ytfeng commited on
Commit
d6f4836
·
1 Parent(s): cda4a9b

add benchmark results on vision five 2 with conflicts resolved (#173)

Browse files
README.md CHANGED
@@ -31,6 +31,7 @@ Hardware Setup:
31
  - [Khadas Edge 2](https://www.khadas.com/edge2): Rockchip RK3588S SoC with a CPU of 2.25 GHz Quad Core ARM Cortex-A76 + 1.8 GHz Quad Core Cortex-A55, and a 6 TOPS NPU.
32
  - [Horizon Sunrise X3](https://developer.horizon.ai/sunrise): an SoC from Horizon Robotics with a quad-core ARM Cortex-A53 1.2 GHz CPU and a 5 TOPS BPU (a.k.a NPU).
33
  - [MAIX-III AXera-Pi](https://wiki.sipeed.com/hardware/en/maixIII/ax-pi/axpi.html#Hardware): Axera AX620A SoC with a quad-core ARM Cortex-A7 CPU and a 3.6 TOPS @ int8 NPU.
 
34
  - [NVIDIA Jetson Nano B01](https://developer.nvidia.com/embedded/jetson-nano-developer-kit): a Quad-core ARM A57 @ 1.43 GHz CPU, and a 128-core NVIDIA Maxwell GPU.
35
  - [Khadas VIM3](https://www.khadas.com/vim3): Amlogic A311D SoC with a 2.2GHz Quad core ARM Cortex-A73 + 1.8GHz dual core Cortex-A53 ARM CPU, and a 5 TOPS NPU. Benchmarks are done using **per-tensor quantized** models. Follow [this guide](https://github.com/opencv/opencv/wiki/TIM-VX-Backend-For-Running-OpenCV-On-NPU) to build OpenCV with TIM-VX backend enabled.
36
  - [Atlas 200 DK](https://e.huawei.com/en/products/computing/ascend/atlas-200): Ascend 310 NPU with 22 TOPS @ INT8. Follow [this guide](https://github.com/opencv/opencv/wiki/Huawei-CANN-Backend) to build OpenCV with CANN backend enabled.
 
31
  - [Khadas Edge 2](https://www.khadas.com/edge2): Rockchip RK3588S SoC with a CPU of 2.25 GHz Quad Core ARM Cortex-A76 + 1.8 GHz Quad Core Cortex-A55, and a 6 TOPS NPU.
32
  - [Horizon Sunrise X3](https://developer.horizon.ai/sunrise): an SoC from Horizon Robotics with a quad-core ARM Cortex-A53 1.2 GHz CPU and a 5 TOPS BPU (a.k.a NPU).
33
  - [MAIX-III AXera-Pi](https://wiki.sipeed.com/hardware/en/maixIII/ax-pi/axpi.html#Hardware): Axera AX620A SoC with a quad-core ARM Cortex-A7 CPU and a 3.6 TOPS @ int8 NPU.
34
+ - [StarFive VisionFive 2](https://doc-en.rvspace.org/VisionFive2/Product_Brief/VisionFive_2/specification_pb.html): `StarFive JH7110` SoC with a RISC-V quad-core CPU, which can turbo up to 1.5GHz, and an GPU of model `IMG BXE-4-32 MC1` from Imagination, which has a work freq up to 600MHz.
35
  - [NVIDIA Jetson Nano B01](https://developer.nvidia.com/embedded/jetson-nano-developer-kit): a Quad-core ARM A57 @ 1.43 GHz CPU, and a 128-core NVIDIA Maxwell GPU.
36
  - [Khadas VIM3](https://www.khadas.com/vim3): Amlogic A311D SoC with a 2.2GHz Quad core ARM Cortex-A73 + 1.8GHz dual core Cortex-A53 ARM CPU, and a 5 TOPS NPU. Benchmarks are done using **per-tensor quantized** models. Follow [this guide](https://github.com/opencv/opencv/wiki/TIM-VX-Backend-For-Running-OpenCV-On-NPU) to build OpenCV with TIM-VX backend enabled.
