Abstract
A new benchmark, DOoM, evaluates language models on solving mathematics and physics problems in Russian, showing performance differences between task types.
This paper introduces DOoM, a new open-source benchmark designed to assess the capabilities of language models in solving mathematics and physics problems in Russian. The benchmark includes problems of varying difficulty, ranging from school-level tasks to university Olympiad and entrance exam questions. In this paper we discuss the motivation behind its creation, describe dataset's structure and evaluation methodology, and present initial results from testing various models. Analysis of the results shows a correlation between model performance and the number of tokens used, and highlights differences in performance between mathematics and physics tasks.
Models citing this paper 0
No model linking this paper
Datasets citing this paper 0
No dataset linking this paper
Spaces citing this paper 0
No Space linking this paper
Collections including this paper 0
No Collection including this paper