new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jul 29

Scaling Laws with Vocabulary: Larger Models Deserve Larger Vocabularies

Research on scaling large language models (LLMs) has primarily focused on model parameters and training data size, overlooking the role of vocabulary size. % Intuitively, larger vocabularies enable more efficient tokenization by representing sentences with fewer tokens, but they also increase the risk of under-fitting representations for rare tokens. We investigate how vocabulary size impacts LLM scaling laws by training models ranging from 33M to 3B parameters on up to 500B characters with various vocabulary configurations. We propose three complementary approaches for predicting the compute-optimal vocabulary size: IsoFLOPs analysis, derivative estimation, and parametric fit of the loss function. Our approaches converge on the same result that the optimal vocabulary size depends on the available compute budget and that larger models deserve larger vocabularies. However, most LLMs use too small vocabulary sizes. For example, we predict that the optimal vocabulary size of Llama2-70B should have been at least 216K, 7 times larger than its vocabulary of 32K. We validate our predictions empirically by training models with 3B parameters across different FLOPs budgets. Adopting our predicted optimal vocabulary size consistently improves downstream performance over commonly used vocabulary sizes. By increasing the vocabulary size from the conventional 32K to 43K, we improve performance on ARC-Challenge from 29.1 to 32.0 with the same 2.3e21 FLOPs. Our work emphasizes the necessity of jointly considering model parameters and vocabulary size for efficient scaling.

EoRA: Training-free Compensation for Compressed LLM with Eigenspace Low-Rank Approximation

In this work, we re-formulate the model compression problem into the customized compensation problem: Given a compressed model, we aim to introduce residual low-rank paths to compensate for compression errors under customized requirements from users (e.g., tasks, compression ratios), resulting in greater flexibility in adjusting overall capacity without being constrained by specific compression formats. However, naively applying SVD to derive residual paths causes suboptimal utilization of the low-rank representation capacity. Instead, we propose Training-free Eigenspace Low-Rank Approximation (EoRA), a method that directly minimizes compression-induced errors without requiring gradient-based training, achieving fast optimization in minutes using a small amount of calibration data. EoRA projects compression errors into the eigenspace of input activations, leveraging eigenvalues to effectively prioritize the reconstruction of high-importance error components. Moreover, EoRA can be seamlessly integrated with fine-tuning and quantization to further improve effectiveness and efficiency. EoRA consistently outperforms previous methods in compensating errors for compressed LLaMA2/3 models on various tasks, such as language generation, commonsense reasoning, and math reasoning tasks (e.g., 31.31%/12.88% and 9.69% improvements on ARC-Easy/ARC-Challenge and MathQA when compensating LLaMA3-8B that is quantized to 4-bit and pruned to 2:4 sparsity). EoRA offers a scalable, training-free solution to compensate for compression errors, making it a powerful tool to deploy LLMs in various capacity and efficiency requirements.

Divide and Conquer for Large Language Models Reasoning

Large language models (LLMs) have shown impressive performance in various reasoning benchmarks with the emergence of Chain-of-Thought (CoT) and its derivative methods, particularly in tasks involving multi-choice questions (MCQs). However, current works all process data uniformly without considering the problem-solving difficulty, which means an excessive focus on simple questions while insufficient to intricate ones. To address this challenge, we inspired by humans using heuristic strategies to categorize tasks and handle them individually, propose to apply the Divide and Conquer to LLMs reasoning. First, we divide questions into different subsets based on the statistical confidence score (CS), then fix nearly resolved sets and conquer demanding nuanced process ones with elaborately designed methods, including Prior Knowledge based Reasoning (PKR) and Filter Choices based Reasoning (FCR), as well as their integration variants. Our experiments demonstrate that this proposed strategy significantly boosts the models' reasoning abilities across nine datasets involving arithmetic, commonsense, and logic tasks. For instance, compared to baseline, we make a striking improvement on low confidence subsets of 8.72\% for AQuA, 15.07\% for ARC Challenge and 7.71\% for RiddleSense. In addition, through extensive analysis on length of rationale and number of options, we verify that longer reasoning paths in PKR could prevent models from referring infer-harmful shortcuts, and also find that removing irrelevant choices in FCR would substantially avoid models' confusion. The code is at https://github.com/AiMijie/Divide-and-Conquer

Arc-support Line Segments Revisited: An Efficient and High-quality Ellipse Detection