37
  - [Atlas 200 DK](https://e.huawei.com/en/products/computing/ascend/atlas-200): Ascend 310 NPU with 22 TOPS @ INT8. Follow [this guide](https://github.com/opencv/opencv/wiki/Huawei-CANN-Backend) to build OpenCV with CANN backend enabled.
benchmark/README.md CHANGED
@@ -659,3 +659,55 @@ mean median min input size model
659
  3001.31 3237.93 2353.81 [1280, 720] CRNN with ['text_recognition_CRNN_CN_2021nov_int8.onnx']
660
  2887.05 3224.12 2206.89 [1280, 720] CRNN with ['text_recognition_CRNN_EN_2022oct_int8.onnx']
661
  ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
659
  3001.31 3237.93 2353.81 [1280, 720] CRNN with ['text_recognition_CRNN_CN_2021nov_int8.onnx']
660
  2887.05 3224.12 2206.89 [1280, 720] CRNN with ['text_recognition_CRNN_EN_2022oct_int8.onnx']
661
  ```
662
+
663
+ ### StarFive VisionFive 2
664
+
665
+ Specs: [details_cn](https://doc.rvspace.org/VisionFive2/PB/VisionFive_2/specification_pb.html), [details_en](https://doc-en.rvspace.org/VisionFive2/Product_Brief/VisionFive_2/specification_pb.html)
666
+ - CPU: StarFive JH7110 with RISC-V quad-core CPU with 2 MB L2 cache and a monitor core, supporting RV64GC ISA, working up to 1.5 GHz
667
+ - GPU: IMG BXE-4-32 MC1 with work frequency up to 600 MHz
668
+
669
+ CPU:
670
+
671
+ ```
672
+ $ python3 benchmark.py --all --cfg_exclude wechat:dasiam --model_exclude license_plate_detection_lpd_yunet_2023mar_int8.onnx:human_segmentation_pphumanseg_2023mar_int8.onnx
673
+ Benchmarking ...
674
+ backend=cv.dnn.DNN_BACKEND_OPENCV
675
+ target=cv.dnn.DNN_TARGET_CPU
676
+ mean median min input size model
677
+ 50.28 50.42 50.08 [160, 120] YuNet with ['face_detection_yunet_2022mar.onnx']
678
+ 44.45 44.84 39.29 [160, 120] YuNet with ['face_detection_yunet_2022mar_int8.onnx']
679
+ 1059.87 1059.79 1058.95 [150, 150] SFace with ['face_recognition_sface_2021dec.onnx']
680
+ 838.07 859.42 658.86 [150, 150] SFace with ['face_recognition_sface_2021dec_int8.onnx']
681
+ 424.55 424.74 424.06 [112, 112] FacialExpressionRecog with ['facial_expression_recognition_mobilefacenet_2022july.onnx']
682
+ 350.30 357.95 290.66 [112, 112] FacialExpressionRecog with ['facial_expression_recognition_mobilefacenet_2022july_int8.onnx']
683
+ 314.50 313.75 313.67 [224, 224] MPHandPose with ['handpose_estimation_mediapipe_2023feb.onnx']
684
+ 275.80 280.48 243.97 [224, 224] MPHandPose with ['handpose_estimation_mediapipe_2023feb_int8.onnx']
685
+ 1131.91 1132.16 1131.08 [192, 192] PPHumanSeg with ['human_segmentation_pphumanseg_2023mar.onnx']
686
+ 1072.77 1073.31 1072.07 [224, 224] MobileNet with ['image_classification_mobilenetv1_2022apr.onnx']
687
+ 811.64 837.32 602.08 [224, 224] MobileNet with ['image_classification_mobilenetv2_2022apr.onnx']
688
+ 692.68 602.74 516.39 [224, 224] MobileNet with ['image_classification_mobilenetv1_2022apr_int8.onnx']
689
+ 596.12 559.52 382.75 [224, 224] MobileNet with ['image_classification_mobilenetv2_2022apr_int8.onnx']
