ONNX
DaniAffCH commited on
Commit
09eeb06
·
1 Parent(s): 1225731

[GSoC] Add block quantized models (#270)

Browse files

* Gemm and MatMul block quantization support

* refactoring

* fix indentation

* node name independent

* Block quantization tool:
- constant weight category supported
- add data type saturation
- handled the case in which all the elements within a block are the same

benchmark script modified to support block quantized models

block quantized some models

* add missing block quantized models

* formatting

* add blocked models to eval script. Evaluation yunet

* Add sface and pphumanseg evaluation, block quantization tool fix, handpose blocked model fix, removed blocked CRNN EN,

* changed evaluation metric in block_quantize script and add verbose mode

* Add evaluation for PP-ResNet and Mobilenet

* changed file suffix and update readmes

* renamed int8bq

Files changed (1) hide show
  1. README.md +5 -0
README.md CHANGED
@@ -4,14 +4,19 @@ Deep Residual Learning for Image Recognition
4
 
5
  This model is ported from [PaddleHub](https://github.com/PaddlePaddle/PaddleHub) using [this script from OpenCV](https://github.com/opencv/opencv/blob/master/samples/dnn/dnn_model_runner/dnn_conversion/paddlepaddle/paddle_resnet50.py).
6
 
 
 
 
7
  Results of accuracy evaluation with [tools/eval](../../tools/eval).
8
 
9
  | Models | Top-1 Accuracy | Top-5 Accuracy |
10
  | --------------- | -------------- | -------------- |
11
  | PP-ResNet | 82.28 | 96.15 |
 
12
  | PP-ResNet quant | 0.22 | 0.96 |
13
 
14
  \*: 'quant' stands for 'quantized'.
 
15
 
16
  ## Demo
17
 
 
4
 
5
  This model is ported from [PaddleHub](https://github.com/PaddlePaddle/PaddleHub) using [this script from OpenCV](https://github.com/opencv/opencv/blob/master/samples/dnn/dnn_model_runner/dnn_conversion/paddlepaddle/paddle_resnet50.py).
6
 
7
+ **Note**:
8
+ - `image_classification_ppresnet50_2022jan_int8bq.onnx` represents the block-quantized version in int8 precision and is generated using [block_quantize.py](../../tools/quantize/block_quantize.py) with `block_size=64`.
9
+
10
  Results of accuracy evaluation with [tools/eval](../../tools/eval).
11
 
12
  | Models | Top-1 Accuracy | Top-5 Accuracy |
13
  | --------------- | -------------- | -------------- |
14
  | PP-ResNet | 82.28 | 96.15 |
15
+ | PP-ResNet block | 82.27 | 96.15 |
16
  | PP-ResNet quant | 0.22 | 0.96 |
17
 
18
  \*: 'quant' stands for 'quantized'.
19
+ \*\*: 'block' stands for 'blockwise quantized'.
20
 
21
  ## Demo
22