {
1340
+ "epoch": 4.402684563758389,
1341
+ "grad_norm": 0.15738122165203094,
1342
+ "learning_rate": 4.7259079395852776e-05,
1343
+ "loss": 0.1781,
1344
+ "num_input_tokens_seen": 8626592,
1345
+ "step": 167
1346
+ },
1347
+ {
1348
+ "epoch": 4.429530201342282,
1349
+ "grad_norm": 0.18833334743976593,
1350
+ "learning_rate": 4.7226778282491424e-05,
1351
+ "loss": 0.2067,
1352
+ "num_input_tokens_seen": 8680320,
1353
+ "step": 168
1354
+ },
1355
+ {
1356
+ "epoch": 4.456375838926174,
1357
+ "grad_norm": 0.14375615119934082,
1358
+ "learning_rate": 4.719429912403445e-05,
1359
+ "loss": 0.1795,
1360
+ "num_input_tokens_seen": 8740824,
1361
+ "step": 169
1362
+ },
1363
+ {
1364
+ "epoch": 4.483221476510067,
1365
+ "grad_norm": 0.17458012700080872,
1366
+ "learning_rate": 4.7161642180652464e-05,
1367
+ "loss": 0.2021,
1368
+ "num_input_tokens_seen": 8789312,
1369
+ "step": 170
1370
+ },
1371
+ {
1372
+ "epoch": 4.510067114093959,
1373
+ "grad_norm": 0.17704319953918457,
1374
+ "learning_rate": 4.712880771394024e-05,
1375
+ "loss": 0.1916,
1376
+ "num_input_tokens_seen": 8838400,
1377
+ "step": 171
1378
+ },
1379
+ {
1380
+ "epoch": 4.5369127516778525,
1381
+ "grad_norm": 0.1582602709531784,
1382
+ "learning_rate": 4.709579598691456e-05,
1383
+ "loss": 0.1852,
1384
+ "num_input_tokens_seen": 8883320,
1385
+ "step": 172
1386
+ },
1387
+ {
1388
+ "epoch": 4.563758389261745,
1389
+ "grad_norm": 0.16678012907505035,
1390
+ "learning_rate": 4.7062607264012124e-05,
1391
+ "loss": 0.162,
1392
+ "num_input_tokens_seen": 8931240,
1393
+ "step": 173
1394
+ },
1395
+ {
1396
+ "epoch": 4.590604026845638,
1397
+ "grad_norm": 0.15457355976104736,
1398
+ "learning_rate": 4.7029241811087457e-05,
1399
+ "loss": 0.1763,
1400
+ "num_input_tokens_seen": 8982280,
1401
+ "step": 174
1402
+ },
1403
+ {
1404
+ "epoch": 4.617449664429531,
1405
+ "grad_norm": 0.16706790030002594,
1406
+ "learning_rate": 4.699569989541074e-05,
1407
+ "loss": 0.2005,
1408
+ "num_input_tokens_seen": 9027824,
1409
+ "step": 175
1410
+ },
1411
+ {
1412
+ "epoch": 4.644295302013423,
1413
+ "grad_norm": 0.16770173609256744,
1414
+ "learning_rate": 4.69619817856657e-05,
1415
+ "loss": 0.1985,
1416
+ "num_input_tokens_seen": 9081584,
1417
+ "step": 176
1418
+ },
1419
+ {
1420
+ "epoch": 4.671140939597316,
1421
+ "grad_norm": 0.19141702353954315,
1422
+ "learning_rate": 4.692808775194745e-05,
1423
+ "loss": 0.1963,
1424
+ "num_input_tokens_seen": 9142112,
1425
+ "step": 177
1426
+ },
1427
+ {
1428
+ "epoch": 4.697986577181208,
1429
+ "grad_norm": 0.15951097011566162,
1430
+ "learning_rate": 4.68940180657603e-05,
1431
+ "loss": 0.1691,
1432
+ "num_input_tokens_seen": 9190280,
1433
+ "step": 178
1434
+ },
1435
+ {
1436
+ "epoch": 4.724832214765101,
1437
+ "grad_norm": 0.16681668162345886,
1438
+ "learning_rate": 4.685977300001565e-05,
1439
+ "loss": 0.1896,
1440
+ "num_input_tokens_seen": 9240592,
1441
+ "step": 179
1442
+ },
1443
+ {
1444
+ "epoch": 4.751677852348993,
1445
+ "grad_norm": 0.16679206490516663,
1446
+ "learning_rate": 4.6825352829029705e-05,
1447
+ "loss": 0.1724,
1448
+ "num_input_tokens_seen": 9294464,
1449
+ "step": 180
1450
+ },
1451
+ {
1452
+ "epoch": 4.778523489932886,
1453
+ "grad_norm": 0.16181506216526031,
1454
+ "learning_rate": 4.679075782852137e-05,
1455
+ "loss": 0.1698,
1456
+ "num_input_tokens_seen": 9349552,
1457
+ "step": 181
1458
+ },
1459
+ {
1460
+ "epoch": 4.805369127516778,
1461
+ "grad_norm": 0.16370564699172974,
1462
+ "learning_rate": 4.675598827560998e-05,
1463
+ "loss": 0.2092,
1464
+ "num_input_tokens_seen": 9409136,
1465
+ "step": 182
1466
+ },
1467
+ {
1468
+ "epoch": 4.832214765100671,
1469
+ "grad_norm": 0.18401412665843964,
1470
+ "learning_rate": 4.67210444488131e-05,
1471
+ "loss": 0.1763,
1472
+ "num_input_tokens_seen": 9444096,
1473
+ "step": 183
1474
+ },
1475
+ {
1476
+ "epoch": 4.859060402684563,
1477
