Limit combinations of backends and targets in demos and benchmark (#145)
Browse files* limit backend and target combination in demos and benchmark
* simpler version checking
- demo.py +56 -49
- nanodet.py +3 -5
demo.py
CHANGED
@@ -1,29 +1,21 @@
|
|
1 |
import numpy as np
|
2 |
-
import cv2
|
3 |
import argparse
|
4 |
|
5 |
from nanodet import NanoDet
|
6 |
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
elif v.lower() in ['off', 'no', 'false', 'n', 'f']:
|
11 |
-
return False
|
12 |
-
else:
|
13 |
-
raise NotImplementedError
|
14 |
-
|
15 |
-
backends = [cv2.dnn.DNN_BACKEND_OPENCV, cv2.dnn.DNN_BACKEND_CUDA]
|
16 |
-
targets = [cv2.dnn.DNN_TARGET_CPU, cv2.dnn.DNN_TARGET_CUDA, cv2.dnn.DNN_TARGET_CUDA_FP16]
|
17 |
-
help_msg_backends = "Choose one of the computation backends: {:d}: OpenCV implementation (default); {:d}: CUDA"
|
18 |
-
help_msg_targets = "Chose one of the target computation devices: {:d}: CPU (default); {:d}: CUDA; {:d}: CUDA fp16"
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
|
|
27 |
|
28 |
classes = ('person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus',
|
29 |
'train', 'truck', 'boat', 'traffic light', 'fire hydrant',
|
@@ -48,16 +40,16 @@ def letterbox(srcimg, target_size=(416, 416)):
|
|
48 |
hw_scale = img.shape[0] / img.shape[1]
|
49 |
if hw_scale > 1:
|
50 |
newh, neww = target_size[0], int(target_size[1] / hw_scale)
|
51 |
-
img =
|
52 |
left = int((target_size[1] - neww) * 0.5)
|
53 |
-
img =
|
54 |
else:
|
55 |
newh, neww = int(target_size[0] * hw_scale), target_size[1]
|
56 |
-
img =
|
57 |
top = int((target_size[0] - newh) * 0.5)
|
58 |
-
img =
|
59 |
else:
|
60 |
-
img =
|
61 |
|
62 |
letterbox_scale = [top, left, newh, neww]
|
63 |
return img, letterbox_scale
|
@@ -87,7 +79,7 @@ def vis(preds, res_img, letterbox_scale, fps=None):
|
|
87 |
# draw FPS
|
88 |
if fps is not None:
|
89 |
fps_label = "FPS: %.2f" % fps
|
90 |
-
|
91 |
|
92 |
# draw bboxes and labels
|
93 |
for pred in preds:
|
@@ -97,37 +89,52 @@ def vis(preds, res_img, letterbox_scale, fps=None):
|
|
97 |
|
98 |
# bbox
|
99 |
xmin, ymin, xmax, ymax = unletterbox(bbox, ret.shape[:2], letterbox_scale)
|
100 |
-
|
101 |
|
102 |
# label
|
103 |
label = "{:s}: {:.2f}".format(classes[classid], conf)
|
104 |
-
|
105 |
|
106 |
return ret
|
107 |
|
108 |
if __name__=='__main__':
|
109 |
parser = argparse.ArgumentParser(description='Nanodet inference using OpenCV an contribution by Sri Siddarth Chakaravarthy part of GSOC_2022')
|
110 |
-
parser.add_argument('--input', '-i', type=str,
|
111 |
-
|
112 |
-
parser.add_argument('--
|
113 |
-
|
114 |
-
parser.add_argument('--
|
115 |
-
|
116 |
-
|
117 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
args = parser.parse_args()
|
119 |
|
|
|
|
|
|
|
120 |
model = NanoDet(modelPath= args.model,
|
121 |
prob_threshold=args.confidence,
|
122 |
iou_threshold=args.nms,
|
123 |
-
backend_id=
|
124 |
-
target_id=
|
125 |
|
126 |
-
tm =
|
127 |
tm.reset()
|
128 |
if args.input is not None:
|
129 |
-
image =
|
130 |
-
input_blob =
|
131 |
|
132 |
# Letterbox transformation
|
133 |
input_blob, letterbox_scale = letterbox(input_blob)
|
@@ -142,25 +149,25 @@ if __name__=='__main__':
|
|
142 |
|
143 |
if args.save:
|
144 |
print('Resutls saved to result.jpg\n')
|
145 |
-
|
146 |
|
147 |
if args.vis:
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
|
152 |
else:
|
153 |
print("Press any key to stop video capture")
|
154 |
deviceId = 0
|
155 |
-
cap =
|
156 |
|
157 |
-
while
|
158 |
hasFrame, frame = cap.read()
|
159 |
if not hasFrame:
|
160 |
print('No frames grabbed!')
