new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jul 30

Efficient Encoding of Graphics Primitives with Simplex-based Structures

Grid-based structures are commonly used to encode explicit features for graphics primitives such as images, signed distance functions (SDF), and neural radiance fields (NeRF) due to their simple implementation. However, in n-dimensional space, calculating the value of a sampled point requires interpolating the values of its 2^n neighboring vertices. The exponential scaling with dimension leads to significant computational overheads. To address this issue, we propose a simplex-based approach for encoding graphics primitives. The number of vertices in a simplex-based structure increases linearly with dimension, making it a more efficient and generalizable alternative to grid-based representations. Using the non-axis-aligned simplicial structure property, we derive and prove a coordinate transformation, simplicial subdivision, and barycentric interpolation scheme for efficient sampling, which resembles transformation procedures in the simplex noise algorithm. Finally, we use hash tables to store multiresolution features of all interest points in the simplicial grid, which are passed into a tiny fully connected neural network to parameterize graphics primitives. We implemented a detailed simplex-based structure encoding algorithm in C++ and CUDA using the methods outlined in our approach. In the 2D image fitting task, the proposed method is capable of fitting a giga-pixel image with 9.4% less time compared to the baseline method proposed by instant-ngp, while maintaining the same quality and compression rate. In the volumetric rendering setup, we observe a maximum 41.2% speedup when the samples are dense enough.

Fast, Expressive SE(n) Equivariant Networks through Weight-Sharing in Position-Orientation Space

Based on the theory of homogeneous spaces we derive geometrically optimal edge attributes to be used within the flexible message-passing framework. We formalize the notion of weight sharing in convolutional networks as the sharing of message functions over point-pairs that should be treated equally. We define equivalence classes of point-pairs that are identical up to a transformation in the group and derive attributes that uniquely identify these classes. Weight sharing is then obtained by conditioning message functions on these attributes. As an application of the theory, we develop an efficient equivariant group convolutional network for processing 3D point clouds. The theory of homogeneous spaces tells us how to do group convolutions with feature maps over the homogeneous space of positions R^3, position and orientations R^3 {times} S^2, and the group SE(3) itself. Among these, R^3 {times} S^2 is an optimal choice due to the ability to represent directional information, which R^3 methods cannot, and it significantly enhances computational efficiency compared to indexing features on the full SE(3) group. We support this claim with state-of-the-art results -- in accuracy and speed -- on five different benchmarks in 2D and 3D, including interatomic potential energy prediction, trajectory forecasting in N-body systems, and generating molecules via equivariant diffusion models.

Fat Polygonal Partitions with Applications to Visualization and Embeddings

Let T be a rooted and weighted tree, where the weight of any node is equal to the sum of the weights of its children. The popular Treemap algorithm visualizes such a tree as a hierarchical partition of a square into rectangles, where the area of the rectangle corresponding to any node in T is equal to the weight of that node. The aspect ratio of the rectangles in such a rectangular partition necessarily depends on the weights and can become arbitrarily high. We introduce a new hierarchical partition scheme, called a polygonal partition, which uses convex polygons rather than just rectangles. We present two methods for constructing polygonal partitions, both having guarantees on the worst-case aspect ratio of the constructed polygons; in particular, both methods guarantee a bound on the aspect ratio that is independent of the weights of the nodes. We also consider rectangular partitions with slack, where the areas of the rectangles may differ slightly from the weights of the corresponding nodes. We show that this makes it possible to obtain partitions with constant aspect ratio. This result generalizes to hyper-rectangular partitions in R^d. We use these partitions with slack for embedding ultrametrics into d-dimensional Euclidean space: we give a rm polylog(Delta)-approximation algorithm for embedding n-point ultrametrics into R^d with minimum distortion, where Delta denotes the spread of the metric, i.e., the ratio between the largest and the smallest distance between two points. The previously best-known approximation ratio for this problem was polynomial in n. This is the first algorithm for embedding a non-trivial family of weighted-graph metrics into a space of constant dimension that achieves polylogarithmic approximation ratio.

Efficient and robust approximate nearest neighbor search using Hierarchical Navigable Small World graphs

We present a new approach for the approximate K-nearest neighbor search based on navigable small world graphs with controllable hierarchy (Hierarchical NSW, HNSW). The proposed solution is fully graph-based, without any need for additional search structures, which are typically used at the coarse search stage of the most proximity graph techniques. Hierarchical NSW incrementally builds a multi-layer structure consisting from hierarchical set of proximity graphs (layers) for nested subsets of the stored elements. The maximum layer in which an element is present is selected randomly with an exponentially decaying probability distribution. This allows producing graphs similar to the previously studied Navigable Small World (NSW) structures while additionally having the links separated by their characteristic distance scales. Starting search from the upper layer together with utilizing the scale separation boosts the performance compared to NSW and allows a logarithmic complexity scaling. Additional employment of a heuristic for selecting proximity graph neighbors significantly increases performance at high recall and in case of highly clustered data. Performance evaluation has demonstrated that the proposed general metric space search index is able to strongly outperform previous opensource state-of-the-art vector-only approaches. Similarity of the algorithm to the skip list structure allows straightforward balanced distributed implementation.

Modeling and design of heterogeneous hierarchical bioinspired spider web structures using generative deep learning and additive manufacturing

Spider webs are incredible biological structures, comprising thin but strong silk filament and arranged into complex hierarchical architectures with striking mechanical properties (e.g., lightweight but high strength, achieving diverse mechanical responses). While simple 2D orb webs can easily be mimicked, the modeling and synthesis of 3D-based web structures remain challenging, partly due to the rich set of design features. Here we provide a detailed analysis of the heterogenous graph structures of spider webs, and use deep learning as a way to model and then synthesize artificial, bio-inspired 3D web structures. The generative AI models are conditioned based on key geometric parameters (including average edge length, number of nodes, average node degree, and others). To identify graph construction principles, we use inductive representation sampling of large experimentally determined spider web graphs, to yield a dataset that is used to train three conditional generative models: 1) An analog diffusion model inspired by nonequilibrium thermodynamics, with sparse neighbor representation, 2) a discrete diffusion model with full neighbor representation, and 3) an autoregressive transformer architecture with full neighbor representation. All three models are scalable, produce complex, de novo bio-inspired spider web mimics, and successfully construct graphs that meet the design objectives. We further propose algorithm that assembles web samples produced by the generative models into larger-scale structures based on a series of geometric design targets, including helical and parametric shapes, mimicking, and extending natural design principles towards integration with diverging engineering objectives. Several webs are manufactured using 3D printing and tested to assess mechanical properties.

Scalable Diffusion for Materials Generation

Generative models trained on internet-scale data are capable of generating novel and realistic texts, images, and videos. A natural next question is whether these models can advance science, for example by generating novel stable materials. Traditionally, models with explicit structures (e.g., graphs) have been used in modeling structural relationships in scientific data (e.g., atoms and bonds in crystals), but generating structures can be difficult to scale to large and complex systems. Another challenge in generating materials is the mismatch between standard generative modeling metrics and downstream applications. For instance, common metrics such as the reconstruction error do not correlate well with the downstream goal of discovering stable materials. In this work, we tackle the scalability challenge by developing a unified crystal representation that can represent any crystal structure (UniMat), followed by training a diffusion probabilistic model on these UniMat representations. Our empirical results suggest that despite the lack of explicit structure modeling, UniMat can generate high fidelity crystal structures from larger and more complex chemical systems, outperforming previous graph-based approaches under various generative modeling metrics. To better connect the generation quality of materials to downstream applications, such as discovering novel stable materials, we propose additional metrics for evaluating generative models of materials, including per-composition formation energy and stability with respect to convex hulls through decomposition energy from Density Function Theory (DFT). Lastly, we show that conditional generation with UniMat can scale to previously established crystal datasets with up to millions of crystals structures, outperforming random structure search (the current leading method for structure discovery) in discovering new stable materials.

SiMilarity-Enhanced Homophily for Multi-View Heterophilous Graph Clustering

With the increasing prevalence of graph-structured data, multi-view graph clustering has been widely used in various downstream applications. Existing approaches primarily rely on a unified message passing mechanism, which significantly enhances clustering performance. Nevertheless, this mechanism limits its applicability to heterophilous situations, as it is fundamentally predicated on the assumption of homophily, i.e., the connected nodes often belong to the same class. In reality, this assumption does not always hold; a moderately or even mildly homophilous graph is more common than a fully homophilous one due to inevitable heterophilous information in the graph. To address this issue, in this paper, we propose a novel SiMilarity-enhanced Homophily for Multi-view Heterophilous Graph Clustering (SMHGC) approach. By analyzing the relationship between similarity and graph homophily, we propose to enhance the homophily by introducing three similarity terms, i.e., neighbor pattern similarity, node feature similarity, and multi-view global similarity, in a label-free manner. Then, a consensus-based inter- and intra-view fusion paradigm is proposed to fuse the improved homophilous graph from different views and utilize them for clustering. The state-of-the-art experimental results on both multi-view heterophilous and homophilous datasets collectively demonstrate the strong capacity of similarity for unsupervised multi-view heterophilous graph learning. Additionally, the consistent performance across semi-synthetic datasets with varying levels of homophily serves as further evidence of SMHGC's resilience to heterophily.

Convolutional Neural Networks on non-uniform geometrical signals using Euclidean spectral transformation

Convolutional Neural Networks (CNN) have been successful in processing data signals that are uniformly sampled in the spatial domain (e.g., images). However, most data signals do not natively exist on a grid, and in the process of being sampled onto a uniform physical grid suffer significant aliasing error and information loss. Moreover, signals can exist in different topological structures as, for example, points, lines, surfaces and volumes. It has been challenging to analyze signals with mixed topologies (for example, point cloud with surface mesh). To this end, we develop mathematical formulations for Non-Uniform Fourier Transforms (NUFT) to directly, and optimally, sample nonuniform data signals of different topologies defined on a simplex mesh into the spectral domain with no spatial sampling error. The spectral transform is performed in the Euclidean space, which removes the translation ambiguity from works on the graph spectrum. Our representation has four distinct advantages: (1) the process causes no spatial sampling error during the initial sampling, (2) the generality of this approach provides a unified framework for using CNNs to analyze signals of mixed topologies, (3) it allows us to leverage state-of-the-art backbone CNN architectures for effective learning without having to design a particular architecture for a particular data structure in an ad-hoc fashion, and (4) the representation allows weighted meshes where each element has a different weight (i.e., texture) indicating local properties. We achieve results on par with the state-of-the-art for the 3D shape retrieval task, and a new state-of-the-art for the point cloud to surface reconstruction task.