+ "grad_norm": 0.21891450881958008,
1478
+ "learning_rate": 4.668592662804432e-05,
1479
+ "loss": 0.219,
1480
+ "num_input_tokens_seen": 9508552,
1481
+ "step": 184
1482
+ },
1483
+ {
1484
+ "epoch": 4.885906040268456,
1485
+ "grad_norm": 0.19035810232162476,
1486
+ "learning_rate": 4.665063509461097e-05,
1487
+ "loss": 0.1856,
1488
+ "num_input_tokens_seen": 9564224,
1489
+ "step": 185
1490
+ },
1491
+ {
1492
+ "epoch": 4.912751677852349,
1493
+ "grad_norm": 0.16957947611808777,
1494
+ "learning_rate": 4.661517013121189e-05,
1495
+ "loss": 0.1747,
1496
+ "num_input_tokens_seen": 9620384,
1497
+ "step": 186
1498
+ },
1499
+ {
1500
+ "epoch": 4.939597315436242,
1501
+ "grad_norm": 0.16003385186195374,
1502
+ "learning_rate": 4.657953202193516e-05,
1503
+ "loss": 0.1685,
1504
+ "num_input_tokens_seen": 9679824,
1505
+ "step": 187
1506
+ },
1507
+ {
1508
+ "epoch": 4.966442953020135,
1509
+ "grad_norm": 0.1679641157388687,
1510
+ "learning_rate": 4.654372105225583e-05,
1511
+ "loss": 0.1636,
1512
+ "num_input_tokens_seen": 9732328,
1513
+ "step": 188
1514
+ },
1515
+ {
1516
+ "epoch": 4.993288590604027,
1517
+ "grad_norm": 0.15429595112800598,
1518
+ "learning_rate": 4.650773750903363e-05,
1519
+ "loss": 0.1429,
1520
+ "num_input_tokens_seen": 9793456,
1521
+ "step": 189
1522
+ },
1523
+ {
1524
+ "epoch": 5.0,
1525
+ "grad_norm": 0.30234482884407043,
1526
+ "learning_rate": 4.647158168051066e-05,
1527
+ "loss": 0.1757,
1528
+ "num_input_tokens_seen": 9809040,
1529
+ "step": 190
1530
+ },
1531
+ {
1532
+ "epoch": 5.026845637583893,
1533
+ "grad_norm": 0.19254004955291748,
1534
+ "learning_rate": 4.6435253856309094e-05,
1535
+ "loss": 0.1711,
1536
+ "num_input_tokens_seen": 9863696,
1537
+ "step": 191
1538
+ },
1539
+ {
1540
+ "epoch": 5.053691275167785,
1541
+ "grad_norm": 0.16591961681842804,
1542
+ "learning_rate": 4.639875432742886e-05,
1543
+ "loss": 0.156,
1544
+ "num_input_tokens_seen": 9906912,
1545
+ "step": 192
1546
+ },
1547
+ {
1548
+ "epoch": 5.080536912751678,
1549
+ "grad_norm": 0.18133562803268433,
1550
+ "learning_rate": 4.636208338624533e-05,
1551
+ "loss": 0.17,
1552
+ "num_input_tokens_seen": 9950056,
1553
+ "step": 193
1554
+ },
1555
+ {
1556
+ "epoch": 5.10738255033557,
1557
+ "grad_norm": 0.19608290493488312,
1558
+ "learning_rate": 4.6325241326506915e-05,
1559
+ "loss": 0.1882,
1560
+ "num_input_tokens_seen": 10001296,
1561
+ "step": 194
1562
+ },
1563
+ {
1564
+ "epoch": 5.134228187919463,
1565
+ "grad_norm": 0.2348538637161255,
1566
+ "learning_rate": 4.628822844333278e-05,
1567
+ "loss": 0.1564,
1568
+ "num_input_tokens_seen": 10052888,
1569
+ "step": 195
1570
+ },
1571
+ {
1572
+ "epoch": 5.1610738255033555,
1573
+ "grad_norm": 0.17895568907260895,
1574
+ "learning_rate": 4.625104503321045e-05,
1575
+ "loss": 0.1606,
1576
+ "num_input_tokens_seen": 10109912,
1577
+ "step": 196
1578
+ },
1579
+ {
1580
+ "epoch": 5.1879194630872485,
1581
+ "grad_norm": 0.1882435381412506,
1582
+ "learning_rate": 4.621369139399341e-05,
1583
+ "loss": 0.1722,
1584
+ "num_input_tokens_seen": 10151104,
1585
+ "step": 197
1586
+ },
1587
+ {
1588
+ "epoch": 5.214765100671141,
1589
+ "grad_norm": 0.18267786502838135,
1590
+ "learning_rate": 4.6176167824898773e-05,
1591
+ "loss": 0.1679,
1592
+ "num_input_tokens_seen": 10196304,
1593
+ "step": 198
1594
+ },
1595
+ {
1596
+ "epoch": 5.241610738255034,
1597
+ "grad_norm": 0.16710643470287323,
1598
+ "learning_rate": 4.613847462650486e-05,
1599
+ "loss": 0.1548,
1600
+ "num_input_tokens_seen": 10255152,
1601
+ "step": 199
1602
+ },
1603
+ {
1604
+ "epoch": 5.268456375838926,
1605
+ "grad_norm": 0.19108474254608154,
1606
+ "learning_rate": 4.6100612100748765e-05,
1607
+ "loss": 0.166,
1608
+ "num_input_tokens_seen": 10294912,
1609
+ "step": 200
1610
+ },
1611
+ {
1612
+ "epoch": 5.295302013422819,
1613
+ "grad_norm": 0.16066554188728333,
1614
