Papers
arXiv:2511.03248

Auditing M-LLMs for Privacy Risks: A Synthetic Benchmark and Evaluation Framework

Published on Nov 5
Authors:
,
,
,

Abstract

A synthetic dataset and evaluation framework assess the privacy risks of multi-modal large language models on social media.

AI-generated summary

Recent advances in multi-modal Large Language Models (M-LLMs) have demonstrated a powerful ability to synthesize implicit information from disparate sources, including images and text. These resourceful data from social media also introduce a significant and underexplored privacy risk: the inference of sensitive personal attributes from seemingly daily media content. However, the lack of benchmarks and comprehensive evaluations of state-of-the-art M-LLM capabilities hinders the research of private attribute profiling on social media. Accordingly, we propose (1) PRISM, the first multi-modal, multi-dimensional and fine-grained synthesized dataset incorporating a comprehensive privacy landscape and dynamic user history; (2) an Efficient evaluation framework that measures the cross-modal privacy inference capabilities of advanced M-LLM. Specifically, PRISM is a large-scale synthetic benchmark designed to evaluate cross-modal privacy risks. Its key feature is 12 sensitive attribute labels across a diverse set of multi-modal profiles, which enables targeted privacy analysis. These profiles are generated via a sophisticated LLM agentic workflow, governed by a prior distribution to ensure they realistically mimic social media users. Additionally, we propose a Multi-Agent Inference Framework that leverages a pipeline of specialized LLMs to enhance evaluation capabilities. We evaluate the inference capabilities of six leading M-LLMs (Qwen, Gemini, GPT-4o, GLM, Doubao, and Grok) on PRISM. The comparison with human performance reveals that these MLLMs significantly outperform in accuracy and efficiency, highlighting the threat of potential privacy risks and the urgent need for robust defenses.

Community

Sign up or log in to comment

Models citing this paper 0

No model linking this paper

Cite arxiv.org/abs/2511.03248 in a model README.md to link it from this page.

Datasets citing this paper 1

Spaces citing this paper 0

No Space linking this paper

Cite arxiv.org/abs/2511.03248 in a Space README.md to link it from this page.

Collections including this paper 0

No Collection including this paper

Add this paper to a collection to link it from this page.