Multimodal Molecular Pretraining via Modality Blending

Self-supervised learning has recently gained growing interest in molecular modeling for scientific tasks such as AI-assisted drug discovery. Current studies consider leveraging both 2D and 3D molecular structures for representation learning. However, relying on straightforward alignment strategies that treat each modality separately, these methods fail to exploit the intrinsic correlation between 2D and 3D representations that reflect the underlying structural characteristics of molecules, and only perform coarse-grained molecule-level alignment. To derive fine-grained alignment and promote structural molecule understanding, we introduce an atomic-relation level "blend-then-predict" self-supervised learning approach, MoleBLEND, which first blends atom relations represented by different modalities into one unified relation matrix for joint encoding, then recovers modality-specific information for 2D and 3D structures individually. By treating atom relationships as anchors, MoleBLEND organically aligns and integrates visually dissimilar 2D and 3D modalities of the same molecule at fine-grained atomic level, painting a more comprehensive depiction of each molecule. Extensive experiments show that MoleBLEND achieves state-of-the-art performance across major 2D/3D molecular benchmarks. We further provide theoretical insights from the perspective of mutual-information maximization, demonstrating that our method unifies contrastive, generative (cross-modality prediction) and mask-then-predict (single-modality prediction) objectives into one single cohesive framework.

A Framework for Fast and Stable Representations of Multiparameter Persistent Homology Decompositions

Topological data analysis (TDA) is an area of data science that focuses on using invariants from algebraic topology to provide multiscale shape descriptors for geometric data sets such as point clouds. One of the most important such descriptors is {\em persistent homology}, which encodes the change in shape as a filtration parameter changes; a typical parameter is the feature scale. For many data sets, it is useful to simultaneously vary multiple filtration parameters, for example feature scale and density. While the theoretical properties of single parameter persistent homology are well understood, less is known about the multiparameter case. In particular, a central question is the problem of representing multiparameter persistent homology by elements of a vector space for integration with standard machine learning algorithms. Existing approaches to this problem either ignore most of the multiparameter information to reduce to the one-parameter case or are heuristic and potentially unstable in the face of noise. In this article, we introduce a new general representation framework that leverages recent results on {\em decompositions} of multiparameter persistent homology. This framework is rich in information, fast to compute, and encompasses previous approaches. Moreover, we establish theoretical stability guarantees under this framework as well as efficient algorithms for practical computation, making this framework an applicable and versatile tool for analyzing geometric and point cloud data. We validate our stability results and algorithms with numerical experiments that demonstrate statistical convergence, prediction accuracy, and fast running times on several real data sets.

SparseSSP: 3D Subcellular Structure Prediction from Sparse-View Transmitted Light Images

Traditional fluorescence staining is phototoxic to live cells, slow, and expensive; thus, the subcellular structure prediction (SSP) from transmitted light (TL) images is emerging as a label-free, faster, low-cost alternative. However, existing approaches utilize 3D networks for one-to-one voxel level dense prediction, which necessitates a frequent and time-consuming Z-axis imaging process. Moreover, 3D convolutions inevitably lead to significant computation and GPU memory overhead. Therefore, we propose an efficient framework, SparseSSP, predicting fluorescent intensities within the target voxel grid in an efficient paradigm instead of relying entirely on 3D topologies. In particular, SparseSSP makes two pivotal improvements to prior works. First, SparseSSP introduces a one-to-many voxel mapping paradigm, which permits the sparse TL slices to reconstruct the subcellular structure. Secondly, we propose a hybrid dimensions topology, which folds the Z-axis information into channel features, enabling the 2D network layers to tackle SSP under low computational cost. We conduct extensive experiments to validate the effectiveness and advantages of SparseSSP on diverse sparse imaging ratios, and our approach achieves a leading performance compared to pure 3D topologies. SparseSSP reduces imaging frequencies compared to previous dense-view SSP (i.e., the number of imaging is reduced up to 87.5% at most), which is significant in visualizing rapid biological dynamics on low-cost devices and samples.

A Survey on Machine Learning Solutions for Graph Pattern Extraction

A subgraph is constructed by using a subset of vertices and edges of a given graph. There exist many graph properties that are hereditary for subgraphs. Hence, researchers from different communities have paid a great deal of attention in studying numerous subgraph problems, on top of the ordinary graph problems. Many algorithms are proposed in studying subgraph problems, where one common approach is by extracting the patterns and structures of a given graph. Due to the complex structures of certain types of graphs and to improve overall performances of the existing frameworks, machine learning techniques have recently been employed in dealing with various subgraph problems. In this article, we present a comprehensive review on five well known subgraph problems that have been tackled by using machine learning methods. They are subgraph isomorphism (both counting and matching), maximum common subgraph, community detection and community search problems. We provide an outline of each proposed method, and examine its designs and performances. We also explore non-learning-based algorithms for each problem and a brief discussion is given. We then suggest some promising research directions in this area, hoping that relevant subgraph problems can be tackled by using a similar strategy. Since there is a huge growth in employing machine learning techniques in recent years, we believe that this survey will serve as a good reference point to relevant research communities.

pLSTM: parallelizable Linear Source Transition Mark networks

Modern recurrent architectures, such as xLSTM and Mamba, have recently challenged the Transformer in language modeling. However, their structure constrains their applicability to sequences only or requires processing multi-dimensional data structures, such as images or molecular graphs, in a pre-defined sequential order. In contrast, Multi-Dimensional RNNs (MDRNNs) are well suited for data with a higher level structure, like 2D grids, trees, and directed acyclic graphs (DAGs). In this work, we extend the notion of multi-dimensionality to linear RNNs. We introduce parallelizable Linear Source Transition Mark networks (pLSTMs) using Source, Transition, and Mark gates that act on the line graph of a general DAG. This enables parallelization in analogy to parallel associative scans and the chunkwise-recurrent form of sequential linear RNNs, but for DAGs. For regular grids (1D and 2D), like images, this scheme can be efficiently implemented using einsum operations, concatenations, and padding in logarithmic time. pLSTMs tackle the vanishing/exploding activation/gradient problem for long distances in DAGs via two distinct modes: a directed propagation mode (P-mode) and a diffusive distribution mode (D-mode). To showcase the long-range capabilities of pLSTM, we introduce arrow-pointing extrapolation as a synthetic computer vision task that contains long-distance directional information. We demonstrate that pLSTMs generalize well to larger image sizes, whereas Transformers struggle to extrapolate. On established molecular graph and computer vision benchmarks, pLSTMs also show strong performance. Code and Datasets are available at: https://github.com/ml-jku/plstm_experiments.

The Topology and Geometry of Neural Representations

A central question for neuroscience is how to characterize brain representations of perceptual and cognitive content. An ideal characterization should distinguish different functional regions with robustness to noise and idiosyncrasies of individual brains that do not correspond to computational differences. Previous studies have characterized brain representations by their representational geometry, which is defined by the representational dissimilarity matrix (RDM), a summary statistic that abstracts from the roles of individual neurons (or responses channels) and characterizes the discriminability of stimuli. Here we explore a further step of abstraction: from the geometry to the topology of brain representations. We propose topological representational similarity analysis (tRSA), an extension of representational similarity analysis (RSA) that uses a family of geo-topological summary statistics that generalizes the RDM to characterize the topology while de-emphasizing the geometry. We evaluate this new family of statistics in terms of the sensitivity and specificity for model selection using both simulations and functional MRI (fMRI) data. In the simulations, the ground truth is a data-generating layer representation in a neural network model and the models are the same and other layers in different model instances (trained from different random seeds). In fMRI, the ground truth is a visual area and the models are the same and other areas measured in different subjects. Results show that topology-sensitive characterizations of population codes are robust to noise and interindividual variability and maintain excellent sensitivity to the unique representational signatures of different neural network layers and brain regions.

Accelerating Scientific Discovery with Generative Knowledge Extraction, Graph-Based Representation, and Multimodal Intelligent Graph Reasoning

Leveraging generative Artificial Intelligence (AI), we have transformed a dataset comprising 1,000 scientific papers into an ontological knowledge graph. Through an in-depth structural analysis, we have calculated node degrees, identified communities and connectivities, and evaluated clustering coefficients and betweenness centrality of pivotal nodes, uncovering fascinating knowledge architectures. The graph has an inherently scale-free nature, is highly connected, and can be used for graph reasoning by taking advantage of transitive and isomorphic properties that reveal unprecedented interdisciplinary relationships that can be used to answer queries, identify gaps in knowledge, propose never-before-seen material designs, and predict material behaviors. We compute deep node embeddings for combinatorial node similarity ranking for use in a path sampling strategy links dissimilar concepts that have previously not been related. One comparison revealed structural parallels between biological materials and Beethoven's 9th Symphony, highlighting shared patterns of complexity through isomorphic mapping. In another example, the algorithm proposed a hierarchical mycelium-based composite based on integrating path sampling with principles extracted from Kandinsky's 'Composition VII' painting. The resulting material integrates an innovative set of concepts that include a balance of chaos/order, adjustable porosity, mechanical strength, and complex patterned chemical functionalization. We uncover other isomorphisms across science, technology and art, revealing a nuanced ontology of immanence that reveal a context-dependent heterarchical interplay of constituents. Graph-based generative AI achieves a far higher degree of novelty, explorative capacity, and technical detail, than conventional approaches and establishes a widely useful framework for innovation by revealing hidden connections.