Over the years many ellipse detection algorithms spring up and are studied broadly, while the critical issue of detecting ellipses accurately and efficiently in real-world images remains a challenge. In this paper, we propose a valuable industry-oriented ellipse detector by arc-support line segments, which simultaneously reaches high detection accuracy and efficiency. To simplify the complicated curves in an image while retaining the general properties including convexity and polarity, the arc-support line segments are extracted, which grounds the successful detection of ellipses. The arc-support groups are formed by iteratively and robustly linking the arc-support line segments that latently belong to a common ellipse. Afterward, two complementary approaches, namely, locally selecting the arc-support group with higher saliency and globally searching all the valid paired groups, are adopted to fit the initial ellipses in a fast way. Then, the ellipse candidate set can be formulated by hierarchical clustering of 5D parameter space of initial ellipses. Finally, the salient ellipse candidates are selected and refined as detections subject to the stringent and effective verification. Extensive experiments on three public datasets are implemented and our method achieves the best F-measure scores compared to the state-of-the-art methods. The source code is available at https://github.com/AlanLuSun/High-quality-ellipse-detection.

Adaptive Rotated Convolution for Rotated Object Detection

Rotated object detection aims to identify and locate objects in images with arbitrary orientation. In this scenario, the oriented directions of objects vary considerably across different images, while multiple orientations of objects exist within an image. This intrinsic characteristic makes it challenging for standard backbone networks to extract high-quality features of these arbitrarily orientated objects. In this paper, we present Adaptive Rotated Convolution (ARC) module to handle the aforementioned challenges. In our ARC module, the convolution kernels rotate adaptively to extract object features with varying orientations in different images, and an efficient conditional computation mechanism is introduced to accommodate the large orientation variations of objects within an image. The two designs work seamlessly in rotated object detection problem. Moreover, ARC can conveniently serve as a plug-and-play module in various vision backbones to boost their representation ability to detect oriented objects accurately. Experiments on commonly used benchmarks (DOTA and HRSC2016) demonstrate that equipped with our proposed ARC module in the backbone network, the performance of multiple popular oriented object detectors is significantly improved (e.g. +3.03% mAP on Rotated RetinaNet and +4.16% on CFA). Combined with the highly competitive method Oriented R-CNN, the proposed approach achieves state-of-the-art performance on the DOTA dataset with 81.77% mAP.

The Jumping Reasoning Curve? Tracking the Evolution of Reasoning Performance in GPT-[n] and o-[n] Models on Multimodal Puzzles

The releases of OpenAI's o1 and o3 mark a significant paradigm shift in Large Language Models towards advanced reasoning capabilities. Notably, o3 outperformed humans in novel problem-solving and skill acquisition on the Abstraction and Reasoning Corpus for Artificial General Intelligence (ARC-AGI). However, this benchmark is limited to symbolic patterns, whereas humans often perceive and reason about multimodal scenarios involving both vision and language data. Thus, there is an urgent need to investigate advanced reasoning capabilities in multimodal tasks. To this end, we track the evolution of the GPT-[n] and o-[n] series models on challenging multimodal puzzles, requiring fine-grained visual perception with abstract or algorithmic reasoning. The superior performance of o1 comes at nearly 750 times the computational cost of GPT-4o, raising concerns about its efficiency. Our results reveal a clear upward trend in reasoning capabilities across model iterations, with notable performance jumps across GPT-series models and subsequently to o1. Nonetheless, we observe that the o1 model still struggles with simple multimodal puzzles requiring abstract reasoning. Furthermore, its performance in algorithmic puzzles remains poor. We plan to continuously track new models in the series and update our results in this paper accordingly. All resources used in this evaluation are openly available https://github.com/declare-lab/LLM-PuzzleTest.

