| import torch | |
| import datetime | |
| import types | |
| import deepspeed | |
| from transformers.deepspeed import HfDeepSpeedConfig | |
| import transformers | |
| import numpy as np | |
| from collections import OrderedDict | |
| from torch.utils.data import Dataset, DataLoader | |
| from torch.nn.utils import clip_grad_norm_ | |
| from torch.cuda.amp import autocast, GradScaler | |
| from torch.nn import DataParallel | |
| from torch.optim import lr_scheduler | |
| import torch.optim as optim | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| from tqdm import tqdm | |
| import os | |
| import re | |
| import math | |
| import random | |
| import json | |
| import time | |
| import logging | |
| from omegaconf import OmegaConf | |
| from copy import deepcopy | |
| import ipdb | |
| import argparse | |
| import data | |
| from transformers import LlamaTokenizer, LlamaForCausalLM, LlamaConfig | |
| from torch.nn.utils.rnn import pad_sequence | |
| from peft import LoraConfig, TaskType, get_peft_model | |
| from diffusers.utils import export_to_video | |
| import scipy | |
| from torch.utils.tensorboard import SummaryWriter | |
| logging.getLogger("transformers").setLevel(logging.WARNING) | |
| logging.getLogger("transformers.tokenization_utils").setLevel(logging.ERROR) | |
| os.environ['TOKENIZERS_PARALLELISM'] = 'false' | |