Papers
arxiv:1906.00274

"President Vows to Cut <Taxes> Hair": Dataset and Analysis of Creative Text Editing for Humorous Headlines

Published on Jun 1, 2019
Authors:
,
,

Abstract

A dataset of edited news headlines is introduced to analyze computational humor and supports classic humor theories; baseline classifiers predict the humor in headlines.

AI-generated summary

We introduce, release, and analyze a new dataset, called Humicroedit, for research in computational humor. Our publicly available data consists of regular English news headlines paired with versions of the same headlines that contain simple replacement edits designed to make them funny. We carefully curated crowdsourced editors to create funny headlines and judges to score a to a total of 15,095 edited headlines, with five judges per headline. The simple edits, usually just a single word replacement, mean we can apply straightforward analysis techniques to determine what makes our edited headlines humorous. We show how the data support classic theories of humor, such as incongruity, superiority, and setup/punchline. Finally, we develop baseline classifiers that can predict whether or not an edited headline is funny, which is a first step toward automatically generating humorous headlines as an approach to creating topical humor.

Community

Sign up or log in to comment

Models citing this paper 0

No model linking this paper

Cite arxiv.org/abs/1906.00274 in a model README.md to link it from this page.

Datasets citing this paper 1

Spaces citing this paper 0

No Space linking this paper

Cite arxiv.org/abs/1906.00274 in a Space README.md to link it from this page.

Collections including this paper 0

No Collection including this paper

Add this paper to a collection to link it from this page.