Papers
arxiv:2505.02410

Bielik 11B v2 Technical Report

Published on May 5
· Submitted by djstrong on May 12
#2 Paper of the day

Abstract

Bielik 11B v2, a scaled language model with 11B parameters, excels on Polish benchmarks through Weighted Instruction Cross-Entropy Loss and Adaptive Learning Rate, outperforming larger models and demonstrating resource-efficient deployment.

AI-generated summary

We present Bielik 11B v2, a state-of-the-art language model optimized for Polish text processing. Built on the Mistral 7B v0.2 architecture and scaled to 11B parameters using depth up-scaling, this model demonstrates exceptional performance across Polish language benchmarks while maintaining strong cross-lingual capabilities. We introduce two key technical innovations: Weighted Instruction Cross-Entropy Loss, which optimizes learning across diverse instruction types by assigning quality-based weights to training examples, and Adaptive Learning Rate, which dynamically adjusts based on context length. Comprehensive evaluation across multiple benchmarks demonstrates that Bielik 11B v2 outperforms many larger models, including those with 2-6 times more parameters, and significantly surpasses other specialized Polish language models on tasks ranging from linguistic understanding to complex reasoning. The model's parameter efficiency and extensive quantization options enable deployment across various hardware configurations, advancing Polish language AI capabilities and establishing new benchmarks for resource-efficient language modeling in less-represented languages.

Community

This is an automated message from the Librarian Bot. I found the following papers similar to this paper.

The following papers were recommended by the Semantic Scholar API

Please give a thumbs up to this comment if you found it helpful!

If you want recommendations for any Paper on Hugging Face checkout this Space

You can directly ask Librarian Bot for paper recommendations by tagging it in a comment: @librarian-bot recommend

Sign up or log in to comment

Models citing this paper 4

Datasets citing this paper 0

No dataset linking this paper

Cite arxiv.org/abs/2505.02410 in a dataset README.md to link it from this page.

Spaces citing this paper 4

Collections including this paper 3