A Complete Expressiveness Hierarchy for Subgraph GNNs via Subgraph Weisfeiler-Lehman Tests

Recently, subgraph GNNs have emerged as an important direction for developing expressive graph neural networks (GNNs). While numerous architectures have been proposed, so far there is still a limited understanding of how various design paradigms differ in terms of expressive power, nor is it clear what design principle achieves maximal expressiveness with minimal architectural complexity. To address these fundamental questions, this paper conducts a systematic study of general node-based subgraph GNNs through the lens of Subgraph Weisfeiler-Lehman Tests (SWL). Our central result is to build a complete hierarchy of SWL with strictly growing expressivity. Concretely, we prove that any node-based subgraph GNN falls into one of the six SWL equivalence classes, among which SSWL achieves the maximal expressive power. We also study how these equivalence classes differ in terms of their practical expressiveness such as encoding graph distance and biconnectivity. Furthermore, we give a tight expressivity upper bound of all SWL algorithms by establishing a close relation with localized versions of WL and Folklore WL (FWL) tests. Our results provide insights into the power of existing subgraph GNNs, guide the design of new architectures, and point out their limitations by revealing an inherent gap with the 2-FWL test. Finally, experiments demonstrate that SSWL-inspired subgraph GNNs can significantly outperform prior architectures on multiple benchmarks despite great simplicity.

Fast and Accurate Network Embeddings via Very Sparse Random Projection

We present FastRP, a scalable and performant algorithm for learning distributed node representations in a graph. FastRP is over 4,000 times faster than state-of-the-art methods such as DeepWalk and node2vec, while achieving comparable or even better performance as evaluated on several real-world networks on various downstream tasks. We observe that most network embedding methods consist of two components: construct a node similarity matrix and then apply dimension reduction techniques to this matrix. We show that the success of these methods should be attributed to the proper construction of this similarity matrix, rather than the dimension reduction method employed. FastRP is proposed as a scalable algorithm for network embeddings. Two key features of FastRP are: 1) it explicitly constructs a node similarity matrix that captures transitive relationships in a graph and normalizes matrix entries based on node degrees; 2) it utilizes very sparse random projection, which is a scalable optimization-free method for dimension reduction. An extra benefit from combining these two design choices is that it allows the iterative computation of node embeddings so that the similarity matrix need not be explicitly constructed, which further speeds up FastRP. FastRP is also advantageous for its ease of implementation, parallelization and hyperparameter tuning. The source code is available at https://github.com/GTmac/FastRP.

Procedural Generation of Grain Orientations using the Wave Function Collapse Algorithm

Statistics of grain sizes and orientations in metals correlate to the material's mechanical properties. Reproducing representative volume elements for further analysis of deformation and failure in metals, like 316L stainless steel, is particularly important due to their wide use in manufacturing goods today. Two approaches, initially created for video games, were considered for the procedural generation of representative grain microstructures. The first is the Wave Function Collapse (WFC) algorithm, and the second is constraint propagation and probabilistic inference through Markov Junior, a free and open-source software. This study aimed to investigate these two algorithms' effectiveness in using reference electron backscatter diffraction (EBSD) maps and recreating a statistically similar one that could be used in further research. It utilized two stainless steel EBSD maps as references to test both algorithms. First, the WFC algorithm was too constricting and, thus, incapable of producing images that resembled EBSDs. The second, MarkovJunior, was much more effective in creating a Voronoi tessellation that could be used to create an EBSD map in Python. When comparing the results between the reference and the generated EBSD, we discovered that the orientation and volume fractions were extremely similar. With the study, it was concluded that MarkovJunior is an effective machine learning tool that can reproduce representative grain microstructures.

On the Power of the Weisfeiler-Leman Test for Graph Motif Parameters

Seminal research in the field of graph neural networks (GNNs) has revealed a direct correspondence between the expressive capabilities of GNNs and the k-dimensional Weisfeiler-Leman (kWL) test, a widely-recognized method for verifying graph isomorphism. This connection has reignited interest in comprehending the specific graph properties effectively distinguishable by the kWL test. A central focus of research in this field revolves around determining the least dimensionality k, for which kWL can discern graphs with different number of occurrences of a pattern graph P. We refer to such a least k as the WL-dimension of this pattern counting problem. This inquiry traditionally delves into two distinct counting problems related to patterns: subgraph counting and induced subgraph counting. Intriguingly, despite their initial appearance as separate challenges with seemingly divergent approaches, both of these problems are interconnected components of a more comprehensive problem: "graph motif parameters". In this paper, we provide a precise characterization of the WL-dimension of labeled graph motif parameters. As specific instances of this result, we obtain characterizations of the WL-dimension of the subgraph counting and induced subgraph counting problem for every labeled pattern P. We additionally demonstrate that in cases where the kWL test distinguishes between graphs with varying occurrences of a pattern P, the exact number of occurrences of P can be computed uniformly using only local information of the last layer of a corresponding GNN. We finally delve into the challenge of recognizing the WL-dimension of various graph parameters. We give a polynomial time algorithm for determining the WL-dimension of the subgraph counting problem for given pattern P, answering an open question from previous work.

Molecule3D: A Benchmark for Predicting 3D Geometries from Molecular Graphs

Graph neural networks are emerging as promising methods for modeling molecular graphs, in which nodes and edges correspond to atoms and chemical bonds, respectively. Recent studies show that when 3D molecular geometries, such as bond lengths and angles, are available, molecular property prediction tasks can be made more accurate. However, computing of 3D molecular geometries requires quantum calculations that are computationally prohibitive. For example, accurate calculation of 3D geometries of a small molecule requires hours of computing time using density functional theory (DFT). Here, we propose to predict the ground-state 3D geometries from molecular graphs using machine learning methods. To make this feasible, we develop a benchmark, known as Molecule3D, that includes a dataset with precise ground-state geometries of approximately 4 million molecules derived from DFT. We also provide a set of software tools for data processing, splitting, training, and evaluation, etc. Specifically, we propose to assess the error and validity of predicted geometries using four metrics. We implement two baseline methods that either predict the pairwise distance between atoms or atom coordinates in 3D space. Experimental results show that, compared with generating 3D geometries with RDKit, our method can achieve comparable prediction accuracy but with much smaller computational costs. Our Molecule3D is available as a module of the MoleculeX software library (https://github.com/divelab/MoleculeX).

SAGS: Structure-Aware 3D Gaussian Splatting

Following the advent of NeRFs, 3D Gaussian Splatting (3D-GS) has paved the way to real-time neural rendering overcoming the computational burden of volumetric methods. Following the pioneering work of 3D-GS, several methods have attempted to achieve compressible and high-fidelity performance alternatives. However, by employing a geometry-agnostic optimization scheme, these methods neglect the inherent 3D structure of the scene, thereby restricting the expressivity and the quality of the representation, resulting in various floating points and artifacts. In this work, we propose a structure-aware Gaussian Splatting method (SAGS) that implicitly encodes the geometry of the scene, which reflects to state-of-the-art rendering performance and reduced storage requirements on benchmark novel-view synthesis datasets. SAGS is founded on a local-global graph representation that facilitates the learning of complex scenes and enforces meaningful point displacements that preserve the scene's geometry. Additionally, we introduce a lightweight version of SAGS, using a simple yet effective mid-point interpolation scheme, which showcases a compact representation of the scene with up to 24times size reduction without the reliance on any compression strategies. Extensive experiments across multiple benchmark datasets demonstrate the superiority of SAGS compared to state-of-the-art 3D-GS methods under both rendering quality and model size. Besides, we demonstrate that our structure-aware method can effectively mitigate floating artifacts and irregular distortions of previous methods while obtaining precise depth maps. Project page https://eververas.github.io/SAGS/.

Uni-3DAR: Unified 3D Generation and Understanding via Autoregression on Compressed Spatial Tokens

Recent advancements in large language models and their multi-modal extensions have demonstrated the effectiveness of unifying generation and understanding through autoregressive next-token prediction. However, despite the critical role of 3D structural generation and understanding ({3D GU}) in AI for science, these tasks have largely evolved independently, with autoregressive methods remaining underexplored. To bridge this gap, we introduce Uni-3DAR, a unified framework that seamlessly integrates {3D GU} tasks via autoregressive prediction. At its core, Uni-3DAR employs a novel hierarchical tokenization that compresses 3D space using an octree, leveraging the inherent sparsity of 3D structures. It then applies an additional tokenization for fine-grained structural details, capturing key attributes such as atom types and precise spatial coordinates in microscopic 3D structures. We further propose two optimizations to enhance efficiency and effectiveness. The first is a two-level subtree compression strategy, which reduces the octree token sequence by up to 8x. The second is a masked next-token prediction mechanism tailored for dynamically varying token positions, significantly boosting model performance. By combining these strategies, Uni-3DAR successfully unifies diverse {3D GU} tasks within a single autoregressive framework. Extensive experiments across multiple microscopic {3D GU} tasks, including molecules, proteins, polymers, and crystals, validate its effectiveness and versatility. Notably, Uni-3DAR surpasses previous state-of-the-art diffusion models by a substantial margin, achieving up to 256\% relative improvement while delivering inference speeds up to 21.8x faster. The code is publicly available at https://github.com/dptech-corp/Uni-3DAR.

Subgraph Permutation Equivariant Networks

In this work we develop a new method, named Sub-graph Permutation Equivariant Networks (SPEN), which provides a framework for building graph neural networks that operate on sub-graphs, while using a base update function that is permutation equivariant, that are equivariant to a novel choice of automorphism group. Message passing neural networks have been shown to be limited in their expressive power and recent approaches to over come this either lack scalability or require structural information to be encoded into the feature space. The general framework presented here overcomes the scalability issues associated with global permutation equivariance by operating more locally on sub-graphs. In addition, through operating on sub-graphs the expressive power of higher-dimensional global permutation equivariant networks is improved; this is due to fact that two non-distinguishable graphs often contain distinguishable sub-graphs. Furthermore, the proposed framework only requires a choice of k-hops for creating ego-network sub-graphs and a choice of representation space to be used for each layer, which makes the method easily applicable across a range of graph based domains. We experimentally validate the method on a range of graph benchmark classification tasks, demonstrating statistically indistinguishable results from the state-of-the-art on six out of seven benchmarks. Further, we demonstrate that the use of local update functions offers a significant improvement in GPU memory over global methods.