|
161 |
break
|
162 |
|
163 |
-
input_blob =
|
164 |
input_blob, letterbox_scale = letterbox(input_blob)
|
165 |
# Inference
|
166 |
tm.start()
|
@@ -169,6 +176,6 @@ if __name__=='__main__':
|
|
169 |
|
170 |
img = vis(preds, frame, letterbox_scale, fps=tm.getFPS())
|
171 |
|
172 |
-
|
173 |
|
174 |
tm.reset()
|
|
|
1 |
import numpy as np
|
2 |
+
import cv2 as cv
|
3 |
import argparse
|
4 |
|
5 |
from nanodet import NanoDet
|
6 |
|
7 |
+
# Check OpenCV version
|
8 |
+
assert cv.__version__ >= "4.7.0", \
|
9 |
+
"Please install latest opencv-python to try this demo: python3 -m pip install --upgrade opencv-python"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
+
# Valid combinations of backends and targets
|
12 |
+
backend_target_pairs = [
|
13 |
+
[cv.dnn.DNN_BACKEND_OPENCV, cv.dnn.DNN_TARGET_CPU],
|
14 |
+
[cv.dnn.DNN_BACKEND_CUDA, cv.dnn.DNN_TARGET_CUDA],
|
15 |
+
[cv.dnn.DNN_BACKEND_CUDA, cv.dnn.DNN_TARGET_CUDA_FP16],
|
16 |
+
[cv.dnn.DNN_BACKEND_TIMVX, cv.dnn.DNN_TARGET_NPU],
|
17 |
+
[cv.dnn.DNN_BACKEND_CANN, cv.dnn.DNN_TARGET_NPU]
|
18 |
+
]
|
19 |
|
20 |
classes = ('person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus',
|
21 |
'train', 'truck', 'boat', 'traffic light', 'fire hydrant',
|
|
|
40 |
hw_scale = img.shape[0] / img.shape[1]
|
41 |
if hw_scale > 1:
|
42 |
newh, neww = target_size[0], int(target_size[1] / hw_scale)
|
43 |
+
img = cv.resize(img, (neww, newh), interpolation=cv.INTER_AREA)
|
44 |
left = int((target_size[1] - neww) * 0.5)
|
45 |
+
img = cv.copyMakeBorder(img, 0, 0, left, target_size[1] - neww - left, cv.BORDER_CONSTANT, value=0) # add border
|
46 |
else:
|
47 |
newh, neww = int(target_size[0] * hw_scale), target_size[1]
|
48 |
+
img = cv.resize(img, (neww, newh), interpolation=cv.INTER_AREA)
|
49 |
top = int((target_size[0] - newh) * 0.5)
|
50 |
+
img = cv.copyMakeBorder(img, top, target_size[0] - newh - top, 0, 0, cv.BORDER_CONSTANT, value=0)
|
51 |
else:
|
52 |
+
img = cv.resize(img, target_size, interpolation=cv.INTER_AREA)
|
53 |
|
54 |
letterbox_scale = [top, left, newh, neww]
|
55 |
return img, letterbox_scale
|
|
|
79 |
# draw FPS
|
80 |
if fps is not None:
|
81 |
fps_label = "FPS: %.2f" % fps
|
82 |
+
cv.putText(ret, fps_label, (10, 25), cv.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)
|
83 |
|
84 |
# draw bboxes and labels
|
85 |
for pred in preds:
|
|
|
89 |
|
90 |
# bbox
|
91 |
xmin, ymin, xmax, ymax = unletterbox(bbox, ret.shape[:2], letterbox_scale)
|
92 |
+
cv.rectangle(ret, (xmin, ymin), (xmax, ymax), (0, 255, 0), thickness=2)
|
93 |
|
94 |
# label
|
95 |
label = "{:s}: {:.2f}".format(classes[classid], conf)
|
96 |
+
cv.putText(ret, label, (xmin, ymin - 10), cv.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), thickness=2)
|
97 |
|
98 |
return ret
|
99 |
|
100 |
if __name__=='__main__':
|
101 |
parser = argparse.ArgumentParser(description='Nanodet inference using OpenCV an contribution by Sri Siddarth Chakaravarthy part of GSOC_2022')
|
102 |
+
parser.add_argument('--input', '-i', type=str,
|
103 |
+
help='Path to the input image. Omit for using default camera.')
