Abstract
iLTM, an integrated large tabular model combining tree embeddings, hypernetworks, and MLPs, outperforms GBDTs and other deep tabular models with superior performance and reduced task-specific tuning.
Tabular data underpins decisions across science, industry, and public services. Despite rapid progress, advances in deep learning have not fully carried over to the tabular domain, where gradient-boosted decision trees (GBDTs) remain a default choice in practice. We present iLTM, an integrated Large Tabular Model that unifies tree-derived embeddings, dimensionality-agnostic representations, a meta-trained hypernetwork, multilayer perceptrons (MLPs), and retrieval within a single architecture. Pretrained on more than 1,800 heterogeneous classification datasets, iLTM achieves consistently superior performance across tabular classification and regression tasks, from small datasets to large and high-dimensional tasks. After light fine-tuning, the meta-trained hypernetwork transfers to regression targets, matching or surpassing strong baselines. Extensive experiments show that iLTM outperforms well-tuned GBDTs and leading deep tabular models while requiring less task-specific tuning. By bridging the gap between tree-based and neural methods, iLTM offers a new framework for tabular foundation models for robust, adaptable, and scalable tabular learning.
Models citing this paper 1
Datasets citing this paper 0
No dataset linking this paper
Spaces citing this paper 0
No Space linking this paper
Collections including this paper 0
No Collection including this paper