Common Sense Is All You Need

Artificial intelligence (AI) has made significant strides in recent years, yet it continues to struggle with a fundamental aspect of cognition present in all animals: common sense. Current AI systems, including those designed for complex tasks like autonomous driving, problem-solving challenges such as the Abstraction and Reasoning Corpus (ARC), and conversational benchmarks like the Turing Test, often lack the ability to adapt to new situations without extensive prior knowledge. This manuscript argues that integrating common sense into AI systems is essential for achieving true autonomy and unlocking the full societal and commercial value of AI. We propose a shift in the order of knowledge acquisition emphasizing the importance of developing AI systems that start from minimal prior knowledge and are capable of contextual learning, adaptive reasoning, and embodiment -- even within abstract domains. Additionally, we highlight the need to rethink the AI software stack to address this foundational challenge. Without common sense, AI systems may never reach true autonomy, instead exhibiting asymptotic performance that approaches theoretical ideals like AIXI but remains unattainable in practice due to infinite resource and computation requirements. While scaling AI models and passing benchmarks like the Turing Test have brought significant advancements in applications that do not require autonomy, these approaches alone are insufficient to achieve autonomous AI with common sense. By redefining existing benchmarks and challenges to enforce constraints that require genuine common sense, and by broadening our understanding of embodiment to include both physical and abstract domains, we can encourage the development of AI systems better equipped to handle the complexities of real-world and abstract environments.

V3Det Challenge 2024 on Vast Vocabulary and Open Vocabulary Object Detection: Methods and Results

Detecting objects in real-world scenes is a complex task due to various challenges, including the vast range of object categories, and potential encounters with previously unknown or unseen objects. The challenges necessitate the development of public benchmarks and challenges to advance the field of object detection. Inspired by the success of previous COCO and LVIS Challenges, we organize the V3Det Challenge 2024 in conjunction with the 4th Open World Vision Workshop: Visual Perception via Learning in an Open World (VPLOW) at CVPR 2024, Seattle, US. This challenge aims to push the boundaries of object detection research and encourage innovation in this field. The V3Det Challenge 2024 consists of two tracks: 1) Vast Vocabulary Object Detection: This track focuses on detecting objects from a large set of 13204 categories, testing the detection algorithm's ability to recognize and locate diverse objects. 2) Open Vocabulary Object Detection: This track goes a step further, requiring algorithms to detect objects from an open set of categories, including unknown objects. In the following sections, we will provide a comprehensive summary and analysis of the solutions submitted by participants. By analyzing the methods and solutions presented, we aim to inspire future research directions in vast vocabulary and open-vocabulary object detection, driving progress in this field. Challenge homepage: https://v3det.openxlab.org.cn/challenge

O1 Replication Journey: A Strategic Progress Report -- Part 1

This paper introduces a pioneering approach to artificial intelligence research, embodied in our O1 Replication Journey. In response to the announcement of OpenAI's groundbreaking O1 model, we embark on a transparent, real-time exploration to replicate its capabilities while reimagining the process of conducting and communicating AI research. Our methodology addresses critical challenges in modern AI research, including the insularity of prolonged team-based projects, delayed information sharing, and the lack of recognition for diverse contributions. By providing comprehensive, real-time documentation of our replication efforts, including both successes and failures, we aim to foster open science, accelerate collective advancement, and lay the groundwork for AI-driven scientific discovery. Our research progress report diverges significantly from traditional research papers, offering continuous updates, full process transparency, and active community engagement throughout the research journey. Technologically, we proposed the journey learning paradigm, which encourages models to learn not just shortcuts, but the complete exploration process, including trial and error, reflection, and backtracking. With only 327 training samples and without any additional tricks, journey learning outperformed conventional supervised learning by over 8\% on the MATH dataset, demonstrating its extremely powerful potential. We believe this to be the most crucial component of O1 technology that we have successfully decoded. We share valuable resources including technical hypotheses and insights, cognitive exploration maps, custom-developed tools, etc at https://github.com/GAIR-NLP/O1-Journey.

The MineRL BASALT Competition on Learning from Human Feedback

The last decade has seen a significant increase of interest in deep learning research, with many public successes that have demonstrated its potential. As such, these systems are now being incorporated into commercial products. With this comes an additional challenge: how can we build AI systems that solve tasks where there is not a crisp, well-defined specification? While multiple solutions have been proposed, in this competition we focus on one in particular: learning from human feedback. Rather than training AI systems using a predefined reward function or using a labeled dataset with a predefined set of categories, we instead train the AI system using a learning signal derived from some form of human feedback, which can evolve over time as the understanding of the task changes, or as the capabilities of the AI system improve. The MineRL BASALT competition aims to spur forward research on this important class of techniques. We design a suite of four tasks in Minecraft for which we expect it will be hard to write down hardcoded reward functions. These tasks are defined by a paragraph of natural language: for example, "create a waterfall and take a scenic picture of it", with additional clarifying details. Participants must train a separate agent for each task, using any method they want. Agents are then evaluated by humans who have read the task description. To help participants get started, we provide a dataset of human demonstrations on each of the four tasks, as well as an imitation learning baseline that leverages these demonstrations. Our hope is that this competition will improve our ability to build AI systems that do what their designers intend them to do, even when the intent cannot be easily formalized. Besides allowing AI to solve more tasks, this can also enable more effective regulation of AI systems, as well as making progress on the value alignment problem.

