DaniAffCH commited on
Commit
a0c4053
·
1 Parent(s): 9d0733f

[GSoC] Add block quantized models (#270)

Browse files

* Gemm and MatMul block quantization support

* refactoring

* fix indentation

* node name independent

* Block quantization tool:
- constant weight category supported
- add data type saturation
- handled the case in which all the elements within a block are the same

benchmark script modified to support block quantized models

block quantized some models

* add missing block quantized models

* formatting

* add blocked models to eval script. Evaluation yunet

* Add sface and pphumanseg evaluation, block quantization tool fix, handpose blocked model fix, removed blocked CRNN EN,

* changed evaluation metric in block_quantize script and add verbose mode

* Add evaluation for PP-ResNet and Mobilenet

* changed file suffix and update readmes

* renamed int8bq

Files changed (1) hide show
  1. README.md +3 -1
README.md CHANGED
@@ -2,8 +2,10 @@
2
 
3
  Nanodet: NanoDet is a FCOS-style one-stage anchor-free object detection model which using Generalized Focal Loss as classification and regression loss.In NanoDet-Plus, we propose a novel label assignment strategy with a simple assign guidance module (AGM) and a dynamic soft label assigner (DSLA) to solve the optimal label assignment problem in lightweight model training.
4
 
5
- Note:
6
  - This version of nanodet: Nanodet-m-plus-1.5x_416
 
 
7
 
8
  ## Demo
9
 
 
2
 
3
  Nanodet: NanoDet is a FCOS-style one-stage anchor-free object detection model which using Generalized Focal Loss as classification and regression loss.In NanoDet-Plus, we propose a novel label assignment strategy with a simple assign guidance module (AGM) and a dynamic soft label assigner (DSLA) to solve the optimal label assignment problem in lightweight model training.
4
 
5
+ **Note**:
6
  - This version of nanodet: Nanodet-m-plus-1.5x_416
7
+ - `object_detection_nanodet_2022nov_int8bq.onnx` represents the block-quantized version in int8 precision and is generated using [block_quantize.py](../../tools/quantize/block_quantize.py) with `block_size=64`.
8
+
9
 
10
  ## Demo
11