+ "learning_rate": 4.606258055092397e-05,
1615
+ "loss": 0.1648,
1616
+ "num_input_tokens_seen": 10357248,
1617
+ "step": 201
1618
+ },
1619
+ {
1620
+ "epoch": 5.322147651006711,
1621
+ "grad_norm": 0.18054331839084625,
1622
+ "learning_rate": 4.602438028167792e-05,
1623
+ "loss": 0.1419,
1624
+ "num_input_tokens_seen": 10411456,
1625
+ "step": 202
1626
+ },
1627
+ {
1628
+ "epoch": 5.348993288590604,
1629
+ "grad_norm": 0.22617101669311523,
1630
+ "learning_rate": 4.5986011599009544e-05,
1631
+ "loss": 0.1935,
1632
+ "num_input_tokens_seen": 10462080,
1633
+ "step": 203
1634
+ },
1635
+ {
1636
+ "epoch": 5.375838926174497,
1637
+ "grad_norm": 0.1666952520608902,
1638
+ "learning_rate": 4.594747481026684e-05,
1639
+ "loss": 0.1449,
1640
+ "num_input_tokens_seen": 10530312,
1641
+ "step": 204
1642
+ },
1643
+ {
1644
+ "epoch": 5.402684563758389,
1645
+ "grad_norm": 0.16662774980068207,
1646
+ "learning_rate": 4.59087702241444e-05,
1647
+ "loss": 0.1548,
1648
+ "num_input_tokens_seen": 10593232,
1649
+ "step": 205
1650
+ },
1651
+ {
1652
+ "epoch": 5.429530201342282,
1653
+ "grad_norm": 0.1743718981742859,
1654
+ "learning_rate": 4.586989815068095e-05,
1655
+ "loss": 0.2084,
1656
+ "num_input_tokens_seen": 10661464,
1657
+ "step": 206
1658
+ },
1659
+ {
1660
+ "epoch": 5.456375838926174,
1661
+ "grad_norm": 0.191987544298172,
1662
+ "learning_rate": 4.5830858901256826e-05,
1663
+ "loss": 0.1527,
1664
+ "num_input_tokens_seen": 10704912,
1665
+ "step": 207
1666
+ },
1667
+ {
1668
+ "epoch": 5.483221476510067,
1669
+ "grad_norm": 0.19640536606311798,
1670
+ "learning_rate": 4.579165278859152e-05,
1671
+ "loss": 0.1515,
1672
+ "num_input_tokens_seen": 10750792,
1673
+ "step": 208
1674
+ },
1675
+ {
1676
+ "epoch": 5.510067114093959,
1677
+ "grad_norm": 0.22779090702533722,
1678
+ "learning_rate": 4.575228012674118e-05,
1679
+ "loss": 0.155,
1680
+ "num_input_tokens_seen": 10818288,
1681
+ "step": 209
1682
+ },
1683
+ {
1684
+ "epoch": 5.5369127516778525,
1685
+ "grad_norm": 0.18574051558971405,
1686
+ "learning_rate": 4.571274123109606e-05,
1687
+ "loss": 0.1514,
1688
+ "num_input_tokens_seen": 10871488,
1689
+ "step": 210
1690
+ },
1691
+ {
1692
+ "epoch": 5.563758389261745,
1693
+ "grad_norm": 0.20689000189304352,
1694
+ "learning_rate": 4.5673036418378006e-05,
1695
+ "loss": 0.1645,
1696
+ "num_input_tokens_seen": 10925024,
1697
+ "step": 211
1698
+ },
1699
+ {
1700
+ "epoch": 5.590604026845638,
1701
+ "grad_norm": 0.20517326891422272,
1702
+ "learning_rate": 4.563316600663795e-05,
1703
+ "loss": 0.1532,
1704
+ "num_input_tokens_seen": 10982200,
1705
+ "step": 212
1706
+ },
1707
+ {
1708
+ "epoch": 5.617449664429531,
1709
+ "grad_norm": 0.19169899821281433,
1710
+ "learning_rate": 4.559313031525331e-05,
1711
+ "loss": 0.1754,
1712
+ "num_input_tokens_seen": 11029976,
1713
+ "step": 213
1714
+ },
1715
+ {
1716
+ "epoch": 5.644295302013423,
1717
+ "grad_norm": 0.19880560040473938,
1718
+ "learning_rate": 4.555292966492547e-05,
1719
+ "loss": 0.1611,
1720
+ "num_input_tokens_seen": 11085192,
1721
+ "step": 214
1722
+ },
1723
+ {
1724
+ "epoch": 5.671140939597316,
1725
+ "grad_norm": 0.2045927792787552,
1726
+ "learning_rate": 4.551256437767719e-05,
1727
+ "loss": 0.1856,
1728
+ "num_input_tokens_seen": 11132072,
1729
+ "step": 215
1730
+ },
1731
+ {
1732
+ "epoch": 5.697986577181208,
1733
+ "grad_norm": 0.18255843222141266,
1734
+ "learning_rate": 4.547203477685005e-05,
1735
+ "loss": 0.1658,
1736
+ "num_input_tokens_seen": 11195808,
1737
+ "step": 216
1738
+ },
1739
+ {
1740
+ "epoch": 5.724832214765101,
1741
+ "grad_norm": 0.19551897048950195,
1742
+ "learning_rate": 4.543134118710184e-05,
1743
+ "loss": 0.1649,
1744
+ "num_input_tokens_seen": 11244688,
1745
+ "step": 217
1746
+ },
1747
+ {
1748
+ "epoch": 5.751677852348993,
1749
+ "grad_norm": 0.19608667492866516,
1750
+ "learning_rate": 4.539048393440395e-05,
1751