The Federated Tumor Segmentation (FeTS) Challenge

This manuscript describes the first challenge on Federated Learning, namely the Federated Tumor Segmentation (FeTS) challenge 2021. International challenges have become the standard for validation of biomedical image analysis methods. However, the actual performance of participating (even the winning) algorithms on "real-world" clinical data often remains unclear, as the data included in challenges are usually acquired in very controlled settings at few institutions. The seemingly obvious solution of just collecting increasingly more data from more institutions in such challenges does not scale well due to privacy and ownership hurdles. Towards alleviating these concerns, we are proposing the FeTS challenge 2021 to cater towards both the development and the evaluation of models for the segmentation of intrinsically heterogeneous (in appearance, shape, and histology) brain tumors, namely gliomas. Specifically, the FeTS 2021 challenge uses clinically acquired, multi-institutional magnetic resonance imaging (MRI) scans from the BraTS 2020 challenge, as well as from various remote independent institutions included in the collaborative network of a real-world federation (https://www.fets.ai/). The goals of the FeTS challenge are directly represented by the two included tasks: 1) the identification of the optimal weight aggregation approach towards the training of a consensus model that has gained knowledge via federated learning from multiple geographically distinct institutions, while their data are always retained within each institution, and 2) the federated evaluation of the generalizability of brain tumor segmentation models "in the wild", i.e. on data from institutional distributions that were not part of the training datasets.

STARC: A General Framework For Quantifying Differences Between Reward Functions

In order to solve a task using reinforcement learning, it is necessary to first formalise the goal of that task as a reward function. However, for many real-world tasks, it is very difficult to manually specify a reward function that never incentivises undesirable behaviour. As a result, it is increasingly popular to use reward learning algorithms, which attempt to learn a reward function from data. However, the theoretical foundations of reward learning are not yet well-developed. In particular, it is typically not known when a given reward learning algorithm with high probability will learn a reward function that is safe to optimise. This means that reward learning algorithms generally must be evaluated empirically, which is expensive, and that their failure modes are difficult to anticipate in advance. One of the roadblocks to deriving better theoretical guarantees is the lack of good methods for quantifying the difference between reward functions. In this paper we provide a solution to this problem, in the form of a class of pseudometrics on the space of all reward functions that we call STARC (STAndardised Reward Comparison) metrics. We show that STARC metrics induce both an upper and a lower bound on worst-case regret, which implies that our metrics are tight, and that any metric with the same properties must be bilipschitz equivalent to ours. Moreover, we also identify a number of issues with reward metrics proposed by earlier works. Finally, we evaluate our metrics empirically, to demonstrate their practical efficacy. STARC metrics can be used to make both theoretical and empirical analysis of reward learning algorithms both easier and more principled.

Programming Puzzles

We introduce a new type of programming challenge called programming puzzles, as an objective and comprehensive evaluation of program synthesis, and release an open-source dataset of Python Programming Puzzles (P3). Each puzzle is defined by a short Python program f, and the goal is to find an input which makes f return True. The puzzles are objective in that each one is specified entirely by the source code of its verifier f, so evaluating f is all that is needed to test a candidate solution. They do not require an answer key or input/output examples, nor do they depend on natural language understanding. The dataset is comprehensive in that it spans problems of a range of difficulties and domains, ranging from trivial string manipulation problems, to classic programming puzzles (e.g., Tower of Hanoi), to interview/competitive-programming problems (e.g., dynamic programming), to longstanding open problems in algorithms and mathematics (e.g., factoring). We develop baseline enumerative program synthesis, GPT-3 and Codex solvers that are capable of solving puzzles -- even without access to any reference solutions -- by learning from their own past solutions. Codex performs best, solving up to 18% of 397 test problems with a single try and 80% of the problems with 1,000 tries per problem. In a small user study, we find a positive correlation between puzzle-solving performance and coding experience, and between the puzzle difficulty for humans and AI solvers. Therefore, further improvements on P3 could have a significant impact on many program synthesis areas.