Graphlets correct for the topological information missed by random walks

Random walks are widely used for mining networks due to the computational efficiency of computing them. For instance, graph representation learning learns a d-dimensional embedding space, so that the nodes that tend to co-occur on random walks (a proxy of being in the same network neighborhood) are close in the embedding space. Specific local network topology (i.e., structure) influences the co-occurrence of nodes on random walks, so random walks of limited length capture only partial topological information, hence diminishing the performance of downstream methods. We explicitly capture all topological neighborhood information and improve performance by introducing orbit adjacencies that quantify the adjacencies of two nodes as co-occurring on a given pair of graphlet orbits, which are symmetric positions on graphlets (small, connected, non-isomorphic, induced subgraphs of a large network). Importantly, we mathematically prove that random walks on up to k nodes capture only a subset of all the possible orbit adjacencies for up to k-node graphlets. Furthermore, we enable orbit adjacency-based analysis of networks by developing an efficient GRaphlet-orbit ADjacency COunter (GRADCO), which exhaustively computes all 28 orbit adjacency matrices for up to four-node graphlets. Note that four-node graphlets suffice, because real networks are usually small-world. In large networks on around 20,000 nodes, GRADCOcomputesthe28matricesinminutes. Onsixrealnetworksfromvarious domains, we compare the performance of node-label predictors obtained by using the network embeddings based on our orbit adjacencies to those based on random walks. We find that orbit adjacencies, which include those unseen by random walks, outperform random walk-based adjacencies, demonstrating the importance of the inclusion of the topological neighborhood information that is unseen by random walks.

Joint Self-Supervised Image-Volume Representation Learning with Intra-Inter Contrastive Clustering

Collecting large-scale medical datasets with fully annotated samples for training of deep networks is prohibitively expensive, especially for 3D volume data. Recent breakthroughs in self-supervised learning (SSL) offer the ability to overcome the lack of labeled training samples by learning feature representations from unlabeled data. However, most current SSL techniques in the medical field have been designed for either 2D images or 3D volumes. In practice, this restricts the capability to fully leverage unlabeled data from numerous sources, which may include both 2D and 3D data. Additionally, the use of these pre-trained networks is constrained to downstream tasks with compatible data dimensions. In this paper, we propose a novel framework for unsupervised joint learning on 2D and 3D data modalities. Given a set of 2D images or 2D slices extracted from 3D volumes, we construct an SSL task based on a 2D contrastive clustering problem for distinct classes. The 3D volumes are exploited by computing vectored embedding at each slice and then assembling a holistic feature through deformable self-attention mechanisms in Transformer, allowing incorporating long-range dependencies between slices inside 3D volumes. These holistic features are further utilized to define a novel 3D clustering agreement-based SSL task and masking embedding prediction inspired by pre-trained language models. Experiments on downstream tasks, such as 3D brain segmentation, lung nodule detection, 3D heart structures segmentation, and abnormal chest X-ray detection, demonstrate the effectiveness of our joint 2D and 3D SSL approach. We improve plain 2D Deep-ClusterV2 and SwAV by a significant margin and also surpass various modern 2D and 3D SSL approaches.

Mosaic-SDF for 3D Generative Models

Current diffusion or flow-based generative models for 3D shapes divide to two: distilling pre-trained 2D image diffusion models, and training directly on 3D shapes. When training a diffusion or flow models on 3D shapes a crucial design choice is the shape representation. An effective shape representation needs to adhere three design principles: it should allow an efficient conversion of large 3D datasets to the representation form; it should provide a good tradeoff of approximation power versus number of parameters; and it should have a simple tensorial form that is compatible with existing powerful neural architectures. While standard 3D shape representations such as volumetric grids and point clouds do not adhere to all these principles simultaneously, we advocate in this paper a new representation that does. We introduce Mosaic-SDF (M-SDF): a simple 3D shape representation that approximates the Signed Distance Function (SDF) of a given shape by using a set of local grids spread near the shape's boundary. The M-SDF representation is fast to compute for each shape individually making it readily parallelizable; it is parameter efficient as it only covers the space around the shape's boundary; and it has a simple matrix form, compatible with Transformer-based architectures. We demonstrate the efficacy of the M-SDF representation by using it to train a 3D generative flow model including class-conditioned generation with the 3D Warehouse dataset, and text-to-3D generation using a dataset of about 600k caption-shape pairs.

Neural 4D Evolution under Large Topological Changes from 2D Images

In the literature, it has been shown that the evolution of the known explicit 3D surface to the target one can be learned from 2D images using the instantaneous flow field, where the known and target 3D surfaces may largely differ in topology. We are interested in capturing 4D shapes whose topology changes largely over time. We encounter that the straightforward extension of the existing 3D-based method to the desired 4D case performs poorly. In this work, we address the challenges in extending 3D neural evolution to 4D under large topological changes by proposing two novel modifications. More precisely, we introduce (i) a new architecture to discretize and encode the deformation and learn the SDF and (ii) a technique to impose the temporal consistency. (iii) Also, we propose a rendering scheme for color prediction based on Gaussian splatting. Furthermore, to facilitate learning directly from 2D images, we propose a learning framework that can disentangle the geometry and appearance from RGB images. This method of disentanglement, while also useful for the 4D evolution problem that we are concentrating on, is also novel and valid for static scenes. Our extensive experiments on various data provide awesome results and, most importantly, open a new approach toward reconstructing challenging scenes with significant topological changes and deformations. Our source code and the dataset are publicly available at https://github.com/insait-institute/N4DE.

Gen-3Diffusion: Realistic Image-to-3D Generation via 2D & 3D Diffusion Synergy

Creating realistic 3D objects and clothed avatars from a single RGB image is an attractive yet challenging problem. Due to its ill-posed nature, recent works leverage powerful prior from 2D diffusion models pretrained on large datasets. Although 2D diffusion models demonstrate strong generalization capability, they cannot guarantee the generated multi-view images are 3D consistent. In this paper, we propose Gen-3Diffusion: Realistic Image-to-3D Generation via 2D & 3D Diffusion Synergy. We leverage a pre-trained 2D diffusion model and a 3D diffusion model via our elegantly designed process that synchronizes two diffusion models at both training and sampling time. The synergy between the 2D and 3D diffusion models brings two major advantages: 1) 2D helps 3D in generalization: the pretrained 2D model has strong generalization ability to unseen images, providing strong shape priors for the 3D diffusion model; 2) 3D helps 2D in multi-view consistency: the 3D diffusion model enhances the 3D consistency of 2D multi-view sampling process, resulting in more accurate multi-view generation. We validate our idea through extensive experiments in image-based objects and clothed avatar generation tasks. Results show that our method generates realistic 3D objects and avatars with high-fidelity geometry and texture. Extensive ablations also validate our design choices and demonstrate the strong generalization ability to diverse clothing and compositional shapes. Our code and pretrained models will be publicly released on https://yuxuan-xue.com/gen-3diffusion.

Magic sizes enable minimal-complexity, high-fidelity assembly of programmable shells

Recent advances in synthetic methods enable designing subunits that self-assemble into structures with well-defined sizes and architectures, but yields are frequently suppressed by the formation of off-target metastable structures. Increasing the complexity (number of distinct inter-subunit interaction types) can inhibit off-target structures, but leads to slower kinetics and higher synthesis costs. Here, we use icosahedral shells formed of programmable triangular subunits as a model system, and identify design principles that produce the highest target yield at the lowest complexity. We use a symmetry-based construction to create a range of design complexities, starting from the maximal symmetry Caspar-Klug assembly up to the fully addressable, zero-symmetry assembly. Kinetic Monte Carlo simulations reveal that the most prominent defects leading to off-target assemblies are a class of disclinations. We derive symmetry-based rules for identifying the optimal (lowest-complexity, highest-symmetry) design that inhibits these disclinations, leading to robust, high-fidelity assembly of targets with arbitrarily large sizes. Optimal complexity varies non-monotonically with target size, with `magic' sizes appearing for high-symmetry designs in which symmetry axes do not intersect vertices of the triangular net. The optimal designs at magic sizes require 12 times fewer inequivalent interaction-types than the (minimal symmetry) fully addressable construction.

Direct2.5: Diverse Text-to-3D Generation via Multi-view 2.5D Diffusion

Recent advances in generative AI have unveiled significant potential for the creation of 3D content. However, current methods either apply a pre-trained 2D diffusion model with the time-consuming score distillation sampling (SDS), or a direct 3D diffusion model trained on limited 3D data losing generation diversity. In this work, we approach the problem by employing a multi-view 2.5D diffusion fine-tuned from a pre-trained 2D diffusion model. The multi-view 2.5D diffusion directly models the structural distribution of 3D data, while still maintaining the strong generalization ability of the original 2D diffusion model, filling the gap between 2D diffusion-based and direct 3D diffusion-based methods for 3D content generation. During inference, multi-view normal maps are generated using the 2.5D diffusion, and a novel differentiable rasterization scheme is introduced to fuse the almost consistent multi-view normal maps into a consistent 3D model. We further design a normal-conditioned multi-view image generation module for fast appearance generation given the 3D geometry. Our method is a one-pass diffusion process and does not require any SDS optimization as post-processing. We demonstrate through extensive experiments that, our direct 2.5D generation with the specially-designed fusion scheme can achieve diverse, mode-seeking-free, and high-fidelity 3D content generation in only 10 seconds. Project page: https://nju-3dv.github.io/projects/direct25.

VisDiff: SDF-Guided Polygon Generation for Visibility Reconstruction and Recognition

The capability to learn latent representations plays a key role in the effectiveness of recent machine learning methods. An active frontier in representation learning is understanding representations for combinatorial structures which may not admit well-behaved local neighborhoods or distance functions. For example, for polygons, slightly perturbing vertex locations might lead to significant changes in their combinatorial structure and may even lead to invalid polygons. In this paper, we investigate representations to capture the underlying combinatorial structures of polygons. Specifically, we study the open problem of Visibility Reconstruction: Given a visibility graph G, construct a polygon P whose visibility graph is G. We introduce VisDiff, a novel diffusion-based approach to reconstruct a polygon from its given visibility graph G. Our method first estimates the signed distance function (SDF) of P from G. Afterwards, it extracts ordered vertex locations that have the pairwise visibility relationship given by the edges of G. Our main insight is that going through the SDF significantly improves learning for reconstruction. In order to train VisDiff, we make two main contributions: (1) We design novel loss components for computing the visibility in a differentiable manner and (2) create a carefully curated dataset. We use this dataset to benchmark our method and achieve 21% improvement in F1-Score over standard methods. We also demonstrate effective generalization to out-of-distribution polygon types and show that learning a generative model allows us to sample the set of polygons with a given visibility graph. Finally, we extend our method to the related combinatorial problem of reconstruction from a triangulation. We achieve 95% classification accuracy of triangulation edges and a 4% improvement in Chamfer distance compared to current architectures.