|
104 |
+
parser.add_argument('--model', '-m', type=str,
|
105 |
+
default='object_detection_nanodet_2022nov.onnx', help="Path to the model")
|
106 |
+
parser.add_argument('--backend_target', '-bt', type=int, default=0,
|
107 |
+
help='''Choose one of the backend-target pair to run this demo:
|
108 |
+
{:d}: (default) OpenCV implementation + CPU,
|
109 |
+
{:d}: CUDA + GPU (CUDA),
|
110 |
+
{:d}: CUDA + GPU (CUDA FP16),
|
111 |
+
{:d}: TIM-VX + NPU,
|
112 |
+
{:d}: CANN + NPU
|
113 |
+
'''.format(*[x for x in range(len(backend_target_pairs))]))
|
114 |
+
parser.add_argument('--confidence', default=0.35, type=float,
|
115 |
+
help='Class confidence')
|
116 |
+
parser.add_argument('--nms', default=0.6, type=float,
|
117 |
+
help='Enter nms IOU threshold')
|
118 |
+
parser.add_argument('--save', '-s', action='store_true',
|
119 |
+
help='Specify to save results. This flag is invalid when using camera.')
|
120 |
+
parser.add_argument('--vis', '-v', action='store_true',
|
121 |
+
help='Specify to open a window for result visualization. This flag is invalid when using camera.')
|
122 |
args = parser.parse_args()
|
123 |
|
124 |
+
backend_id = backend_target_pairs[args.backend_target][0]
|
125 |
+
target_id = backend_target_pairs[args.backend_target][1]
|
126 |
+
|
127 |
model = NanoDet(modelPath= args.model,
|
128 |
prob_threshold=args.confidence,
|
129 |
iou_threshold=args.nms,
|
130 |
+
backend_id=backend_id,
|
131 |
+
target_id=target_id)
|
132 |
|
133 |
+
tm = cv.TickMeter()
|
134 |
tm.reset()
|
135 |
if args.input is not None:
|
136 |
+
image = cv.imread(args.input)
|
137 |
+
input_blob = cv.cvtColor(image, cv.COLOR_BGR2RGB)
|
138 |
|
139 |
# Letterbox transformation
|
140 |
input_blob, letterbox_scale = letterbox(input_blob)
|
|
|
149 |
|
150 |
if args.save:
|
151 |
print('Resutls saved to result.jpg\n')
|
152 |
+
cv.imwrite('result.jpg', img)
|
153 |
|
154 |
if args.vis:
|
155 |
+
cv.namedWindow(args.input, cv.WINDOW_AUTOSIZE)
|
156 |
+
cv.imshow(args.input, img)
|
157 |
+
cv.waitKey(0)
|
158 |
|
159 |
else:
|
160 |
print("Press any key to stop video capture")
|
161 |
deviceId = 0
|
162 |
+
cap = cv.VideoCapture(deviceId)
|
163 |
|
164 |
+
while cv.waitKey(1) < 0:
|
165 |
hasFrame, frame = cap.read()
|
166 |
if not hasFrame:
|
167 |
print('No frames grabbed!')
|
168 |
break
|
169 |
|
170 |
+
input_blob = cv.cvtColor(frame, cv.COLOR_BGR2RGB)
|
171 |
input_blob, letterbox_scale = letterbox(input_blob)
|
172 |
# Inference
|
173 |
tm.start()
|
|
|
176 |
|
177 |
img = vis(preds, frame, letterbox_scale, fps=tm.getFPS())
|
178 |
|
179 |
+
cv.imshow("NanoDet Demo", img)
|
180 |
|
181 |
tm.reset()
|
nanodet.py
CHANGED
@@ -37,12 +37,10 @@ class NanoDet:
|
|
37 |
def name(self):
|
38 |
return self.__class__.__name__
|
39 |
|
40 |
-
def
|
41 |
-
self.
|
|
|
42 |
self.net.setPreferableBackend(self.backend_id)
|
43 |
-
|
44 |
-
def setTarget(self, targetId):
|
45 |
-
self.target_id = targetId
|
46 |
self.net.setPreferableTarget(self.target_id)
|
47 |
|
48 |
def pre_process(self, img):
|
|
|
37 |
def name(self):
|
38 |
return self.__class__.__name__
|
39 |
|
40 |
+
def setBackendAndTarget(self, backendId, targetId):
|
41 |
+
self._backendId = backendId
|
42 |
+
self._targetId = targetId
|
43 |
self.net.setPreferableBackend(self.backend_id)
|
|
|
|
|
|
|
44 |
self.net.setPreferableTarget(self.target_id)
|
45 |
|
46 |
def pre_process(self, img):
|