ChatGPT4PCG 2 Competition: Prompt Engineering for Science Birds Level Generation

This paper presents the second ChatGPT4PCG competition at the 2024 IEEE Conference on Games. In this edition of the competition, we follow the first edition, but make several improvements and changes. We introduce a new evaluation metric along with allowing a more flexible format for participants' submissions and making several improvements to the evaluation pipeline. Continuing from the first edition, we aim to foster and explore the realm of prompt engineering (PE) for procedural content generation (PCG). While the first competition saw success, it was hindered by various limitations; we aim to mitigate these limitations in this edition. We introduce diversity as a new metric to discourage submissions aimed at producing repetitive structures. Furthermore, we allow submission of a Python program instead of a prompt text file for greater flexibility in implementing advanced PE approaches, which may require control flow, including conditions and iterations. We also make several improvements to the evaluation pipeline with a better classifier for similarity evaluation and better-performing function signatures. We thoroughly evaluate the effectiveness of the new metric and the improved classifier. Additionally, we perform an ablation study to select a function signature to instruct ChatGPT for level generation. Finally, we provide implementation examples of various PE techniques in Python and evaluate their preliminary performance. We hope this competition serves as a resource and platform for learning about PE and PCG in general.

The Alzheimer's Disease Prediction Of Longitudinal Evolution (TADPOLE) Challenge: Results after 1 Year Follow-up

We present the findings of "The Alzheimer's Disease Prediction Of Longitudinal Evolution" (TADPOLE) Challenge, which compared the performance of 92 algorithms from 33 international teams at predicting the future trajectory of 219 individuals at risk of Alzheimer's disease. Challenge participants were required to make a prediction, for each month of a 5-year future time period, of three key outcomes: clinical diagnosis, Alzheimer's Disease Assessment Scale Cognitive Subdomain (ADAS-Cog13), and total volume of the ventricles. The methods used by challenge participants included multivariate linear regression, machine learning methods such as support vector machines and deep neural networks, as well as disease progression models. No single submission was best at predicting all three outcomes. For clinical diagnosis and ventricle volume prediction, the best algorithms strongly outperform simple baselines in predictive ability. However, for ADAS-Cog13 no single submitted prediction method was significantly better than random guesswork. Two ensemble methods based on taking the mean and median over all predictions, obtained top scores on almost all tasks. Better than average performance at diagnosis prediction was generally associated with the additional inclusion of features from cerebrospinal fluid (CSF) samples and diffusion tensor imaging (DTI). On the other hand, better performance at ventricle volume prediction was associated with inclusion of summary statistics, such as the slope or maxima/minima of biomarkers. TADPOLE's unique results suggest that current prediction algorithms provide sufficient accuracy to exploit biomarkers related to clinical diagnosis and ventricle volume, for cohort refinement in clinical trials for Alzheimer's disease. However, results call into question the usage of cognitive test scores for patient selection and as a primary endpoint in clinical trials.

AdaMoE: Token-Adaptive Routing with Null Experts for Mixture-of-Experts Language Models

Mixture of experts (MoE) has become the standard for constructing production-level large language models (LLMs) due to its promise to boost model capacity without causing significant overheads. Nevertheless, existing MoE methods usually enforce a constant top-k routing for all tokens, which is arguably restrictive because various tokens (e.g., "<EOS>" vs. "apple") may require various numbers of experts for feature abstraction. Lifting such a constraint can help make the most of limited resources and unleash the potential of the model for downstream tasks. In this sense, we introduce AdaMoE to realize token-adaptive routing for MoE, where different tokens are permitted to select a various number of experts. AdaMoE makes minimal modifications to the vanilla MoE with top-k routing -- it simply introduces a fixed number of null experts, which do not consume any FLOPs, to the expert set and increases the value of k. AdaMoE does not force each token to occupy a fixed number of null experts but ensures the average usage of the null experts with a load-balancing loss, leading to an adaptive number of null/true experts used by each token. AdaMoE exhibits a strong resemblance to MoEs with expert choice routing while allowing for trivial auto-regressive modeling. AdaMoE is easy to implement and can be effectively applied to pre-trained (MoE-)LLMs. Extensive studies show that AdaMoE can reduce average expert load (FLOPs) while achieving superior performance. For example, on the ARC-C dataset, applying our method to fine-tuning Mixtral-8x7B can reduce FLOPs by 14.5% while increasing accuracy by 1.69%.

