LSICC: A Large Scale Informal Chinese Corpus
Abstract
A large-scale corpus of informal Chinese is introduced for training deep learning NLP tasks like word segmentation and sentiment analysis.
Deep learning based natural language processing model is proven powerful, but need large-scale dataset. Due to the significant gap between the real-world tasks and existing Chinese corpus, in this paper, we introduce a large-scale corpus of informal Chinese. This corpus contains around 37 million book reviews and 50 thousand netizen's comments to the news. We explore the informal words frequencies of the corpus and show the difference between our corpus and the existing ones. The corpus can be further used to train deep learning based natural language processing tasks such as Chinese word segmentation, sentiment analysis.
Models citing this paper 0
No model linking this paper
Datasets citing this paper 1
Spaces citing this paper 0
No Space linking this paper
Collections including this paper 0
No Collection including this paper