File size: 9,051 Bytes
2e4fb41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
---
license: apache-2.0
base_model: bert-base-multilingual-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: Bert_Text_Classification_v4
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Bert_Text_Classification_v4

This model is a fine-tuned version of [bert-base-multilingual-uncased](https://huggingface.co/bert-base-multilingual-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0376
- Accuracy: 0.9964
- F1: 0.9963
- Precision: 0.9963
- Recall: 0.9963

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 30

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1     | Precision | Recall |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
| 0.0043        | 0.36  | 50   | 0.0399          | 0.9955   | 0.9953 | 0.9954    | 0.9951 |
| 0.0001        | 0.72  | 100  | 0.0226          | 0.9964   | 0.9961 | 0.9962    | 0.9961 |
| 0.0193        | 1.09  | 150  | 0.0668          | 0.9900   | 0.9893 | 0.9905    | 0.9884 |
| 0.0555        | 1.45  | 200  | 0.0504          | 0.9927   | 0.9927 | 0.9934    | 0.9922 |
| 0.0465        | 1.81  | 250  | 0.0017          | 0.9991   | 0.9990 | 0.9990    | 0.9991 |
| 0.048         | 2.17  | 300  | 0.0348          | 0.9936   | 0.9934 | 0.9937    | 0.9932 |
| 0.0513        | 2.54  | 350  | 0.0699          | 0.9873   | 0.9870 | 0.9878    | 0.9865 |
| 0.0213        | 2.9   | 400  | 0.0495          | 0.9927   | 0.9926 | 0.9925    | 0.9928 |
| 0.0427        | 3.26  | 450  | 0.0587          | 0.9936   | 0.9933 | 0.9939    | 0.9928 |
| 0.0097        | 3.62  | 500  | 0.0236          | 0.9964   | 0.9961 | 0.9963    | 0.9959 |
| 0.0001        | 3.99  | 550  | 0.0279          | 0.9964   | 0.9962 | 0.9964    | 0.9959 |
| 0.0001        | 4.35  | 600  | 0.0259          | 0.9973   | 0.9972 | 0.9975    | 0.9968 |
| 0.0           | 4.71  | 650  | 0.0260          | 0.9973   | 0.9972 | 0.9975    | 0.9968 |
| 0.0091        | 5.07  | 700  | 0.0216          | 0.9964   | 0.9962 | 0.9964    | 0.9959 |
| 0.0014        | 5.43  | 750  | 0.0268          | 0.9973   | 0.9972 | 0.9971    | 0.9972 |
| 0.0           | 5.8   | 800  | 0.0383          | 0.9955   | 0.9952 | 0.9957    | 0.9947 |
| 0.0           | 6.16  | 850  | 0.0362          | 0.9964   | 0.9962 | 0.9966    | 0.9958 |
| 0.0003        | 6.52  | 900  | 0.0956          | 0.9909   | 0.9904 | 0.9900    | 0.9910 |
| 0.0247        | 6.88  | 950  | 0.0285          | 0.9973   | 0.9972 | 0.9975    | 0.9968 |
| 0.0003        | 7.25  | 1000 | 0.0333          | 0.9964   | 0.9962 | 0.9967    | 0.9958 |
| 0.0001        | 7.61  | 1050 | 0.0334          | 0.9964   | 0.9962 | 0.9967    | 0.9958 |
| 0.0003        | 7.97  | 1100 | 0.0285          | 0.9973   | 0.9972 | 0.9971    | 0.9972 |
