File size: 1,409 Bytes
6830894
 
06ca052
bd5223f
06ca052
6830894
06ca052
d503f01
6830894
5e47c84
d503f01
5e47c84
6830894
 
 
bd5223f
6830894
 
 
 
d503f01
bd5223f
 
 
6830894
 
4d21104
 
4dfaf0b
4d21104
6830894
 
 
 
 
 
d503f01
 
 
06ca052
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
# Palm detector from MediaPipe Handpose

This model detects palm bounding boxes and palm landmarks, and is converted from TFLite to ONNX using following tools:

- TFLite model to ONNX: https://github.com/onnx/tensorflow-onnx
- simplified by [onnx-simplifier](https://github.com/daquexian/onnx-simplifier)

SSD Anchors are generated from [GenMediaPipePalmDectionSSDAnchors](https://github.com/VimalMollyn/GenMediaPipePalmDectionSSDAnchors)

**Note**:
- Visit https://github.com/google/mediapipe/blob/master/docs/solutions/models.md#hands for models of larger scale.

## Demo

Run the following commands to try the demo:

```bash
# detect on camera input
python demo.py
# detect on an image
python demo.py -i /path/to/image -v

# get help regarding various parameters
python demo.py --help
```

### Example outputs

![webcam demo](./example_outputs/mppalmdet_demo.gif)

## License

All files in this directory are licensed under [Apache 2.0 License](./LICENSE).

## Reference

- MediaPipe Handpose: https://developers.google.com/mediapipe/solutions/vision/hand_landmarker
- MediaPipe hands model and model card: https://github.com/google/mediapipe/blob/master/docs/solutions/models.md#hands
- Handpose TFJS:https://github.com/tensorflow/tfjs-models/tree/master/handpose
- Int8 model quantized with rgb evaluation set of FreiHAND: https://lmb.informatik.uni-freiburg.de/resources/datasets/FreihandDataset.en.html