Papers
arxiv:2509.16972

The 1st Solution for 7th LSVOS RVOS Track: SaSaSa2VA

Published on Sep 21
Authors:
,
,
,
,
,
,

Abstract

SegSaSa2VA enhances video object segmentation by addressing sparse frame sampling and single token reliance, achieving top performance in the LSVOS Challenge.

AI-generated summary

Referring video object segmentation (RVOS) requires segmenting and tracking objects in videos conditioned on natural-language expressions, demanding fine-grained understanding of both appearance and motion. Building on Sa2VA, which couples a Multi-modal Large Language Model (MLLM) with the video segmentation model SAM2, we identify two key bottlenecks that limit segmentation performance: sparse frame sampling and reliance on a single [SEG] token for an entire video. We propose Segmentation Augmented and Selective Averaged Sa2VA SaSaSa2VA to address these issues. On the 7th LSVOS Challenge (RVOS track), SaSaSa2VA achieves a J&F of 67.45, ranking first and surpassing the runner-up by 2.80 points. This result and ablation studies demonstrate that efficient segmentation augmentation and test-time ensembling substantially enhance grounded MLLMs for RVOS. The code is released in Sa2VA repository: https://github.com/magic-research/Sa2VA.

Community

Sign up or log in to comment

Models citing this paper 2

Datasets citing this paper 1

Spaces citing this paper 0

No Space linking this paper

Cite arxiv.org/abs/2509.16972 in a Space README.md to link it from this page.

Collections including this paper 1