Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
datasets:
|
| 4 |
+
- open-r1/codeforces-cots_decontaminated
|
| 5 |
+
language:
|
| 6 |
+
- en
|
| 7 |
+
base_model:
|
| 8 |
+
- Qwen/Qwen2.5-Coder-32B-Instruct
|
| 9 |
+
pipeline_tag: text-generation
|
| 10 |
+
---
|
| 11 |
+
|
| 12 |
+
# Model Card for OlympicCoder-32B
|
| 13 |
+
OlympicCoder-32B is a medium sized code model, that achieves strong performance on coding benchmarks such as Live Code Bench and the new International Olympiad in Informatics benchmark.
|
| 14 |
+
|
| 15 |
+
## Model description
|
| 16 |
+
|
| 17 |
+
- **Model type:** A 32B parameter model fine-tuned on a decontaminated version of the codeforces dataset.
|
| 18 |
+
- **Language(s) (NLP):** Primarily English
|
| 19 |
+
- **License:** apache-2.0
|
| 20 |
+
- **Finetuned from model:** [Qwen/Qwen2.5-Coder-32B-Instruct](https://huggingface.co/Qwen/Qwen2.5-Coder-32B-Instruct)
|
| 21 |
+
|
| 22 |
+
## Performance
|
| 23 |
+
| Model | LCB | IOI |
|
| 24 |
+
|-------|-----|---------------|
|
| 25 |
+
|GPT-4o| 28.43 |-
|
| 26 |
+
|Claude 3.7 Sonnet |39.18| 93|
|
| 27 |
+
|QwQ-32B |60.98 | 127|
|
| 28 |
+
|DeepSeek-R1-Distill-Qwen-32B| 56.58| -|
|
| 29 |
+
|DeepSeek-R1-Distill-Qwen-7B |37.36|- |
|
| 30 |
+
|Qwen2.5-Coder-32B-Instruct| 28.31| 35|
|
| 31 |
+
|Qwen2.5-Coder-7B-Instruct |15.83 | 45|
|
| 32 |
+
|DeepSeek-R1 |-| |137|
|
| 33 |
+
|OlympicCoder-7B |36.4 | 129|
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
## Usage
|
| 39 |
+
Here's how you can run the model using the `pipeline()` function from 🤗 Transformers:
|
| 40 |
+
|
| 41 |
+
```python
|
| 42 |
+
# pip install transformers
|
| 43 |
+
# pip install accelerate
|
| 44 |
+
|
| 45 |
+
import torch
|
| 46 |
+
from transformers import pipeline
|
| 47 |
+
|
| 48 |
+
pipe = pipeline("text-generation", model="open-r1/OlympicCoder-32B", torch_dtype=torch.bfloat16, device_map="auto")
|
| 49 |
+
|
| 50 |
+
# We use the tokenizer's chat template to format each message - see https://huggingface.co/docs/transformers/main/en/chat_templating
|
| 51 |
+
messages = [
|
| 52 |
+
{"role": "user", "content": "Write a python program to calculate the 10th Fibonacci number"},
|
| 53 |
+
]
|
| 54 |
+
prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 55 |
+
outputs = pipe(prompt, max_new_tokens=8000, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
|
| 56 |
+
print(outputs[0]["generated_text"])
|
| 57 |
+
#<|im_start|>user
|
| 58 |
+
#Write a python program to calculate the 10th fibonacci number<|im_end|>
|
| 59 |
+
#<|im_start|>assistant
|
| 60 |
+
#<think>Okay, I need to write a Python program that calculates the 10th Fibonacci number. Hmm, the Fibonacci sequence starts with 0 and 1. Each subsequent number is the sum of the two preceding ones. So the sequence goes: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, and so on. ...
|
| 61 |
+
```
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
## Training procedure
|
| 65 |
+
### Training hyper-parameters
|
| 66 |
+
|
| 67 |
+
The following hyperparameters were used during training on 16 H100 nodes:
|
| 68 |
+
|
| 69 |
+
- dataset: open-r1/codeforces-cots_decontaminated
|
| 70 |
+
- learning_rate: 4.0e-5
|
| 71 |
+
- train_batch_size: 1
|
| 72 |
+
- seed: 42
|
| 73 |
+
- packing: false
|
| 74 |
+
- distributed_type: fsdp
|
| 75 |
+
- num_devices: 128
|
| 76 |
+
- gradient_accumulation_steps: 1
|
| 77 |
+
- total_train_batch_size: 16
|
| 78 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
| 79 |
+
- lr_scheduler_type: cosine_with_min_lr
|
| 80 |
+
- min_lr_rate: 0.1
|
| 81 |
+
- lr_scheduler_warmup_ratio: 0.03
|
| 82 |
+
- num_epochs: 10.0
|