| 0.0001        | 8.33  | 1150 | 0.0294          | 0.9964   | 0.9962 | 0.9962    | 0.9962 |
| 0.0           | 8.7   | 1200 | 0.0298          | 0.9964   | 0.9962 | 0.9962    | 0.9962 |
| 0.0045        | 9.06  | 1250 | 0.0376          | 0.9955   | 0.9953 | 0.9954    | 0.9951 |
| 0.0004        | 9.42  | 1300 | 0.0450          | 0.9946   | 0.9943 | 0.9943    | 0.9942 |
| 0.0322        | 9.78  | 1350 | 0.0492          | 0.9936   | 0.9932 | 0.9939    | 0.9926 |
| 0.003         | 10.14 | 1400 | 0.0110          | 0.9991   | 0.9991 | 0.9992    | 0.9989 |
| 0.0001        | 10.51 | 1450 | 0.0112          | 0.9991   | 0.9991 | 0.9992    | 0.9989 |
| 0.0001        | 10.87 | 1500 | 0.0124          | 0.9982   | 0.9981 | 0.9981    | 0.9980 |
| 0.0           | 11.23 | 1550 | 0.0112          | 0.9982   | 0.9981 | 0.9981    | 0.9980 |
| 0.0           | 11.59 | 1600 | 0.0111          | 0.9991   | 0.9991 | 0.9992    | 0.9989 |
| 0.0           | 11.96 | 1650 | 0.0110          | 0.9991   | 0.9991 | 0.9992    | 0.9989 |
| 0.0           | 12.32 | 1700 | 0.0110          | 0.9991   | 0.9991 | 0.9992    | 0.9989 |
| 0.0           | 12.68 | 1750 | 0.0109          | 0.9991   | 0.9991 | 0.9992    | 0.9989 |
| 0.0           | 13.04 | 1800 | 0.0109          | 0.9991   | 0.9990 | 0.9991    | 0.9989 |
| 0.0           | 13.41 | 1850 | 0.0109          | 0.9991   | 0.9990 | 0.9991    | 0.9989 |
| 0.0           | 13.77 | 1900 | 0.0109          | 0.9991   | 0.9990 | 0.9991    | 0.9989 |
| 0.0           | 14.13 | 1950 | 0.0109          | 0.9991   | 0.9990 | 0.9991    | 0.9989 |
| 0.0           | 14.49 | 2000 | 0.0109          | 0.9991   | 0.9990 | 0.9991    | 0.9989 |
| 0.0           | 14.86 | 2050 | 0.0109          | 0.9991   | 0.9990 | 0.9991    | 0.9989 |
| 0.0           | 15.22 | 2100 | 0.0109          | 0.9991   | 0.9990 | 0.9991    | 0.9989 |
| 0.0           | 15.58 | 2150 | 0.0110          | 0.9991   | 0.9990 | 0.9991    | 0.9989 |
| 0.0           | 15.94 | 2200 | 0.0110          | 0.9991   | 0.9990 | 0.9991    | 0.9989 |
| 0.0           | 16.3  | 2250 | 0.0110          | 0.9991   | 0.9990 | 0.9991    | 0.9989 |
| 0.0           | 16.67 | 2300 | 0.0111          | 0.9991   | 0.9990 | 0.9991    | 0.9989 |
| 0.0           | 17.03 | 2350 | 0.0111          | 0.9991   | 0.9990 | 0.9991    | 0.9989 |
| 0.0           | 17.39 | 2400 | 0.0111          | 0.9991   | 0.9990 | 0.9991    | 0.9989 |
| 0.0           | 17.75 | 2450 | 0.0112          | 0.9991   | 0.9990 | 0.9991    | 0.9989 |
| 0.0           | 18.12 | 2500 | 0.0112          | 0.9991   | 0.9990 | 0.9991    | 0.9989 |
| 0.0           | 18.48 | 2550 | 0.0112          | 0.9991   | 0.9990 | 0.9991    | 0.9989 |
| 0.0099        | 18.84 | 2600 | 0.0175          | 0.9973   | 0.9973 | 0.9973    | 0.9973 |
| 0.0           | 19.2  | 2650 | 0.0133          | 0.9982   | 0.9981 | 0.9983    | 0.9979 |