ArchGym: An Open-Source Gymnasium for Machine Learning Assisted Architecture Design

Machine learning is a prevalent approach to tame the complexity of design space exploration for domain-specific architectures. Using ML for design space exploration poses challenges. First, it's not straightforward to identify the suitable algorithm from an increasing pool of ML methods. Second, assessing the trade-offs between performance and sample efficiency across these methods is inconclusive. Finally, lack of a holistic framework for fair, reproducible, and objective comparison across these methods hinders progress of adopting ML-aided architecture design space exploration and impedes creating repeatable artifacts. To mitigate these challenges, we introduce ArchGym, an open-source gym and easy-to-extend framework that connects diverse search algorithms to architecture simulators. To demonstrate utility, we evaluate ArchGym across multiple vanilla and domain-specific search algorithms in designing custom memory controller, deep neural network accelerators, and custom SoC for AR/VR workloads, encompassing over 21K experiments. Results suggest that with unlimited samples, ML algorithms are equally favorable to meet user-defined target specification if hyperparameters are tuned; no solution is necessarily better than another (e.g., reinforcement learning vs. Bayesian methods). We coin the term hyperparameter lottery to describe the chance for a search algorithm to find an optimal design provided meticulously selected hyperparameters. The ease of data collection and aggregation in ArchGym facilitates research in ML-aided architecture design space exploration. As a case study, we show this advantage by developing a proxy cost model with an RMSE of 0.61% that offers a 2,000-fold reduction in simulation time. Code and data for ArchGym is available at https://bit.ly/ArchGym.

An Analysis of Approaches Taken in the ACM RecSys Challenge 2018 for Automatic Music Playlist Continuation

The ACM Recommender Systems Challenge 2018 focused on the task of automatic music playlist continuation, which is a form of the more general task of sequential recommendation. Given a playlist of arbitrary length with some additional meta-data, the task was to recommend up to 500 tracks that fit the target characteristics of the original playlist. For the RecSys Challenge, Spotify released a dataset of one million user-generated playlists. Participants could compete in two tracks, i.e., main and creative tracks. Participants in the main track were only allowed to use the provided training set, however, in the creative track, the use of external public sources was permitted. In total, 113 teams submitted 1,228 runs to the main track; 33 teams submitted 239 runs to the creative track. The highest performing team in the main track achieved an R-precision of 0.2241, an NDCG of 0.3946, and an average number of recommended songs clicks of 1.784. In the creative track, an R-precision of 0.2233, an NDCG of 0.3939, and a click rate of 1.785 was obtained by the best team. This article provides an overview of the challenge, including motivation, task definition, dataset description, and evaluation. We further report and analyze the results obtained by the top performing teams in each track and explore the approaches taken by the winners. We finally summarize our key findings, discuss generalizability of approaches and results to domains other than music, and list the open avenues and possible future directions in the area of automatic playlist continuation.

Searching Latent Program Spaces

Program synthesis methods aim to automatically generate programs restricted to a language that can explain a given specification of input-output pairs. While purely symbolic approaches suffer from a combinatorial search space, recent methods leverage neural networks to learn distributions over program structures to narrow this search space significantly, enabling more efficient search. However, for challenging problems, it remains difficult to train models to perform program synthesis in one shot, making test-time search essential. Most neural methods lack structured search mechanisms during inference, relying instead on stochastic sampling or gradient updates, which can be inefficient. In this work, we propose the Latent Program Network (LPN), a general algorithm for program induction that learns a distribution over latent programs in a continuous space, enabling efficient search and test-time adaptation. We explore how to train these networks to optimize for test-time computation and demonstrate the use of gradient-based search both during training and at test time. We evaluate LPN on ARC-AGI, a program synthesis benchmark that evaluates performance by generalizing programs to new inputs rather than explaining the underlying specification. We show that LPN can generalize beyond its training distribution and adapt to unseen tasks by utilizing test-time computation, outperforming algorithms without test-time adaptation mechanisms.

