Papers
arxiv:2510.02663

TutorBench: A Benchmark To Assess Tutoring Capabilities Of Large Language Models

Published on Oct 3
Authors:
,
,
,
,
,
,
,
,
,
,
,
,
,

Abstract

TutorBench is a dataset and benchmark for evaluating the tutoring skills of large language models, showing significant room for improvement in adaptive explanations, feedback, and active learning.

AI-generated summary

As students increasingly adopt large language models (LLMs) as learning aids, it is crucial to build models that are adept at handling the nuances of tutoring: they need to identify the core needs of students, be adaptive, provide personalized guidance, and be accurate. To this end, we introduce TutorBench, a dataset and evaluation benchmark designed to rigorously evaluate the core tutoring skills of LLMs. The dataset comprises 1,490 samples curated by human experts, focused on high-school and AP-level curricula. The samples are drawn from three common tutoring tasks: (i) generating adaptive explanations tailored to a student's confusion, (ii) providing actionable feedback on a student's work, and (iii) promoting active learning through effective hint generation. To account for the inherent complexity of tutoring, samples are accompanied by sample-specific rubrics which are used to judge model responses during evaluation. TutorBench uses a reliable and fine-grained automatic evaluation method that uses an LLM-judge and the sample-specific rubrics. We evaluate 16 frontier LLMs on TutorBench and present a detailed analysis of their performance and behavior. Our results show that none of the frontier LLMs achieve a score of greater than 56%, showing a large room for improvement. We find that LLMs fall short in exhibiting the full range of tutoring skills needed to guide, diagnose, and support students effectively, with all the frontier models achieving less than a 60% pass rate on rubric criteria related to these skills. We also find that different model families exhibit varied strengths and limitations: the Claude models outperform others in supporting active learning, while they lag behind in the other two use cases. By releasing TutorBench, we provide a comprehensive and unsaturated benchmark to guide the development of the next-generation of AI tutors.

Community

Sign up or log in to comment

Models citing this paper 0

No model linking this paper

Cite arxiv.org/abs/2510.02663 in a model README.md to link it from this page.

Datasets citing this paper 1

Spaces citing this paper 0

No Space linking this paper

Cite arxiv.org/abs/2510.02663 in a Space README.md to link it from this page.

Collections including this paper 0

No Collection including this paper

Add this paper to a collection to link it from this page.