+ "loss": 0.1582,
1752
+ "num_input_tokens_seen": 11298888,
1753
+ "step": 218
1754
+ },
1755
+ {
1756
+ "epoch": 5.778523489932886,
1757
+ "grad_norm": 0.2286413460969925,
1758
+ "learning_rate": 4.534946334603879e-05,
1759
+ "loss": 0.1624,
1760
+ "num_input_tokens_seen": 11345304,
1761
+ "step": 219
1762
+ },
1763
+ {
1764
+ "epoch": 5.805369127516778,
1765
+ "grad_norm": 0.21048720180988312,
1766
+ "learning_rate": 4.530827975059715e-05,
1767
+ "loss": 0.1548,
1768
+ "num_input_tokens_seen": 11387752,
1769
+ "step": 220
1770
+ },
1771
+ {
1772
+ "epoch": 5.832214765100671,
1773
+ "grad_norm": 0.1970525085926056,
1774
+ "learning_rate": 4.526693347797557e-05,
1775
+ "loss": 0.1478,
1776
+ "num_input_tokens_seen": 11432728,
1777
+ "step": 221
1778
+ },
1779
+ {
1780
+ "epoch": 5.859060402684563,
1781
+ "grad_norm": 0.18459273874759674,
1782
+ "learning_rate": 4.522542485937369e-05,
1783
+ "loss": 0.1313,
1784
+ "num_input_tokens_seen": 11493064,
1785
+ "step": 222
1786
+ },
1787
+ {
1788
+ "epoch": 5.885906040268456,
1789
+ "grad_norm": 0.22195135056972504,
1790
+ "learning_rate": 4.518375422729161e-05,
1791
+ "loss": 0.1719,
1792
+ "num_input_tokens_seen": 11542392,
1793
+ "step": 223
1794
+ },
1795
+ {
1796
+ "epoch": 5.912751677852349,
1797
+ "grad_norm": 0.21980145573616028,
1798
+ "learning_rate": 4.5141921915527216e-05,
1799
+ "loss": 0.1587,
1800
+ "num_input_tokens_seen": 11596408,
1801
+ "step": 224
1802
+ },
1803
+ {
1804
+ "epoch": 5.939597315436242,
1805
+ "grad_norm": 0.21877101063728333,
1806
+ "learning_rate": 4.5099928259173516e-05,
1807
+ "loss": 0.1751,
1808
+ "num_input_tokens_seen": 11657288,
1809
+ "step": 225
1810
+ },
1811
+ {
1812
+ "epoch": 5.966442953020135,
1813
+ "grad_norm": 0.21569234132766724,
1814
+ "learning_rate": 4.505777359461595e-05,
1815
+ "loss": 0.1532,
1816
+ "num_input_tokens_seen": 11714680,
1817
+ "step": 226
1818
+ },
1819
+ {
1820
+ "epoch": 5.993288590604027,
1821
+ "grad_norm": 0.2067164033651352,
1822
+ "learning_rate": 4.50154582595297e-05,
1823
+ "loss": 0.1638,
1824
+ "num_input_tokens_seen": 11751840,
1825
+ "step": 227
1826
+ },
1827
+ {
1828
+ "epoch": 6.0,
1829
+ "grad_norm": 0.31630751490592957,
1830
+ "learning_rate": 4.497298259287696e-05,
1831
+ "loss": 0.118,
1832
+ "num_input_tokens_seen": 11770848,
1833
+ "step": 228
1834
+ },
1835
+ {
1836
+ "epoch": 6.026845637583893,
1837
+ "grad_norm": 0.2094467580318451,
1838
+ "learning_rate": 4.493034693490427e-05,
1839
+ "loss": 0.1428,
1840
+ "num_input_tokens_seen": 11821848,
1841
+ "step": 229
1842
+ },
1843
+ {
1844
+ "epoch": 6.053691275167785,
1845
+ "grad_norm": 0.20361250638961792,
1846
+ "learning_rate": 4.488755162713975e-05,
1847
+ "loss": 0.1504,
1848
+ "num_input_tokens_seen": 11869152,
1849
+ "step": 230
1850
+ },
1851
+ {
1852
+ "epoch": 6.080536912751678,
1853
+ "grad_norm": 0.22751058638095856,
1854
+ "learning_rate": 4.484459701239038e-05,
1855
+ "loss": 0.161,
1856
+ "num_input_tokens_seen": 11917464,
1857
+ "step": 231
1858
+ },
1859
+ {
1860
+ "epoch": 6.10738255033557,
1861
+ "grad_norm": 0.21245698630809784,
1862
+ "learning_rate": 4.480148343473923e-05,
1863
+ "loss": 0.1354,
1864
+ "num_input_tokens_seen": 11962184,
1865
+ "step": 232
1866
+ },
1867
+ {
1868
+ "epoch": 6.134228187919463,
1869
+ "grad_norm": 0.2415906935930252,
1870
+ "learning_rate": 4.475821123954275e-05,
1871
+ "loss": 0.1328,
1872
+ "num_input_tokens_seen": 12005088,
1873
+ "step": 233
1874
+ },
1875
+ {
1876
+ "epoch": 6.1610738255033555,
1877
+ "grad_norm": 0.22683894634246826,
1878
+ "learning_rate": 4.471478077342798e-05,
1879
+ "loss": 0.1532,
1880
+ "num_input_tokens_seen": 12058808,
1881
+ "step": 234
1882
+ },
1883
+ {
1884
+ "epoch": 6.1879194630872485,
1885
+ "grad_norm": 0.22128812968730927,
1886
+ "learning_rate": 4.467119238428975e-05,
1887
+ "loss": 0.1316,
1888
+ "num_input_tokens_seen": 12126248,
