Quantize-then-Rectify: Efficient VQ-VAE Training
Abstract
ReVQ efficiently transforms pre-trained VAEs into VQ-VAEs with minimal computational cost while maintaining high reconstruction quality.
Visual tokenizers are pivotal in multimodal large models, acting as bridges between continuous inputs and discrete tokens. Nevertheless, training high-compression-rate VQ-VAEs remains computationally demanding, often necessitating thousands of GPU hours. This work demonstrates that a pre-trained VAE can be efficiently transformed into a VQ-VAE by controlling quantization noise within the VAE's tolerance threshold. We present Quantize-then-Rectify (ReVQ), a framework leveraging pre-trained VAEs to enable rapid VQ-VAE training with minimal computational overhead. By integrating channel multi-group quantization to enlarge codebook capacity and a post rectifier to mitigate quantization errors, ReVQ compresses ImageNet images into at most 512 tokens while sustaining competitive reconstruction quality (rFID = 1.06). Significantly, ReVQ reduces training costs by over two orders of magnitude relative to state-of-the-art approaches: ReVQ finishes full training on a single NVIDIA 4090 in approximately 22 hours, whereas comparable methods require 4.5 days on 32 A100 GPUs. Experimental results show that ReVQ achieves superior efficiency-reconstruction trade-offs.
Models citing this paper 3
Datasets citing this paper 0
No dataset linking this paper
Spaces citing this paper 1
Collections including this paper 0
No Collection including this paper