An open-source robust machine learning platform for real-time detection and classification of 2D material flakes

The most widely used method for obtaining high-quality two-dimensional materials is through mechanical exfoliation of bulk crystals. Manual identification of suitable flakes from the resulting random distribution of crystal thicknesses and sizes on a substrate is a time-consuming, tedious task. Here, we present a platform for fully automated scanning, detection, and classification of two-dimensional materials, the source code of which we make openly available. Our platform is designed to be accurate, reliable, fast, and versatile in integrating new materials, making it suitable for everyday laboratory work. The implementation allows fully automated scanning and analysis of wafers with an average inference time of 100 ms for images of 2.3 Mpixels. The developed detection algorithm is based on a combination of the flakes' optical contrast toward the substrate and their geometric shape. We demonstrate that it is able to detect the majority of exfoliated flakes of various materials, with an average recall (AR50) between 67% and 89%. We also show that the algorithm can be trained with as few as five flakes of a given material, which we demonstrate for the examples of few-layer graphene, WSe_2, MoSe_2, CrI_3, 1T-TaS_2 and hexagonal BN. Our platform has been tested over a two-year period, during which more than 10^6 images of multiple different materials were acquired by over 30 individual researchers.

Analysis of Linear Mode Connectivity via Permutation-Based Weight Matching

Recently, Ainsworth et al. showed that using weight matching (WM) to minimize the L_2 distance in a permutation search of model parameters effectively identifies permutations that satisfy linear mode connectivity (LMC), in which the loss along a linear path between two independently trained models with different seeds remains nearly constant. This paper provides a theoretical analysis of LMC using WM, which is crucial for understanding stochastic gradient descent's effectiveness and its application in areas like model merging. We first experimentally and theoretically show that permutations found by WM do not significantly reduce the L_2 distance between two models and the occurrence of LMC is not merely due to distance reduction by WM in itself. We then provide theoretical insights showing that permutations can change the directions of the singular vectors, but not the singular values, of the weight matrices in each layer. This finding shows that permutations found by WM mainly align the directions of singular vectors associated with large singular values across models. This alignment brings the singular vectors with large singular values, which determine the model functionality, closer between pre-merged and post-merged models, so that the post-merged model retains functionality similar to the pre-merged models, making it easy to satisfy LMC. Finally, we analyze the difference between WM and straight-through estimator (STE), a dataset-dependent permutation search method, and show that WM outperforms STE, especially when merging three or more models.

Graph Self-supervised Learning with Accurate Discrepancy Learning

Self-supervised learning of graph neural networks (GNNs) aims to learn an accurate representation of the graphs in an unsupervised manner, to obtain transferable representations of them for diverse downstream tasks. Predictive learning and contrastive learning are the two most prevalent approaches for graph self-supervised learning. However, they have their own drawbacks. While the predictive learning methods can learn the contextual relationships between neighboring nodes and edges, they cannot learn global graph-level similarities. Contrastive learning, while it can learn global graph-level similarities, its objective to maximize the similarity between two differently perturbed graphs may result in representations that cannot discriminate two similar graphs with different properties. To tackle such limitations, we propose a framework that aims to learn the exact discrepancy between the original and the perturbed graphs, coined as Discrepancy-based Self-supervised LeArning (D-SLA). Specifically, we create multiple perturbations of the given graph with varying degrees of similarity, and train the model to predict whether each graph is the original graph or the perturbed one. Moreover, we further aim to accurately capture the amount of discrepancy for each perturbed graph using the graph edit distance. We validate our D-SLA on various graph-related downstream tasks, including molecular property prediction, protein function prediction, and link prediction tasks, on which ours largely outperforms relevant baselines.

Efficiently Computing Similarities to Private Datasets

Many methods in differentially private model training rely on computing the similarity between a query point (such as public or synthetic data) and private data. We abstract out this common subroutine and study the following fundamental algorithmic problem: Given a similarity function f and a large high-dimensional private dataset X subset R^d, output a differentially private (DP) data structure which approximates sum_{x in X} f(x,y) for any query y. We consider the cases where f is a kernel function, such as f(x,y) = e^{-|x-y|_2^2/sigma^2} (also known as DP kernel density estimation), or a distance function such as f(x,y) = |x-y|_2, among others. Our theoretical results improve upon prior work and give better privacy-utility trade-offs as well as faster query times for a wide range of kernels and distance functions. The unifying approach behind our results is leveraging `low-dimensional structures' present in the specific functions f that we study, using tools such as provable dimensionality reduction, approximation theory, and one-dimensional decomposition of the functions. Our algorithms empirically exhibit improved query times and accuracy over prior state of the art. We also present an application to DP classification. Our experiments demonstrate that the simple methodology of classifying based on average similarity is orders of magnitude faster than prior DP-SGD based approaches for comparable accuracy.

SSumM: Sparse Summarization of Massive Graphs

Given a graph G and the desired size k in bits, how can we summarize G within k bits, while minimizing the information loss? Large-scale graphs have become omnipresent, posing considerable computational challenges. Analyzing such large graphs can be fast and easy if they are compressed sufficiently to fit in main memory or even cache. Graph summarization, which yields a coarse-grained summary graph with merged nodes, stands out with several advantages among graph compression techniques. Thus, a number of algorithms have been developed for obtaining a concise summary graph with little information loss or equivalently small reconstruction error. However, the existing methods focus solely on reducing the number of nodes, and they often yield dense summary graphs, failing to achieve better compression rates. Moreover, due to their limited scalability, they can be applied only to moderate-size graphs. In this work, we propose SSumM, a scalable and effective graph-summarization algorithm that yields a sparse summary graph. SSumM not only merges nodes together but also sparsifies the summary graph, and the two strategies are carefully balanced based on the minimum description length principle. Compared with state-of-the-art competitors, SSumM is (a) Concise: yields up to 11.2X smaller summary graphs with similar reconstruction error, (b) Accurate: achieves up to 4.2X smaller reconstruction error with similarly concise outputs, and (c) Scalable: summarizes 26X larger graphs while exhibiting linear scalability. We validate these advantages through extensive experiments on 10 real-world graphs.

Extending Bootstrap AMG for Clustering of Attributed Graphs

In this paper we propose a new approach to detect clusters in undirected graphs with attributed vertices. We incorporate structural and attribute similarities between the vertices in an augmented graph by creating additional vertices and edges as proposed in [1, 2]. The augmented graph is then embedded in a Euclidean space associated to its Laplacian and we cluster vertices via a modified K-means algorithm, using a new vector-valued distance in the embedding space. Main novelty of our method, which can be classified as an early fusion method, i.e., a method in which additional information on vertices are fused to the structure information before applying clustering, is the interpretation of attributes as new realizations of graph vertices, which can be dealt with as coordinate vectors in a related Euclidean space. This allows us to extend a scalable generalized spectral clustering procedure which substitutes graph Laplacian eigenvectors with some vectors, named algebraically smooth vectors, obtained by a linear-time complexity Algebraic MultiGrid (AMG) method. We discuss the performance of our proposed clustering method by comparison with recent literature approaches and public available results. Extensive experiments on different types of synthetic datasets and real-world attributed graphs show that our new algorithm, embedding attributes information in the clustering, outperforms structure-only-based methods, when the attributed network has an ambiguous structure. Furthermore, our new method largely outperforms the method which originally proposed the graph augmentation, showing that our embedding strategy and vector-valued distance are very effective in taking advantages from the augmented-graph representation.

Differentiability and Optimization of Multiparameter Persistent Homology

Real-valued functions on geometric data -- such as node attributes on a graph -- can be optimized using descriptors from persistent homology, allowing the user to incorporate topological terms in the loss function. When optimizing a single real-valued function (the one-parameter setting), there is a canonical choice of descriptor for persistent homology: the barcode. The operation mapping a real-valued function to its barcode is differentiable almost everywhere, and the convergence of gradient descent for losses using barcodes is relatively well understood. When optimizing a vector-valued function (the multiparameter setting), there is no unique choice of descriptor for multiparameter persistent homology, and many distinct descriptors have been proposed. This calls for the development of a general framework for differentiability and optimization that applies to a wide range of multiparameter homological descriptors. In this article, we develop such a framework and show that it encompasses well-known descriptors of different flavors, such as signed barcodes and the multiparameter persistence landscape. We complement the theory with numerical experiments supporting the idea that optimizing multiparameter homological descriptors can lead to improved performances compared to optimizing one-parameter descriptors, even when using the simplest and most efficiently computable multiparameter descriptors.

AutoMat: Enabling Automated Crystal Structure Reconstruction from Microscopy via Agentic Tool Use

Machine learning-based interatomic potentials and force fields depend critically on accurate atomic structures, yet such data are scarce due to the limited availability of experimentally resolved crystals. Although atomic-resolution electron microscopy offers a potential source of structural data, converting these images into simulation-ready formats remains labor-intensive and error-prone, creating a bottleneck for model training and validation. We introduce AutoMat, an end-to-end, agent-assisted pipeline that automatically transforms scanning transmission electron microscopy (STEM) images into atomic crystal structures and predicts their physical properties. AutoMat combines pattern-adaptive denoising, physics-guided template retrieval, symmetry-aware atomic reconstruction, fast relaxation and property prediction via MatterSim, and coordinated orchestration across all stages. We propose the first dedicated STEM2Mat-Bench for this task and evaluate performance using lattice RMSD, formation energy MAE, and structure-matching success rate. By orchestrating external tool calls, AutoMat enables a text-only LLM to outperform vision-language models in this domain, achieving closed-loop reasoning throughout the pipeline. In large-scale experiments over 450 structure samples, AutoMat substantially outperforms existing multimodal large language models and tools. These results validate both AutoMat and STEM2Mat-Bench, marking a key step toward bridging microscopy and atomistic simulation in materials science.The code and dataset are publicly available at https://github.com/yyt-2378/AutoMat and https://huggingface.co/datasets/yaotianvector/STEM2Mat.

seg2med: a segmentation-based medical image generation framework using denoising diffusion probabilistic models

In this study, we present seg2med, an advanced medical image synthesis framework that uses Denoising Diffusion Probabilistic Models (DDPM) to generate high-quality synthetic medical images conditioned on anatomical masks from TotalSegmentator. The framework synthesizes CT and MR images from segmentation masks derived from real patient data and XCAT digital phantoms, achieving a Structural Similarity Index Measure (SSIM) of 0.94 +/- 0.02 for CT and 0.89 +/- 0.04 for MR images compared to ground-truth images of real patients. It also achieves a Feature Similarity Index Measure (FSIM) of 0.78 +/- 0.04 for CT images from XCAT. The generative quality is further supported by a Fr\'echet Inception Distance (FID) of 3.62 for CT image generation. Additionally, seg2med can generate paired CT and MR images with consistent anatomical structures and convert images between CT and MR modalities, achieving SSIM values of 0.91 +/- 0.03 for MR-to-CT and 0.77 +/- 0.04 for CT-to-MR conversion. Despite the limitations of incomplete anatomical details in segmentation masks, the framework shows strong performance in cross-modality synthesis and multimodal imaging. seg2med also demonstrates high anatomical fidelity in CT synthesis, achieving a mean Dice coefficient greater than 0.90 for 11 abdominal organs and greater than 0.80 for 34 organs out of 59 in 58 test cases. The highest Dice of 0.96 +/- 0.01 was recorded for the right scapula. Leveraging the TotalSegmentator toolkit, seg2med enables segmentation mask generation across diverse datasets, supporting applications in clinical imaging, data augmentation, multimodal synthesis, and diagnostic algorithm development.