1889
+ "step": 235
1890
+ },
1891
+ {
1892
+ "epoch": 6.214765100671141,
1893
+ "grad_norm": 0.19066843390464783,
1894
+ "learning_rate": 4.4627446421287935e-05,
1895
+ "loss": 0.1279,
1896
+ "num_input_tokens_seen": 12186960,
1897
+ "step": 236
1898
+ },
1899
+ {
1900
+ "epoch": 6.241610738255034,
1901
+ "grad_norm": 0.21822784841060638,
1902
+ "learning_rate": 4.4583543234844616e-05,
1903
+ "loss": 0.1389,
1904
+ "num_input_tokens_seen": 12246416,
1905
+ "step": 237
1906
+ },
1907
+ {
1908
+ "epoch": 6.268456375838926,
1909
+ "grad_norm": 0.3152228593826294,
1910
+ "learning_rate": 4.4539483176641304e-05,
1911
+ "loss": 0.1439,
1912
+ "num_input_tokens_seen": 12301360,
1913
+ "step": 238
1914
+ },
1915
+ {
1916
+ "epoch": 6.295302013422819,
1917
+ "grad_norm": 0.2345726042985916,
1918
+ "learning_rate": 4.4495266599616136e-05,
1919
+ "loss": 0.1386,
1920
+ "num_input_tokens_seen": 12347960,
1921
+ "step": 239
1922
+ },
1923
+ {
1924
+ "epoch": 6.322147651006711,
1925
+ "grad_norm": 0.27413222193717957,
1926
+ "learning_rate": 4.445089385796099e-05,
1927
+ "loss": 0.1562,
1928
+ "num_input_tokens_seen": 12399640,
1929
+ "step": 240
1930
+ },
1931
+ {
1932
+ "epoch": 6.348993288590604,
1933
+ "grad_norm": 0.21653778851032257,
1934
+ "learning_rate": 4.4406365307118703e-05,
1935
+ "loss": 0.1364,
1936
+ "num_input_tokens_seen": 12451256,
1937
+ "step": 241
1938
+ },
1939
+ {
1940
+ "epoch": 6.375838926174497,
1941
+ "grad_norm": 0.21994851529598236,
1942
+ "learning_rate": 4.4361681303780195e-05,
1943
+ "loss": 0.1404,
1944
+ "num_input_tokens_seen": 12497184,
1945
+ "step": 242
1946
+ },
1947
+ {
1948
+ "epoch": 6.402684563758389,
1949
+ "grad_norm": 0.20164069533348083,
1950
+ "learning_rate": 4.431684220588163e-05,
1951
+ "loss": 0.1622,
1952
+ "num_input_tokens_seen": 12551512,
1953
+ "step": 243
1954
+ },
1955
+ {
1956
+ "epoch": 6.429530201342282,
1957
+ "grad_norm": 0.23192667961120605,
1958
+ "learning_rate": 4.427184837260153e-05,
1959
+ "loss": 0.1497,
1960
+ "num_input_tokens_seen": 12595808,
1961
+ "step": 244
1962
+ },
1963
+ {
1964
+ "epoch": 6.456375838926174,
1965
+ "grad_norm": 0.22512899339199066,
1966
+ "learning_rate": 4.422670016435792e-05,
1967
+ "loss": 0.1504,
1968
+ "num_input_tokens_seen": 12649504,
1969
+ "step": 245
1970
+ },
1971
+ {
1972
+ "epoch": 6.483221476510067,
1973
+ "grad_norm": 0.2125946432352066,
1974
+ "learning_rate": 4.418139794280541e-05,
1975
+ "loss": 0.129,
1976
+ "num_input_tokens_seen": 12694312,
1977
+ "step": 246
1978
+ },
1979
+ {
1980
+ "epoch": 6.510067114093959,
1981
+ "grad_norm": 0.2329980880022049,
1982
+ "learning_rate": 4.413594207083234e-05,
1983
+ "loss": 0.1363,
1984
+ "num_input_tokens_seen": 12741872,
1985
+ "step": 247
1986
+ },
1987
+ {
1988
+ "epoch": 6.5369127516778525,
1989
+ "grad_norm": 0.23576146364212036,
1990
+ "learning_rate": 4.409033291255782e-05,
1991
+ "loss": 0.1325,
1992
+ "num_input_tokens_seen": 12799032,
1993
+ "step": 248
1994
+ },
1995
+ {
1996
+ "epoch": 6.563758389261745,
1997
+ "grad_norm": 0.3069142997264862,
1998
+ "learning_rate": 4.404457083332886e-05,
1999
+ "loss": 0.1501,
2000
+ "num_input_tokens_seen": 12860432,
2001
+ "step": 249
2002
+ },
2003
+ {
2004
+ "epoch": 6.590604026845638,
2005
+ "grad_norm": 0.24110864102840424,
2006
+ "learning_rate": 4.3998656199717435e-05,
2007
+ "loss": 0.1375,
2008
+ "num_input_tokens_seen": 12906592,
2009
+ "step": 250
2010
+ },
2011
+ {
2012
+ "epoch": 6.617449664429531,
2013
+ "grad_norm": 0.2534135580062866,
2014
+ "learning_rate": 4.395258937951753e-05,
2015
+ "loss": 0.1387,
2016
+ "num_input_tokens_seen": 12966808,
2017
+ "step": 251
2018
+ },
2019
+ {
2020
+ "epoch": 6.644295302013423,
2021
+ "grad_norm": 0.20937450230121613,
2022
+ "learning_rate": 4.3906370741742186e-05,
2023
+ "loss": 0.1627,
2024
+ "num_input_tokens_seen": 13026504,
2025
