Wanli
commited on
Commit
·
b3310b1
1
Parent(s):
70423c2
update benchmarking results on arm platform (#80)
Browse files
README.md
CHANGED
@@ -16,21 +16,21 @@ Guidelines:
|
|
16 |
|
17 |
| Model | Task | Input Size | INTEL-CPU (ms) | RPI-CPU (ms) | JETSON-GPU (ms) | KV3-NPU (ms) | D1-CPU (ms) |
|
18 |
|-------|------|----------|----------------|--------------|-----------------|----------|-------------|
|
19 |
-
| [YuNet](./models/face_detection_yunet) | Face Detection | 160x120 | 1.45 |
|
20 |
-
| [SFace](./models/face_recognition_sface) | Face Recognition | 112x112 | 8.65 |
|
21 |
-
| [LPD-YuNet](./models/license_plate_detection_yunet/) | License Plate Detection | 320x240 | --- |
|
22 |
-
| [DB-IC15](./models/text_detection_db) | Text Detection | 640x480 | 142.91 |
|
23 |
-
| [DB-TD500](./models/text_detection_db) | Text Detection | 640x480 | 142.91 |
|
24 |
-
| [CRNN-EN](./models/text_recognition_crnn) | Text Recognition | 100x32 | 50.21 |
|
25 |
-
| [CRNN-CN](./models/text_recognition_crnn) | Text Recognition | 100x32 | 73.52 |
|
26 |
-
| [PP-ResNet](./models/image_classification_ppresnet) | Image Classification | 224x224 | 56.05 |
|
27 |
-
| [MobileNet-V1](./models/image_classification_mobilenet) | Image Classification | 224x224 | 9.04 |
|
28 |
-
| [MobileNet-V2](./models/image_classification_mobilenet) | Image Classification | 224x224 | 8.86 |
|
29 |
-
| [PP-HumanSeg](./models/human_segmentation_pphumanseg) | Human Segmentation | 192x192 | 19.92 |
|
30 |
-
| [WeChatQRCode](./models/qrcode_wechatqrcode) | QR Code Detection and Parsing | 100x100 | 7.04 |
|
31 |
-
| [DaSiamRPN](./models/object_tracking_dasiamrpn) | Object Tracking | 1280x720 | 36.15 |
|
32 |
-
| [YoutuReID](./models/person_reid_youtureid) | Person Re-Identification | 128x256 | 35.81 |
|
33 |
-
| [MPPalmDet](./models/palm_detection_mediapipe) | Palm Detection | 256x256 | 15.57 |
|
34 |
|
35 |
\*: Models are quantized in per-channel mode, which run slower than per-tensor quantized models on NPU.
|
36 |
|
|
|
16 |
|
17 |
| Model | Task | Input Size | INTEL-CPU (ms) | RPI-CPU (ms) | JETSON-GPU (ms) | KV3-NPU (ms) | D1-CPU (ms) |
|
18 |
|-------|------|----------|----------------|--------------|-----------------|----------|-------------|
|
19 |
+
| [YuNet](./models/face_detection_yunet) | Face Detection | 160x120 | 1.45 | 5.21 | 12.18 | 4.04 | 86.69 |
|
20 |
+
| [SFace](./models/face_recognition_sface) | Face Recognition | 112x112 | 8.65 | 76.95 | 24.88 | 46.25 | --- |
|
21 |
+
| [LPD-YuNet](./models/license_plate_detection_yunet/) | License Plate Detection | 320x240 | --- | 134.02 | 56.12 | 154.20\* | |
|
22 |
+
| [DB-IC15](./models/text_detection_db) | Text Detection | 640x480 | 142.91 | 2456.49 | 208.41 | --- | --- |
|
23 |
+
| [DB-TD500](./models/text_detection_db) | Text Detection | 640x480 | 142.91 | 2572.10 | 210.51 | --- | --- |
|
24 |
+
| [CRNN-EN](./models/text_recognition_crnn) | Text Recognition | 100x32 | 50.21 | 230.50 | 196.15 | 125.30 | --- |
|
25 |
+
| [CRNN-CN](./models/text_recognition_crnn) | Text Recognition | 100x32 | 73.52 | 309.60 | 239.76 | 166.79 | --- |
|
26 |
+
| [PP-ResNet](./models/image_classification_ppresnet) | Image Classification | 224x224 | 56.05 | 440.90 | 98.64 | 75.45 | --- |
|
27 |
+
| [MobileNet-V1](./models/image_classification_mobilenet) | Image Classification | 224x224 | 9.04 | 67.97 | 33.18 | 145.66\* | --- |
|
28 |
+
| [MobileNet-V2](./models/image_classification_mobilenet) | Image Classification | 224x224 | 8.86 | 51.64 | 31.92 | 146.31\* | --- |
|
29 |
+
| [PP-HumanSeg](./models/human_segmentation_pphumanseg) | Human Segmentation | 192x192 | 19.92 | 94.40 | 67.97 | 74.77 | --- |
|
30 |
+
| [WeChatQRCode](./models/qrcode_wechatqrcode) | QR Code Detection and Parsing | 100x100 | 7.04 | 36.20 | --- | --- | --- |
|
31 |
+
| [DaSiamRPN](./models/object_tracking_dasiamrpn) | Object Tracking | 1280x720 | 36.15 | 683.90 | 76.82 | --- | --- |
|
32 |
+
| [YoutuReID](./models/person_reid_youtureid) | Person Re-Identification | 128x256 | 35.81 | 481.54 | 90.07 | 44.61 | --- |
|
33 |
+
| [MPPalmDet](./models/palm_detection_mediapipe) | Palm Detection | 256x256 | 15.57 | 168.37 | 50.64 | 145.56\* | --- |
|
34 |
|
35 |
\*: Models are quantized in per-channel mode, which run slower than per-tensor quantized models on NPU.
|
36 |
|