Spherical convolutions on molecular graphs for protein model quality assessment

Processing information on 3D objects requires methods stable to rigid-body transformations, in particular rotations, of the input data. In image processing tasks, convolutional neural networks achieve this property using rotation-equivariant operations. However, contrary to images, graphs generally have irregular topology. This makes it challenging to define a rotation-equivariant convolution operation on these structures. In this work, we propose Spherical Graph Convolutional Network (S-GCN) that processes 3D models of proteins represented as molecular graphs. In a protein molecule, individual amino acids have common topological elements. This allows us to unambiguously associate each amino acid with a local coordinate system and construct rotation-equivariant spherical filters that operate on angular information between graph nodes. Within the framework of the protein model quality assessment problem, we demonstrate that the proposed spherical convolution method significantly improves the quality of model assessment compared to the standard message-passing approach. It is also comparable to state-of-the-art methods, as we demonstrate on Critical Assessment of Structure Prediction (CASP) benchmarks. The proposed technique operates only on geometric features of protein 3D models. This makes it universal and applicable to any other geometric-learning task where the graph structure allows constructing local coordinate systems.

From Density to Geometry: YOLOv8 Instance Segmentation for Reverse Engineering of Optimized Structures

This paper introduces YOLOv8-TO, a novel approach for reverse engineering of topology-optimized structures into interpretable geometric parameters using the YOLOv8 instance segmentation model. Density-based topology optimization methods require post-processing to convert the optimal density distribution into a parametric representation for design exploration and integration with CAD tools. Traditional methods such as skeletonization struggle with complex geometries and require manual intervention. YOLOv8-TO addresses these challenges by training a custom YOLOv8 model to automatically detect and reconstruct structural components from binary density distributions. The model is trained on a diverse dataset of both optimized and random structures generated using the Moving Morphable Components method. A custom reconstruction loss function based on the dice coefficient of the predicted geometry is used to train the new regression head of the model via self-supervised learning. The method is evaluated on test sets generated from different topology optimization methods, including out-of-distribution samples, and compared against a skeletonization approach. Results show that YOLOv8-TO significantly outperforms skeletonization in reconstructing visually and structurally similar designs. The method showcases an average improvement of 13.84% in the Dice coefficient, with peak enhancements reaching 20.78%. The method demonstrates good generalization to complex geometries and fast inference times, making it suitable for integration into design workflows using regular workstations. Limitations include the sensitivity to non-max suppression thresholds. YOLOv8-TO represents a significant advancement in topology optimization post-processing, enabling efficient and accurate reverse engineering of optimized structures for design exploration and manufacturing.

TwinTex: Geometry-aware Texture Generation for Abstracted 3D Architectural Models

Coarse architectural models are often generated at scales ranging from individual buildings to scenes for downstream applications such as Digital Twin City, Metaverse, LODs, etc. Such piece-wise planar models can be abstracted as twins from 3D dense reconstructions. However, these models typically lack realistic texture relative to the real building or scene, making them unsuitable for vivid display or direct reference. In this paper, we present TwinTex, the first automatic texture mapping framework to generate a photo-realistic texture for a piece-wise planar proxy. Our method addresses most challenges occurring in such twin texture generation. Specifically, for each primitive plane, we first select a small set of photos with greedy heuristics considering photometric quality, perspective quality and facade texture completeness. Then, different levels of line features (LoLs) are extracted from the set of selected photos to generate guidance for later steps. With LoLs, we employ optimization algorithms to align texture with geometry from local to global. Finally, we fine-tune a diffusion model with a multi-mask initialization component and a new dataset to inpaint the missing region. Experimental results on many buildings, indoor scenes and man-made objects of varying complexity demonstrate the generalization ability of our algorithm. Our approach surpasses state-of-the-art texture mapping methods in terms of high-fidelity quality and reaches a human-expert production level with much less effort. Project page: https://vcc.tech/research/2023/TwinTex.

SweetDreamer: Aligning Geometric Priors in 2D Diffusion for Consistent Text-to-3D

It is inherently ambiguous to lift 2D results from pre-trained diffusion models to a 3D world for text-to-3D generation. 2D diffusion models solely learn view-agnostic priors and thus lack 3D knowledge during the lifting, leading to the multi-view inconsistency problem. We find that this problem primarily stems from geometric inconsistency, and avoiding misplaced geometric structures substantially mitigates the problem in the final outputs. Therefore, we improve the consistency by aligning the 2D geometric priors in diffusion models with well-defined 3D shapes during the lifting, addressing the vast majority of the problem. This is achieved by fine-tuning the 2D diffusion model to be viewpoint-aware and to produce view-specific coordinate maps of canonically oriented 3D objects. In our process, only coarse 3D information is used for aligning. This "coarse" alignment not only resolves the multi-view inconsistency in geometries but also retains the ability in 2D diffusion models to generate detailed and diversified high-quality objects unseen in the 3D datasets. Furthermore, our aligned geometric priors (AGP) are generic and can be seamlessly integrated into various state-of-the-art pipelines, obtaining high generalizability in terms of unseen shapes and visual appearance while greatly alleviating the multi-view inconsistency problem. Our method represents a new state-of-the-art performance with an 85+% consistency rate by human evaluation, while many previous methods are around 30%. Our project page is https://sweetdreamer3d.github.io/

Isomorphic-Consistent Variational Graph Auto-Encoders for Multi-Level Graph Representation Learning

Graph representation learning is a fundamental research theme and can be generalized to benefit multiple downstream tasks from the node and link levels to the higher graph level. In practice, it is desirable to develop task-agnostic general graph representation learning methods that are typically trained in an unsupervised manner. Related research reveals that the power of graph representation learning methods depends on whether they can differentiate distinct graph structures as different embeddings and map isomorphic graphs to consistent embeddings (i.e., the isomorphic consistency of graph models). However, for task-agnostic general graph representation learning, existing unsupervised graph models, represented by the variational graph auto-encoders (VGAEs), can only keep the isomorphic consistency within the subgraphs of 1-hop neighborhoods and thus usually manifest inferior performance on the more difficult higher-level tasks. To overcome the limitations of existing unsupervised methods, in this paper, we propose the Isomorphic-Consistent VGAE (IsoC-VGAE) for multi-level task-agnostic graph representation learning. We first devise a decoding scheme to provide a theoretical guarantee of keeping the isomorphic consistency under the settings of unsupervised learning. We then propose the Inverse Graph Neural Network (Inv-GNN) decoder as its intuitive realization, which trains the model via reconstructing the GNN node embeddings with multi-hop neighborhood information, so as to maintain the high-order isomorphic consistency within the VGAE framework. We conduct extensive experiments on the representative graph learning tasks at different levels, including node classification, link prediction and graph classification, and the results verify that our proposed model generally outperforms both the state-of-the-art unsupervised methods and representative supervised methods.

Feat2GS: Probing Visual Foundation Models with Gaussian Splatting

Given that visual foundation models (VFMs) are trained on extensive datasets but often limited to 2D images, a natural question arises: how well do they understand the 3D world? With the differences in architecture and training protocols (i.e., objectives, proxy tasks), a unified framework to fairly and comprehensively probe their 3D awareness is urgently needed. Existing works on 3D probing suggest single-view 2.5D estimation (e.g., depth and normal) or two-view sparse 2D correspondence (e.g., matching and tracking). Unfortunately, these tasks ignore texture awareness, and require 3D data as ground-truth, which limits the scale and diversity of their evaluation set. To address these issues, we introduce Feat2GS, which readout 3D Gaussians attributes from VFM features extracted from unposed images. This allows us to probe 3D awareness for geometry and texture via novel view synthesis, without requiring 3D data. Additionally, the disentanglement of 3DGS parameters - geometry (x, alpha, Sigma) and texture (c) - enables separate analysis of texture and geometry awareness. Under Feat2GS, we conduct extensive experiments to probe the 3D awareness of several VFMs, and investigate the ingredients that lead to a 3D aware VFM. Building on these findings, we develop several variants that achieve state-of-the-art across diverse datasets. This makes Feat2GS useful for probing VFMs, and as a simple-yet-effective baseline for novel-view synthesis. Code and data will be made available at https://fanegg.github.io/Feat2GS/.

TiVy: Time Series Visual Summary for Scalable Visualization

Visualizing multiple time series presents fundamental tradeoffs between scalability and visual clarity. Time series capture the behavior of many large-scale real-world processes, from stock market trends to urban activities. Users often gain insights by visualizing them as line charts, juxtaposing or superposing multiple time series to compare them and identify trends and patterns. However, existing representations struggle with scalability: when covering long time spans, leading to visual clutter from too many small multiples or overlapping lines. We propose TiVy, a new algorithm that summarizes time series using sequential patterns. It transforms the series into a set of symbolic sequences based on subsequence visual similarity using Dynamic Time Warping (DTW), then constructs a disjoint grouping of similar subsequences based on the frequent sequential patterns. The grouping result, a visual summary of time series, provides uncluttered superposition with fewer small multiples. Unlike common clustering techniques, TiVy extracts similar subsequences (of varying lengths) aligned in time. We also present an interactive time series visualization that renders large-scale time series in real-time. Our experimental evaluation shows that our algorithm (1) extracts clear and accurate patterns when visualizing time series data, (2) achieves a significant speed-up (1000X) compared to a straightforward DTW clustering. We also demonstrate the efficiency of our approach to explore hidden structures in massive time series data in two usage scenarios.