+ "step": 252
2026
+ },
2027
+ {
2028
+ "epoch": 6.671140939597316,
2029
+ "grad_norm": 0.2298954874277115,
2030
+ "learning_rate": 4.386000065662059e-05,
2031
+ "loss": 0.1509,
2032
+ "num_input_tokens_seen": 13070176,
2033
+ "step": 253
2034
+ },
2035
+ {
2036
+ "epoch": 6.697986577181208,
2037
+ "grad_norm": 0.22058549523353577,
2038
+ "learning_rate": 4.381347949559506e-05,
2039
+ "loss": 0.1298,
2040
+ "num_input_tokens_seen": 13126104,
2041
+ "step": 254
2042
+ },
2043
+ {
2044
+ "epoch": 6.724832214765101,
2045
+ "grad_norm": 0.22921989858150482,
2046
+ "learning_rate": 4.3766807631318106e-05,
2047
+ "loss": 0.1396,
2048
+ "num_input_tokens_seen": 13178312,
2049
+ "step": 255
2050
+ },
2051
+ {
2052
+ "epoch": 6.751677852348993,
2053
+ "grad_norm": 0.20291879773139954,
2054
+ "learning_rate": 4.371998543764943e-05,
2055
+ "loss": 0.1206,
2056
+ "num_input_tokens_seen": 13236216,
2057
+ "step": 256
2058
+ },
2059
+ {
2060
+ "epoch": 6.778523489932886,
2061
+ "grad_norm": 0.1957395225763321,
2062
+ "learning_rate": 4.367301328965291e-05,
2063
+ "loss": 0.1168,
2064
+ "num_input_tokens_seen": 13291752,
2065
+ "step": 257
2066
+ },
2067
+ {
2068
+ "epoch": 6.805369127516778,
2069
+ "grad_norm": 0.241806298494339,
2070
+ "learning_rate": 4.3625891563593626e-05,
2071
+ "loss": 0.1435,
2072
+ "num_input_tokens_seen": 13349872,
2073
+ "step": 258
2074
+ },
2075
+ {
2076
+ "epoch": 6.832214765100671,
2077
+ "grad_norm": 0.2894677519798279,
2078
+ "learning_rate": 4.357862063693486e-05,
2079
+ "loss": 0.1216,
2080
+ "num_input_tokens_seen": 13406328,
2081
+ "step": 259
2082
+ },
2083
+ {
2084
+ "epoch": 6.859060402684563,
2085
+ "grad_norm": 0.21700353920459747,
2086
+ "learning_rate": 4.353120088833501e-05,
2087
+ "loss": 0.1269,
2088
+ "num_input_tokens_seen": 13459016,
2089
+ "step": 260
2090
+ },
2091
+ {
2092
+ "epoch": 6.885906040268456,
2093
+ "grad_norm": 0.2301565408706665,
2094
+ "learning_rate": 4.348363269764462e-05,
2095
+ "loss": 0.1441,
2096
+ "num_input_tokens_seen": 13505008,
2097
+ "step": 261
2098
+ },
2099
+ {
2100
+ "epoch": 6.912751677852349,
2101
+ "grad_norm": 0.21690794825553894,
2102
+ "learning_rate": 4.3435916445903296e-05,
2103
+ "loss": 0.1136,
2104
+ "num_input_tokens_seen": 13559976,
2105
+ "step": 262
2106
+ },
2107
+ {
2108
+ "epoch": 6.939597315436242,
2109
+ "grad_norm": 0.2487451285123825,
2110
+ "learning_rate": 4.3388052515336696e-05,
2111
+ "loss": 0.1511,
2112
+ "num_input_tokens_seen": 13608168,
2113
+ "step": 263
2114
+ },
2115
+ {
2116
+ "epoch": 6.966442953020135,
2117
+ "grad_norm": 0.22782735526561737,
2118
+ "learning_rate": 4.3340041289353415e-05,
2119
+ "loss": 0.1307,
2120
+ "num_input_tokens_seen": 13660808,
2121
+ "step": 264
2122
+ },
2123
+ {
2124
+ "epoch": 6.993288590604027,
2125
+ "grad_norm": 0.23830646276474,
2126
+ "learning_rate": 4.329188315254196e-05,
2127
+ "loss": 0.1342,
2128
+ "num_input_tokens_seen": 13716800,
2129
+ "step": 265
2130
+ },
2131
+ {
2132
+ "epoch": 7.0,
2133
+ "grad_norm": 0.3767189383506775,
2134
+ "learning_rate": 4.324357849066764e-05,
2135
+ "loss": 0.1316,
2136
+ "num_input_tokens_seen": 13732656,
2137
+ "step": 266
2138
+ },
2139
+ {
2140
+ "epoch": 7.026845637583893,
2141
+ "grad_norm": 0.22937406599521637,
2142
+ "learning_rate": 4.319512769066949e-05,
2143
+ "loss": 0.12,
2144
+ "num_input_tokens_seen": 13772968,
2145
+ "step": 267
2146
+ },
2147
+ {
2148
+ "epoch": 7.053691275167785,
2149
+ "grad_norm": 0.2137727588415146,
2150
+ "learning_rate": 4.3146531140657176e-05,
2151
+ "loss": 0.1223,
2152
+ "num_input_tokens_seen": 13823688,
2153
+ "step": 268
2154
+ },
2155
+ {
2156
+ "epoch": 7.080536912751678,
2157
+ "grad_norm": 0.2268005758523941,
2158
+ "learning_rate": 4.309778922990786e-05,
2159
+ "loss": 0.1282,
2160
+ "num_input_tokens_seen": 13886264,
2161
+ "step": 269
2162
+ },
2163
+ {
2164
+ "epoch": 7.10738255033557,