690
+ 8131.86 8132.90 8128.55 [224, 224] PPResNet with ['image_classification_ppresnet50_2022jan.onnx']
691
+ 5412.98 5684.12 3236.35 [224, 224] PPResNet with ['image_classification_ppresnet50_2022jan_int8.onnx']
692
+ 2265.62 2264.83 2263.38 [320, 240] LPD_YuNet with ['license_plate_detection_lpd_yunet_2023mar.onnx']
693
+ 1727.39 1727.31 1726.31 [416, 416] NanoDet with ['object_detection_nanodet_2022nov.onnx']
694
+ 1429.48 1458.69 1189.19 [416, 416] NanoDet with ['object_detection_nanodet_2022nov_int8.onnx']
695
+ 26156.87 26169.88 26134.95 [640, 640] YoloX with ['object_detection_yolox_2022nov.onnx']
696
+ 17151.71 17933.90 9675.03 [640, 640] YoloX with ['object_detection_yolox_2022nov_int8.onnx']
697
+ 316.26 315.72 315.55 [224, 224] MPHandPose with ['handpose_estimation_mediapipe_2023feb.onnx']
698
+ 276.38 280.84 243.11 [224, 224] MPHandPose with ['handpose_estimation_mediapipe_2023feb_int8.onnx']
699
+ 586.18 586.28 585.62 [192, 192] MPPalmDet with ['palm_detection_mediapipe_2023feb.onnx']
700
+ 542.79 546.26 506.12 [192, 192] MPPalmDet with ['palm_detection_mediapipe_2023feb_int8.onnx']
701
+ 910.67 910.62 909.72 [224, 224] MPPersonDet with ['person_detection_mediapipe_2023mar.onnx']
702
+ 7628.31 7624.65 7623.26 [128, 256] YoutuReID with ['person_reid_youtu_2021nov.onnx']
703
+ 4899.76 5171.88 2714.07 [128, 256] YoutuReID with ['person_reid_youtu_2021nov_int8.onnx']
704
+ 486.59 490.33 484.31 [256, 256] MPPose with ['pose_estimation_mediapipe_2023mar.onnx']
705
+ 34888.37 34834.51 34103.30 [640, 480] DB with ['text_detection_DB_IC15_resnet18_2021sep.onnx']
706
+ 35123.00 35996.09 34103.30 [640, 480] DB with ['text_detection_DB_TD500_resnet18_2021sep.onnx']
707
+ 1425.08 1543.33 1413.01 [1280, 720] CRNN with ['text_recognition_CRNN_CH_2021sep.onnx']
708
+ 1455.55 1580.51 1413.01 [1280, 720] CRNN with ['text_recognition_CRNN_CN_2021nov.onnx']
709
+ 1457.01 1484.13 1413.01 [1280, 720] CRNN with ['text_recognition_CRNN_EN_2021sep.onnx']
710
+ 1281.84 1468.77 810.51 [1280, 720] CRNN with ['text_recognition_CRNN_CH_2022oct_int8.onnx']
711
+ 1191.52 1517.48 810.51 [1280, 720] CRNN with ['text_recognition_CRNN_CN_2021nov_int8.onnx']
712
+ 1111.95 1131.27 775.96 [1280, 720] CRNN with ['text_recognition_CRNN_EN_2022oct_int8.onnx']
713
+ ```
benchmark/color_table.svg CHANGED
benchmark/table_config.yaml CHANGED
@@ -174,6 +174,10 @@ Devices:
174
  display_info: "Rasberry Pi 4B\nBCM2711\nCPU"
175
  platform: "CPU"
176
 
 
 
 
 
177
  - name: "Toybrick RV1126"
178
  display_info: "Toybrick\nRV1126\nCPU"
179
  platform: "CPU"
 
174
  display_info: "Rasberry Pi 4B\nBCM2711\nCPU"
175
  platform: "CPU"
176
 
177
+ - name: "StarFive VisionFive 2"
178
+ display_info: "StarFive VisionFive 2\nStarFive JH7110\nCPU"
179
+ platform: "CPU"
180
+
181
  - name: "Toybrick RV1126"
182
  display_info: "Toybrick\nRV1126\nCPU"
183
  platform: "CPU"