Crystal Diffusion Variational Autoencoder for Periodic Material Generation

Generating the periodic structure of stable materials is a long-standing challenge for the material design community. This task is difficult because stable materials only exist in a low-dimensional subspace of all possible periodic arrangements of atoms: 1) the coordinates must lie in the local energy minimum defined by quantum mechanics, and 2) global stability also requires the structure to follow the complex, yet specific bonding preferences between different atom types. Existing methods fail to incorporate these factors and often lack proper invariances. We propose a Crystal Diffusion Variational Autoencoder (CDVAE) that captures the physical inductive bias of material stability. By learning from the data distribution of stable materials, the decoder generates materials in a diffusion process that moves atomic coordinates towards a lower energy state and updates atom types to satisfy bonding preferences between neighbors. Our model also explicitly encodes interactions across periodic boundaries and respects permutation, translation, rotation, and periodic invariances. We significantly outperform past methods in three tasks: 1) reconstructing the input structure, 2) generating valid, diverse, and realistic materials, and 3) generating materials that optimize a specific property. We also provide several standard datasets and evaluation metrics for the broader machine learning community.

Stable Vectorization of Multiparameter Persistent Homology using Signed Barcodes as Measures

Persistent homology (PH) provides topological descriptors for geometric data, such as weighted graphs, which are interpretable, stable to perturbations, and invariant under, e.g., relabeling. Most applications of PH focus on the one-parameter case -- where the descriptors summarize the changes in topology of data as it is filtered by a single quantity of interest -- and there is now a wide array of methods enabling the use of one-parameter PH descriptors in data science, which rely on the stable vectorization of these descriptors as elements of a Hilbert space. Although the multiparameter PH (MPH) of data that is filtered by several quantities of interest encodes much richer information than its one-parameter counterpart, the scarceness of stability results for MPH descriptors has so far limited the available options for the stable vectorization of MPH. In this paper, we aim to bring together the best of both worlds by showing how the interpretation of signed barcodes -- a recent family of MPH descriptors -- as signed measures leads to natural extensions of vectorization strategies from one parameter to multiple parameters. The resulting feature vectors are easy to define and to compute, and provably stable. While, as a proof of concept, we focus on simple choices of signed barcodes and vectorizations, we already see notable performance improvements when comparing our feature vectors to state-of-the-art topology-based methods on various types of data.

Dual Structure-Aware Image Filterings for Semi-supervised Medical Image Segmentation

Semi-supervised image segmentation has attracted great attention recently. The key is how to leverage unlabeled images in the training process. Most methods maintain consistent predictions of the unlabeled images under variations (e.g., adding noise/perturbations, or creating alternative versions) in the image and/or model level. In most image-level variation, medical images often have prior structure information, which has not been well explored. In this paper, we propose novel dual structure-aware image filterings (DSAIF) as the image-level variations for semi-supervised medical image segmentation. Motivated by connected filtering that simplifies image via filtering in structure-aware tree-based image representation, we resort to the dual contrast invariant Max-tree and Min-tree representation. Specifically, we propose a novel connected filtering that removes topologically equivalent nodes (i.e. connected components) having no siblings in the Max/Min-tree. This results in two filtered images preserving topologically critical structure. Applying the proposed DSAIF to mutually supervised networks decreases the consensus of their erroneous predictions on unlabeled images. This helps to alleviate the confirmation bias issue of overfitting to noisy pseudo labels of unlabeled images, and thus effectively improves the segmentation performance. Extensive experimental results on three benchmark datasets demonstrate that the proposed method significantly/consistently outperforms some state-of-the-art methods. The source codes will be publicly available.

Compact 3D Scene Representation via Self-Organizing Gaussian Grids

3D Gaussian Splatting has recently emerged as a highly promising technique for modeling of static 3D scenes. In contrast to Neural Radiance Fields, it utilizes efficient rasterization allowing for very fast rendering at high-quality. However, the storage size is significantly higher, which hinders practical deployment, e.g.~on resource constrained devices. In this paper, we introduce a compact scene representation organizing the parameters of 3D Gaussian Splatting (3DGS) into a 2D grid with local homogeneity, ensuring a drastic reduction in storage requirements without compromising visual quality during rendering. Central to our idea is the explicit exploitation of perceptual redundancies present in natural scenes. In essence, the inherent nature of a scene allows for numerous permutations of Gaussian parameters to equivalently represent it. To this end, we propose a novel highly parallel algorithm that regularly arranges the high-dimensional Gaussian parameters into a 2D grid while preserving their neighborhood structure. During training, we further enforce local smoothness between the sorted parameters in the grid. The uncompressed Gaussians use the same structure as 3DGS, ensuring a seamless integration with established renderers. Our method achieves a reduction factor of 8x to 26x in size for complex scenes with no increase in training time, marking a substantial leap forward in the domain of 3D scene distribution and consumption. Additional information can be found on our project page: https://fraunhoferhhi.github.io/Self-Organizing-Gaussians/

Attention-based Dynamic Subspace Learners for Medical Image Analysis

Learning similarity is a key aspect in medical image analysis, particularly in recommendation systems or in uncovering the interpretation of anatomical data in images. Most existing methods learn such similarities in the embedding space over image sets using a single metric learner. Images, however, have a variety of object attributes such as color, shape, or artifacts. Encoding such attributes using a single metric learner is inadequate and may fail to generalize. Instead, multiple learners could focus on separate aspects of these attributes in subspaces of an overarching embedding. This, however, implies the number of learners to be found empirically for each new dataset. This work, Dynamic Subspace Learners, proposes to dynamically exploit multiple learners by removing the need of knowing apriori the number of learners and aggregating new subspace learners during training. Furthermore, the visual interpretability of such subspace learning is enforced by integrating an attention module into our method. This integrated attention mechanism provides a visual insight of discriminative image features that contribute to the clustering of image sets and a visual explanation of the embedding features. The benefits of our attention-based dynamic subspace learners are evaluated in the application of image clustering, image retrieval, and weakly supervised segmentation. Our method achieves competitive results with the performances of multiple learners baselines and significantly outperforms the classification network in terms of clustering and retrieval scores on three different public benchmark datasets. Moreover, our attention maps offer a proxy-labels, which improves the segmentation accuracy up to 15% in Dice scores when compared to state-of-the-art interpretation techniques.

From Graphs to Hypergraphs: Hypergraph Projection and its Remediation

We study the implications of the modeling choice to use a graph, instead of a hypergraph, to represent real-world interconnected systems whose constituent relationships are of higher order by nature. Such a modeling choice typically involves an underlying projection process that maps the original hypergraph onto a graph, and is common in graph-based analysis. While hypergraph projection can potentially lead to loss of higher-order relations, there exists very limited studies on the consequences of doing so, as well as its remediation. This work fills this gap by doing two things: (1) we develop analysis based on graph and set theory, showing two ubiquitous patterns of hyperedges that are root to structural information loss in all hypergraph projections; we also quantify the combinatorial impossibility of recovering the lost higher-order structures if no extra help is provided; (2) we still seek to recover the lost higher-order structures in hypergraph projection, and in light of (1)'s findings we propose to relax the problem into a learning-based setting. Under this setting, we develop a learning-based hypergraph reconstruction method based on an important statistic of hyperedge distributions that we find. Our reconstruction method is evaluated on 8 real-world datasets under different settings, and exhibits consistently good performance. We also demonstrate benefits of the reconstructed hypergraphs via use cases of protein rankings and link predictions.

Diffeomorphic Mesh Deformation via Efficient Optimal Transport for Cortical Surface Reconstruction

Mesh deformation plays a pivotal role in many 3D vision tasks including dynamic simulations, rendering, and reconstruction. However, defining an efficient discrepancy between predicted and target meshes remains an open problem. A prevalent approach in current deep learning is the set-based approach which measures the discrepancy between two surfaces by comparing two randomly sampled point-clouds from the two meshes with Chamfer pseudo-distance. Nevertheless, the set-based approach still has limitations such as lacking a theoretical guarantee for choosing the number of points in sampled point-clouds, and the pseudo-metricity and the quadratic complexity of the Chamfer divergence. To address these issues, we propose a novel metric for learning mesh deformation. The metric is defined by sliced Wasserstein distance on meshes represented as probability measures that generalize the set-based approach. By leveraging probability measure space, we gain flexibility in encoding meshes using diverse forms of probability measures, such as continuous, empirical, and discrete measures via varifold representation. After having encoded probability measures, we can compare meshes by using the sliced Wasserstein distance which is an effective optimal transport distance with linear computational complexity and can provide a fast statistical rate for approximating the surface of meshes. To the end, we employ a neural ordinary differential equation (ODE) to deform the input surface into the target shape by modeling the trajectories of the points on the surface. Our experiments on cortical surface reconstruction demonstrate that our approach surpasses other competing methods in multiple datasets and metrics.

PairingNet: A Learning-based Pair-searching and -matching Network for Image Fragments

In this paper, we propose a learning-based image fragment pair-searching and -matching approach to solve the challenging restoration problem. Existing works use rule-based methods to match similar contour shapes or textures, which are always difficult to tune hyperparameters for extensive data and computationally time-consuming. Therefore, we propose a neural network that can effectively utilize neighbor textures with contour shape information to fundamentally improve performance. First, we employ a graph-based network to extract the local contour and texture features of fragments. Then, for the pair-searching task, we adopt a linear transformer-based module to integrate these local features and use contrastive loss to encode the global features of each fragment. For the pair-matching task, we design a weighted fusion module to dynamically fuse extracted local contour and texture features, and formulate a similarity matrix for each pair of fragments to calculate the matching score and infer the adjacent segment of contours. To faithfully evaluate our proposed network, we created a new image fragment dataset through an algorithm we designed that tears complete images into irregular fragments. The experimental results show that our proposed network achieves excellent pair-searching accuracy, reduces matching errors, and significantly reduces computational time. Details, sourcecode, and data are available in our supplementary material.