| 0.0           | 19.57 | 2700 | 0.0135          | 0.9982   | 0.9981 | 0.9983    | 0.9979 |
| 0.0           | 19.93 | 2750 | 0.0135          | 0.9982   | 0.9981 | 0.9983    | 0.9979 |
| 0.0           | 20.29 | 2800 | 0.0135          | 0.9982   | 0.9981 | 0.9983    | 0.9979 |
| 0.0           | 20.65 | 2850 | 0.0132          | 0.9982   | 0.9981 | 0.9983    | 0.9979 |
| 0.0           | 21.01 | 2900 | 0.0133          | 0.9982   | 0.9981 | 0.9983    | 0.9979 |
| 0.0           | 21.38 | 2950 | 0.0133          | 0.9982   | 0.9981 | 0.9983    | 0.9979 |
| 0.0           | 21.74 | 3000 | 0.0124          | 0.9982   | 0.9981 | 0.9981    | 0.9980 |
| 0.0           | 22.1  | 3050 | 0.0125          | 0.9982   | 0.9981 | 0.9981    | 0.9980 |
| 0.0           | 22.46 | 3100 | 0.0125          | 0.9982   | 0.9981 | 0.9981    | 0.9980 |
| 0.0           | 22.83 | 3150 | 0.0125          | 0.9982   | 0.9981 | 0.9981    | 0.9980 |
| 0.0           | 23.19 | 3200 | 0.0125          | 0.9982   | 0.9981 | 0.9981    | 0.9980 |
| 0.0           | 23.55 | 3250 | 0.0126          | 0.9982   | 0.9981 | 0.9981    | 0.9980 |
| 0.0           | 23.91 | 3300 | 0.0126          | 0.9982   | 0.9981 | 0.9981    | 0.9980 |
| 0.0           | 24.28 | 3350 | 0.0126          | 0.9982   | 0.9981 | 0.9981    | 0.9980 |
| 0.0           | 24.64 | 3400 | 0.0126          | 0.9982   | 0.9981 | 0.9981    | 0.9980 |
| 0.0           | 25.0  | 3450 | 0.0126          | 0.9982   | 0.9981 | 0.9981    | 0.9980 |
| 0.0           | 25.36 | 3500 | 0.0127          | 0.9982   | 0.9981 | 0.9981    | 0.9980 |
| 0.0           | 25.72 | 3550 | 0.0127          | 0.9982   | 0.9981 | 0.9981    | 0.9980 |
| 0.0           | 26.09 | 3600 | 0.0127          | 0.9982   | 0.9981 | 0.9981    | 0.9980 |
| 0.0           | 26.45 | 3650 | 0.0127          | 0.9982   | 0.9981 | 0.9981    | 0.9980 |
| 0.0           | 26.81 | 3700 | 0.0127          | 0.9982   | 0.9981 | 0.9981    | 0.9980 |
| 0.0           | 27.17 | 3750 | 0.0127          | 0.9982   | 0.9981 | 0.9981    | 0.9980 |
| 0.0           | 27.54 | 3800 | 0.0127          | 0.9982   | 0.9981 | 0.9981    | 0.9980 |
| 0.0           | 27.9  | 3850 | 0.0127          | 0.9982   | 0.9981 | 0.9981    | 0.9980 |
| 0.0           | 28.26 | 3900 | 0.0127          | 0.9982   | 0.9981 | 0.9981    | 0.9980 |
| 0.0           | 28.62 | 3950 | 0.0127          | 0.9982   | 0.9981 | 0.9981    | 0.9980 |
| 0.0           | 28.99 | 4000 | 0.0127          | 0.9982   | 0.9981 | 0.9981    | 0.9980 |
| 0.0           | 29.35 | 4050 | 0.0127          | 0.9982   | 0.9981 | 0.9981    | 0.9980 |
| 0.0           | 29.71 | 4100 | 0.0127          | 0.9982   | 0.9981 | 0.9981    | 0.9980 |


### Framework versions

- Transformers 4.37.2
- Pytorch 2.3.0+cu121
- Tokenizers 0.15.2