2165
+ "grad_norm": 0.2435617595911026,
2166
+ "learning_rate": 4.3048902348863116e-05,
2167
+ "loss": 0.1336,
2168
+ "num_input_tokens_seen": 13944672,
2169
+ "step": 270
2170
+ },
2171
+ {
2172
+ "epoch": 7.134228187919463,
2173
+ "grad_norm": 0.24664700031280518,
2174
+ "learning_rate": 4.299987088912577e-05,
2175
+ "loss": 0.121,
2176
+ "num_input_tokens_seen": 13999968,
2177
+ "step": 271
2178
+ },
2179
+ {
2180
+ "epoch": 7.1610738255033555,
2181
+ "grad_norm": 0.2270224392414093,
2182
+ "learning_rate": 4.295069524345681e-05,
2183
+ "loss": 0.1186,
2184
+ "num_input_tokens_seen": 14054224,
2185
+ "step": 272
2186
+ },
2187
+ {
2188
+ "epoch": 7.1879194630872485,
2189
+ "grad_norm": 0.2454068511724472,
2190
+ "learning_rate": 4.290137580577216e-05,
2191
+ "loss": 0.1355,
2192
+ "num_input_tokens_seen": 14106328,
2193
+ "step": 273
2194
+ },
2195
+ {
2196
+ "epoch": 7.214765100671141,
2197
+ "grad_norm": 0.250244140625,
2198
+ "learning_rate": 4.285191297113962e-05,
2199
+ "loss": 0.1239,
2200
+ "num_input_tokens_seen": 14154608,
2201
+ "step": 274
2202
+ },
2203
+ {
2204
+ "epoch": 7.241610738255034,
2205
+ "grad_norm": 0.24651585519313812,
2206
+ "learning_rate": 4.280230713577564e-05,
2207
+ "loss": 0.129,
2208
+ "num_input_tokens_seen": 14207424,
2209
+ "step": 275
2210
+ },
2211
+ {
2212
+ "epoch": 7.268456375838926,
2213
+ "grad_norm": 0.2339150756597519,
2214
+ "learning_rate": 4.275255869704214e-05,
2215
+ "loss": 0.117,
2216
+ "num_input_tokens_seen": 14268200,
2217
+ "step": 276
2218
+ },
2219
+ {
2220
+ "epoch": 7.295302013422819,
2221
+ "grad_norm": 0.2495085448026657,
2222
+ "learning_rate": 4.2702668053443394e-05,
2223
+ "loss": 0.1202,
2224
+ "num_input_tokens_seen": 14319864,
2225
+ "step": 277
2226
+ },
2227
+ {
2228
+ "epoch": 7.322147651006711,
2229
+ "grad_norm": 0.24790653586387634,
2230
+ "learning_rate": 4.265263560462275e-05,
2231
+ "loss": 0.1429,
2232
+ "num_input_tokens_seen": 14370536,
2233
+ "step": 278
2234
+ },
2235
+ {
2236
+ "epoch": 7.348993288590604,
2237
+ "grad_norm": 0.22188791632652283,
2238
+ "learning_rate": 4.260246175135948e-05,
2239
+ "loss": 0.1076,
2240
+ "num_input_tokens_seen": 14431608,
2241
+ "step": 279
2242
+ },
2243
+ {
2244
+ "epoch": 7.375838926174497,
2245
+ "grad_norm": 0.24197377264499664,
2246
+ "learning_rate": 4.255214689556557e-05,
2247
+ "loss": 0.109,
2248
+ "num_input_tokens_seen": 14486360,
2249
+ "step": 280
2250
+ },
2251
+ {
2252
+ "epoch": 7.402684563758389,
2253
+ "grad_norm": 0.26805874705314636,
2254
+ "learning_rate": 4.2501691440282476e-05,
2255
+ "loss": 0.121,
2256
+ "num_input_tokens_seen": 14529160,
2257
+ "step": 281
2258
+ },
2259
+ {
2260
+ "epoch": 7.429530201342282,
2261
+ "grad_norm": 0.27267780900001526,
2262
+ "learning_rate": 4.2451095789677945e-05,
2263
+ "loss": 0.1183,
2264
+ "num_input_tokens_seen": 14573320,
2265
+ "step": 282
2266
+ },
2267
+ {
2268
+ "epoch": 7.456375838926174,
2269
+ "grad_norm": 0.27364009618759155,
2270
+ "learning_rate": 4.24003603490427e-05,
2271
+ "loss": 0.1345,
2272
+ "num_input_tokens_seen": 14628488,
2273
+ "step": 283
2274
+ },
2275
+ {
2276
+ "epoch": 7.483221476510067,
2277
+ "grad_norm": 0.25592902302742004,
2278
+ "learning_rate": 4.234948552478726e-05,
2279
+ "loss": 0.1195,
2280
+ "num_input_tokens_seen": 14670808,
2281
+ "step": 284
2282
+ },
2283
+ {
2284
+ "epoch": 7.510067114093959,
2285
+ "grad_norm": 0.2379164844751358,
2286
+ "learning_rate": 4.229847172443866e-05,
2287
+ "loss": 0.1245,
2288
+ "num_input_tokens_seen": 14716336,
2289
+ "step": 285
2290
+ },
2291
+ {
2292
+ "epoch": 7.5369127516778525,
2293
+ "grad_norm": 0.237826868891716,
2294
+ "learning_rate": 4.2247319356637174e-05,
2295
+ "loss": 0.1456,
2296
+ "num_input_tokens_seen": 14786728,
2297
+ "step": 286
2298
+ },
2299
+ {
2300
+ "epoch": 7.563758389261745,
2301
+ "grad_norm": 0.3425538241863251,