Learning Low-Rank Representations for Model Compression

Vector Quantization (VQ) is an appealing model compression method to obtain a tiny model with less accuracy loss. While methods to obtain better codebooks and codes under fixed clustering dimensionality have been extensively studied, optimizations of the vectors in favour of clustering performance are not carefully considered, especially via the reduction of vector dimensionality. This paper reports our recent progress on the combination of dimensionality compression and vector quantization, proposing a Low-Rank Representation Vector Quantization (LR^2VQ) method that outperforms previous VQ algorithms in various tasks and architectures. LR^2VQ joins low-rank representation with subvector clustering to construct a new kind of building block that is directly optimized through end-to-end training over the task loss. Our proposed design pattern introduces three hyper-parameters, the number of clusters k, the size of subvectors m and the clustering dimensionality d. In our method, the compression ratio could be directly controlled by m, and the final accuracy is solely determined by d. We recognize d as a trade-off between low-rank approximation error and clustering error and carry out both theoretical analysis and experimental observations that empower the estimation of the proper d before fine-tunning. With a proper d, we evaluate LR^2VQ with ResNet-18/ResNet-50 on ImageNet classification datasets, achieving 2.8\%/1.0\% top-1 accuracy improvements over the current state-of-the-art VQ-based compression algorithms with 43times/31times compression factor.

Part123: Part-aware 3D Reconstruction from a Single-view Image

Recently, the emergence of diffusion models has opened up new opportunities for single-view reconstruction. However, all the existing methods represent the target object as a closed mesh devoid of any structural information, thus neglecting the part-based structure, which is crucial for many downstream applications, of the reconstructed shape. Moreover, the generated meshes usually suffer from large noises, unsmooth surfaces, and blurry textures, making it challenging to obtain satisfactory part segments using 3D segmentation techniques. In this paper, we present Part123, a novel framework for part-aware 3D reconstruction from a single-view image. We first use diffusion models to generate multiview-consistent images from a given image, and then leverage Segment Anything Model (SAM), which demonstrates powerful generalization ability on arbitrary objects, to generate multiview segmentation masks. To effectively incorporate 2D part-based information into 3D reconstruction and handle inconsistency, we introduce contrastive learning into a neural rendering framework to learn a part-aware feature space based on the multiview segmentation masks. A clustering-based algorithm is also developed to automatically derive 3D part segmentation results from the reconstructed models. Experiments show that our method can generate 3D models with high-quality segmented parts on various objects. Compared to existing unstructured reconstruction methods, the part-aware 3D models from our method benefit some important applications, including feature-preserving reconstruction, primitive fitting, and 3D shape editing.

FreeCOS: Self-Supervised Learning from Fractals and Unlabeled Images for Curvilinear Object Segmentation

Curvilinear object segmentation is critical for many applications. However, manually annotating curvilinear objects is very time-consuming and error-prone, yielding insufficiently available annotated datasets for existing supervised methods and domain adaptation methods. This paper proposes a self-supervised curvilinear object segmentation method that learns robust and distinctive features from fractals and unlabeled images (FreeCOS). The key contributions include a novel Fractal-FDA synthesis (FFS) module and a geometric information alignment (GIA) approach. FFS generates curvilinear structures based on the parametric Fractal L-system and integrates the generated structures into unlabeled images to obtain synthetic training images via Fourier Domain Adaptation. GIA reduces the intensity differences between the synthetic and unlabeled images by comparing the intensity order of a given pixel to the values of its nearby neighbors. Such image alignment can explicitly remove the dependency on absolute intensity values and enhance the inherent geometric characteristics which are common in both synthetic and real images. In addition, GIA aligns features of synthetic and real images via the prediction space adaptation loss (PSAL) and the curvilinear mask contrastive loss (CMCL). Extensive experimental results on four public datasets, i.e., XCAD, DRIVE, STARE and CrackTree demonstrate that our method outperforms the state-of-the-art unsupervised methods, self-supervised methods and traditional methods by a large margin. The source code of this work is available at https://github.com/TY-Shi/FreeCOS.

Disentangled Structural and Featural Representation for Task-Agnostic Graph Valuation

With the emergence of data marketplaces, the demand for methods to assess the value of data has increased significantly. While numerous techniques have been proposed for this purpose, none have specifically addressed graphs as the main data modality. Graphs are widely used across various fields, ranging from chemical molecules to social networks. In this study, we break down graphs into two main components: structural and featural, and we focus on evaluating data without relying on specific task-related metrics, making it applicable in practical scenarios where validation requirements may be lacking. We introduce a novel framework called blind message passing, which aligns the seller's and buyer's graphs using a shared node permutation based on graph matching. This allows us to utilize the graph Wasserstein distance to quantify the differences in the structural distribution of graph datasets, called the structural disparities. We then consider featural aspects of buyers' and sellers' graphs for data valuation and capture their statistical similarities and differences, referred to as relevance and diversity, respectively. Our approach ensures that buyers and sellers remain unaware of each other's datasets. Our experiments on real datasets demonstrate the effectiveness of our approach in capturing the relevance, diversity, and structural disparities of seller data for buyers, particularly in graph-based data valuation scenarios.

Adaptive Multi-head Contrastive Learning

In contrastive learning, two views of an original image, generated by different augmentations, are considered a positive pair, and their similarity is required to be high. Similarly, two views of distinct images form a negative pair, with encouraged low similarity. Typically, a single similarity measure, provided by a lone projection head, evaluates positive and negative sample pairs. However, due to diverse augmentation strategies and varying intra-sample similarity, views from the same image may not always be similar. Additionally, owing to inter-sample similarity, views from different images may be more akin than those from the same image. Consequently, enforcing high similarity for positive pairs and low similarity for negative pairs may be unattainable, and in some cases, such enforcement could detrimentally impact performance. To address this challenge, we propose using multiple projection heads, each producing a distinct set of features. Our pre-training loss function emerges from a solution to the maximum likelihood estimation over head-wise posterior distributions of positive samples given observations. This loss incorporates the similarity measure over positive and negative pairs, each re-weighted by an individual adaptive temperature, regulated to prevent ill solutions. Our approach, Adaptive Multi-Head Contrastive Learning (AMCL), can be applied to and experimentally enhances several popular contrastive learning methods such as SimCLR, MoCo, and Barlow Twins. The improvement remains consistent across various backbones and linear probing epochs, and becomes more significant when employing multiple augmentation methods.

View-Consistent Hierarchical 3D Segmentation Using Ultrametric Feature Fields

Large-scale vision foundation models such as Segment Anything (SAM) demonstrate impressive performance in zero-shot image segmentation at multiple levels of granularity. However, these zero-shot predictions are rarely 3D-consistent. As the camera viewpoint changes in a scene, so do the segmentation predictions, as well as the characterizations of "coarse" or "fine" granularity. In this work, we address the challenging task of lifting multi-granular and view-inconsistent image segmentations into a hierarchical and 3D-consistent representation. We learn a novel feature field within a Neural Radiance Field (NeRF) representing a 3D scene, whose segmentation structure can be revealed at different scales by simply using different thresholds on feature distance. Our key idea is to learn an ultrametric feature space, which unlike a Euclidean space, exhibits transitivity in distance-based grouping, naturally leading to a hierarchical clustering. Put together, our method takes view-inconsistent multi-granularity 2D segmentations as input and produces a hierarchy of 3D-consistent segmentations as output. We evaluate our method and several baselines on synthetic datasets with multi-view images and multi-granular segmentation, showcasing improved accuracy and viewpoint-consistency. We additionally provide qualitative examples of our model's 3D hierarchical segmentations in real world scenes. The code and dataset are available at https://github.com/hardyho/ultrametric_feature_fields

RDesign: Hierarchical Data-efficient Representation Learning for Tertiary Structure-based RNA Design

While artificial intelligence has made remarkable strides in revealing the relationship between biological macromolecules' primary sequence and tertiary structure, designing RNA sequences based on specified tertiary structures remains challenging. Though existing approaches in protein design have thoroughly explored structure-to-sequence dependencies in proteins, RNA design still confronts difficulties due to structural complexity and data scarcity. Moreover, direct transplantation of protein design methodologies into RNA design fails to achieve satisfactory outcomes although sharing similar structural components. In this study, we aim to systematically construct a data-driven RNA design pipeline. We crafted a large, well-curated benchmark dataset and designed a comprehensive structural modeling approach to represent the complex RNA tertiary structure. More importantly, we proposed a hierarchical data-efficient representation learning framework that learns structural representations through contrastive learning at both cluster-level and sample-level to fully leverage the limited data. By constraining data representations within a limited hyperspherical space, the intrinsic relationships between data points could be explicitly imposed. Moreover, we incorporated extracted secondary structures with base pairs as prior knowledge to facilitate the RNA design process. Extensive experiments demonstrate the effectiveness of our proposed method, providing a reliable baseline for future RNA design tasks. The source code and benchmark dataset are available at https://github.com/A4Bio/RDesign.

Breaking the Entanglement of Homophily and Heterophily in Semi-supervised Node Classification

Recently, graph neural networks (GNNs) have shown prominent performance in semi-supervised node classification by leveraging knowledge from the graph database. However, most existing GNNs follow the homophily assumption, where connected nodes are more likely to exhibit similar feature distributions and the same labels, and such an assumption has proven to be vulnerable in a growing number of practical applications. As a supplement, heterophily reflects dissimilarity in connected nodes, which has gained significant attention in graph learning. To this end, data engineers aim to develop a powerful GNN model that can ensure performance under both homophily and heterophily. Despite numerous attempts, most existing GNNs struggle to achieve optimal node representations due to the constraints of undirected graphs. The neglect of directed edges results in sub-optimal graph representations, thereby hindering the capacity of GNNs. To address this issue, we introduce AMUD, which quantifies the relationship between node profiles and topology from a statistical perspective, offering valuable insights for Adaptively Modeling the natural directed graphs as the Undirected or Directed graph to maximize the benefits from subsequent graph learning. Furthermore, we propose Adaptive Directed Pattern Aggregation (ADPA) as a new directed graph learning paradigm for AMUD. Empirical studies have demonstrated that AMUD guides efficient graph learning. Meanwhile, extensive experiments on 14 benchmark datasets substantiate the impressive performance of ADPA, outperforming baselines by significant margins of 3.96\%.