DualVLA: Building a Generalizable Embodied Agent via Partial Decoupling of Reasoning and Action
Abstract
DualVLA enhances action performance while preserving reasoning capability in Vision-Language-Action models through dual-layer data pruning and dual-teacher adaptive distillation, achieving high success rates in multimodal benchmarks.
To build a generalizable Vision-Language-Action (VLA) model with strong reasoning ability, a common strategy is to first train a specialist VLA on robot demonstrations to acquire reliable manipulation skills, and then incorporate mixed annotated robot data together with multimodal data to restore broader reasoning capabilities. However, we observe that the resulting reasoning VLA often suffers from degraded action performance compared to the specialist model before fine-tuning, a phenomenon we refer to as action degeneration. To address this issue, we propose DualVLA, which enhances action performance through carefully designed post-training while still preserving reasoning capability. We first introduce a dual-layer data pruning method that removes redundant embodied reasoning, preventing it from adversely influencing action learning. To further strengthen action generation, we design a dual-teacher adaptive distillation strategy that assigns different supervision signals to different data domains while maintaining reasoning ability. To fill the evaluation gap for generalist VLAs, we also propose VLA Score, which decouples VLA capability into reasoning, intention, action, and alignment dimensions for a more fine-grained assessment. Experiments show that DualVLA achieves an average success rate of 61.0 in SimplerEnv and an average score of 65.4 across eight competitive multimodal benchmarks, demonstrating a stronger balance between precise action execution and multimodal understanding. Project Website: https://costaliya.github.io/DualVLA/.
Community
To build a generalizable Vision-Language-Action (VLA) model with strong reasoning ability, a common strategy is to first train a specialist VLA on robot demonstrations to acquire reliable manipulation skills, and then incorporate mixed annotated robot data together with multimodal data to restore broader reasoning capabilities. However, we observe that the resulting reasoning VLA often suffers from degraded action performance compared to the specialist model before fine-tuning, a phenomenon we refer to as action degeneration. To address this issue, we propose DualVLA, which enhances action performance through carefully designed post-training while still preserving reasoning capability. We first introduce a dual-layer data pruning method that removes redundant embodied reasoning, preventing it from adversely influencing action learning. To further strengthen action generation, we design a dual-teacher adaptive distillation strategy that assigns different supervision signals to different data domains while maintaining reasoning ability. To fill the evaluation gap for generalist VLAs, we also propose VLA Score, which decouples VLA capability into reasoning, intention, action, and alignment dimensions for a more fine-grained assessment. Experiments show that DualVLA achieves an average success rate of 61.0 in SimplerEnv and an average score of 65.4 across eight competitive multimodal benchmarks, demonstrating a stronger balance between precise action execution and multimodal understanding. Project Website: https://costaliya.github.io/DualVLA/.
This is an automated message from the Librarian Bot. I found the following papers similar to this paper.
The following papers were recommended by the Semantic Scholar API
- IntentionVLA: Generalizable and Efficient Embodied Intention Reasoning for Human-Robot Interaction (2025)
- ActDistill: General Action-Guided Self-Derived Distillation for Efficient Vision-Language-Action Models (2025)
- VITA-VLA: Efficiently Teaching Vision-Language Models to Act via Action Expert Distillation (2025)
- UniCoD: Enhancing Robot Policy via Unified Continuous and Discrete Representation Learning (2025)
- QDepth-VLA: Quantized Depth Prediction as Auxiliary Supervision for Vision-Language-Action Models (2025)
- Unifying Perception and Action: A Hybrid-Modality Pipeline with Implicit Visual Chain-of-Thought for Robotic Action Generation (2025)
- DeepThinkVLA: Enhancing Reasoning Capability of Vision-Language-Action Models (2025)
Please give a thumbs up to this comment if you found it helpful!
If you want recommendations for any Paper on Hugging Face checkout this Space
You can directly ask Librarian Bot for paper recommendations by tagging it in a comment:
@librarian-bot
recommend
Models citing this paper 0
No model linking this paper
Datasets citing this paper 0
No dataset linking this paper
Spaces citing this paper 0
No Space linking this paper