2302
+ "learning_rate": 4.219602883113306e-05,
2303
+ "loss": 0.1158,
2304
+ "num_input_tokens_seen": 14839744,
2305
+ "step": 287
2306
+ },
2307
+ {
2308
+ "epoch": 7.590604026845638,
2309
+ "grad_norm": 0.25014984607696533,
2310
+ "learning_rate": 4.214460055878329e-05,
2311
+ "loss": 0.1049,
2312
+ "num_input_tokens_seen": 14891016,
2313
+ "step": 288
2314
+ },
2315
+ {
2316
+ "epoch": 7.617449664429531,
2317
+ "grad_norm": 0.2666330337524414,
2318
+ "learning_rate": 4.209303495154822e-05,
2319
+ "loss": 0.1165,
2320
+ "num_input_tokens_seen": 14948496,
2321
+ "step": 289
2322
+ },
2323
+ {
2324
+ "epoch": 7.644295302013423,
2325
+ "grad_norm": 0.26408740878105164,
2326
+ "learning_rate": 4.204133242248832e-05,
2327
+ "loss": 0.12,
2328
+ "num_input_tokens_seen": 15001096,
2329
+ "step": 290
2330
+ },
2331
+ {
2332
+ "epoch": 7.671140939597316,
2333
+ "grad_norm": 0.4048908054828644,
2334
+ "learning_rate": 4.1989493385760864e-05,
2335
+ "loss": 0.1135,
2336
+ "num_input_tokens_seen": 15064648,
2337
+ "step": 291
2338
+ },
2339
+ {
2340
+ "epoch": 7.697986577181208,
2341
+ "grad_norm": 0.2592375576496124,
2342
+ "learning_rate": 4.193751825661658e-05,
2343
+ "loss": 0.1081,
2344
+ "num_input_tokens_seen": 15106280,
2345
+ "step": 292
2346
+ },
2347
+ {
2348
+ "epoch": 7.724832214765101,
2349
+ "grad_norm": 0.270054429769516,
2350
+ "learning_rate": 4.188540745139638e-05,
2351
+ "loss": 0.1251,
2352
+ "num_input_tokens_seen": 15142096,
2353
+ "step": 293
2354
+ },
2355
+ {
2356
+ "epoch": 7.751677852348993,
2357
+ "grad_norm": 0.21358565986156464,
2358
+ "learning_rate": 4.1833161387527986e-05,
2359
+ "loss": 0.1018,
2360
+ "num_input_tokens_seen": 15213520,
2361
+ "step": 294
2362
+ },
2363
+ {
2364
+ "epoch": 7.778523489932886,
2365
+ "grad_norm": 0.25034505128860474,
2366
+ "learning_rate": 4.1780780483522575e-05,
2367
+ "loss": 0.1049,
2368
+ "num_input_tokens_seen": 15269304,
2369
+ "step": 295
2370
+ },
2371
+ {
2372
+ "epoch": 7.805369127516778,
2373
+ "grad_norm": 0.2544301450252533,
2374
+ "learning_rate": 4.172826515897146e-05,
2375
+ "loss": 0.1171,
2376
+ "num_input_tokens_seen": 15322184,
2377
+ "step": 296
2378
+ }
2379
+ ],
2380
+ "logging_steps": 1.0,
2381
+ "max_steps": 1110,
2382
+ "num_input_tokens_seen": 15322184,
2383
+ "num_train_epochs": 30,
2384
+ "save_steps": 37,
2385
+ "stateful_callbacks": {
2386
+ "TrainerControl": {
2387
+ "args": {
2388
+ "should_epoch_stop": false,
2389
+ "should_evaluate": false,
2390
+ "should_log": false,
2391
+ "should_save": true,
2392
+ "should_training_stop": false
2393
+ },
2394
+ "attributes": {}
2395
+ }
2396
+ },
2397
+ "total_flos": 1.2926050701976535e+18,
2398
+ "train_batch_size": 1,
2399
+ "trial_name": null,
2400
+ "trial_params": null
2401
+ }
checkpoint-296/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-333/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: Qwen/Qwen2.5-Coder-14B-Instruct
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.12.0
checkpoint-333/adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "Qwen/Qwen2.5-Coder-14B-Instruct",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 16,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "q_proj",
24
+ "gate_proj",
25
+ "o_proj",
26
+ "k_proj",
27
+ "up_proj",
28
+ "down_proj",
29
+ "v_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
checkpoint-333/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:49ef05967e5f48aca96f144841f47ddb247cedd722f7357a2981fa402cbf9327
3
+ size 275341720
checkpoint-333/added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
checkpoint-333/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-333/special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
checkpoint-333/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c5ae00e602b8860cbd784ba82a8aa14e8feecec692e7076590d014d7b7fdafa
3
+ size 11421896