|
|
|
|
|
|
|
|
|
|
|
|
|
import sys |
|
import argparse |
|
|
|
import numpy as np |
|
import cv2 as cv |
|
|
|
from sface import SFace |
|
|
|
sys.path.append('../face_detection_yunet') |
|
from yunet import YuNet |
|
|
|
|
|
assert cv.__version__ >= "4.7.0", \ |
|
"Please install latest opencv-python to try this demo: python3 -m pip install --upgrade opencv-python" |
|
|
|
|
|
backend_target_pairs = [ |
|
[cv.dnn.DNN_BACKEND_OPENCV, cv.dnn.DNN_TARGET_CPU], |
|
[cv.dnn.DNN_BACKEND_CUDA, cv.dnn.DNN_TARGET_CUDA], |
|
[cv.dnn.DNN_BACKEND_CUDA, cv.dnn.DNN_TARGET_CUDA_FP16], |
|
[cv.dnn.DNN_BACKEND_TIMVX, cv.dnn.DNN_TARGET_NPU], |
|
[cv.dnn.DNN_BACKEND_CANN, cv.dnn.DNN_TARGET_NPU] |
|
] |
|
|
|
parser = argparse.ArgumentParser( |
|
description="SFace: Sigmoid-Constrained Hypersphere Loss for Robust Face Recognition (https://ieeexplore.ieee.org/document/9318547)") |
|
parser.add_argument('--input1', '-i1', type=str, |
|
help='Usage: Set path to the input image 1 (original face).') |
|
parser.add_argument('--input2', '-i2', type=str, |
|
help='Usage: Set path to the input image 2 (comparison face).') |
|
parser.add_argument('--model', '-m', type=str, default='face_recognition_sface_2021dec.onnx', |
|
help='Usage: Set model path, defaults to face_recognition_sface_2021dec.onnx.') |
|
parser.add_argument('--backend_target', '-bt', type=int, default=0, |
|
help='''Choose one of the backend-target pair to run this demo: |
|
{:d}: (default) OpenCV implementation + CPU, |
|
{:d}: CUDA + GPU (CUDA), |
|
{:d}: CUDA + GPU (CUDA FP16), |
|
{:d}: TIM-VX + NPU, |
|
{:d}: CANN + NPU |
|
'''.format(*[x for x in range(len(backend_target_pairs))])) |
|
parser.add_argument('--dis_type', type=int, choices=[0, 1], default=0, |
|
help='Usage: Distance type. \'0\': cosine, \'1\': norm_l1. Defaults to \'0\'') |
|
args = parser.parse_args() |
|
|
|
if __name__ == '__main__': |
|
backend_id = backend_target_pairs[args.backend_target][0] |
|
target_id = backend_target_pairs[args.backend_target][1] |
|
|
|
recognizer = SFace(modelPath=args.model, |
|
disType=args.dis_type, |
|
backendId=backend_id, |
|
targetId=target_id) |
|
|
|
detector = YuNet(modelPath='../face_detection_yunet/face_detection_yunet_2023mar.onnx', |
|
inputSize=[320, 320], |
|
confThreshold=0.9, |
|
nmsThreshold=0.3, |
|
topK=5000, |
|
backendId=backend_id, |
|
targetId=target_id) |
|
|
|
img1 = cv.imread(args.input1) |
|
img2 = cv.imread(args.input2) |
|
|
|
|
|
detector.setInputSize([img1.shape[1], img1.shape[0]]) |
|
face1 = detector.infer(img1) |
|
assert face1.shape[0] > 0, 'Cannot find a face in {}'.format(args.input1) |
|
detector.setInputSize([img2.shape[1], img2.shape[0]]) |
|
face2 = detector.infer(img2) |
|
assert face2.shape[0] > 0, 'Cannot find a face in {}'.format(args.input2) |
|
|
|
|
|
result = recognizer.match(img1, face1[0][:-1], img2, face2[0][:-1]) |
|
print('Result: {}.'.format('same identity' if result else 'different identities')) |
|
|