POND: Multi-Source Time Series Domain Adaptation with Information-Aware Prompt Tuning

Time series domain adaptation stands as a pivotal and intricate challenge with diverse applications, including but not limited to human activity recognition, sleep stage classification, and machine fault diagnosis. Despite the numerous domain adaptation techniques proposed to tackle this complex problem, they primarily focus on domain adaptation from a single source domain. Yet, it is more crucial to investigate domain adaptation from multiple domains due to the potential for greater improvements. To address this, three important challenges need to be overcome: 1). The lack of exploration to utilize domain-specific information for domain adaptation, 2). The difficulty to learn domain-specific information that changes over time, and 3). The difficulty to evaluate learned domain-specific information. In order to tackle these challenges simultaneously, in this paper, we introduce PrOmpt-based domaiN Discrimination (POND), the first framework to utilize prompts for time series domain adaptation. Specifically, to address Challenge 1, we extend the idea of prompt tuning to time series analysis and learn prompts to capture common and domain-specific information from all source domains. To handle Challenge 2, we introduce a conditional module for each source domain to generate prompts from time series input data. For Challenge 3, we propose two criteria to select good prompts, which are used to choose the most suitable source domain for domain adaptation. The efficacy and robustness of our proposed POND model are extensively validated through experiments across 50 scenarios encompassing four datasets. Experimental results demonstrate that our proposed POND model outperforms all state-of-the-art comparison methods by up to 66% on the F1-score.

CodeElo: Benchmarking Competition-level Code Generation of LLMs with Human-comparable Elo Ratings

With the increasing code reasoning capabilities of existing large language models (LLMs) and breakthroughs in reasoning models like OpenAI o1 and o3, there is a growing need to develop more challenging and comprehensive benchmarks that effectively test their sophisticated competition-level coding abilities. Existing benchmarks, like LiveCodeBench and USACO, fall short due to the unavailability of private test cases, lack of support for special judges, and misaligned execution environments. To bridge this gap, we introduce CodeElo, a standardized competition-level code generation benchmark that effectively addresses all these challenges for the first time. CodeElo benchmark is mainly based on the official CodeForces platform and tries to align with the platform as much as possible. We compile the recent six months of contest problems on CodeForces with detailed information such as contest divisions, problem difficulty ratings, and problem algorithm tags. We introduce a unique judging method in which problems are submitted directly to the platform and develop a reliable Elo rating calculation system that aligns with the platform and is comparable with human participants but has lower variance. By testing on our CodeElo, we provide the Elo ratings of 30 existing popular open-source and 3 proprietary LLMs for the first time. The results show that o1-mini and QwQ-32B-Preview stand out significantly, achieving Elo ratings of 1578 and 1261, respectively, while other models struggle even with the easiest problems, placing in the lowest 20 percent among all human participants. Detailed analysis experiments are also conducted to provide insights into performance across algorithms and comparisons between using C++ and Python, which can suggest directions for future studies.

Can We Further Elicit Reasoning in LLMs? Critic-Guided Planning with Retrieval-Augmentation for Solving Challenging Tasks

State-of-the-art large language models (LLMs) exhibit impressive problem-solving capabilities but may struggle with complex reasoning and factual correctness. Existing methods harness the strengths of chain-of-thought and retrieval-augmented generation (RAG) to decompose a complex problem into simpler steps and apply retrieval to improve factual correctness. These methods work well on straightforward reasoning tasks but often falter on challenging tasks such as competitive programming and mathematics, due to frequent reasoning errors and irrelevant knowledge retrieval. To address this, we introduce Critic-guided planning with Retrieval-augmentation, CR-Planner, a novel framework that leverages fine-tuned critic models to guide both reasoning and retrieval processes through planning. CR-Planner solves a problem by iteratively selecting and executing sub-goals. Initially, it identifies the most promising sub-goal from reasoning, query generation, and retrieval, guided by rewards given by a critic model named sub-goal critic. It then executes this sub-goal through sampling and selecting the optimal output based on evaluations from another critic model named execution critic. This iterative process, informed by retrieved information and critic models, enables CR-Planner to effectively navigate the solution space towards the final answer. We employ Monte Carlo Tree Search to collect the data for training the critic models, allowing for a systematic exploration of action sequences and their long-term impacts. We validate CR-Planner on challenging domain-knowledge-intensive and reasoning-heavy tasks, including competitive programming, theorem-driven math reasoning, and complex domain retrieval problems. Our experiments demonstrate that CR-Planner significantly outperforms baselines, highlighting its effectiveness in addressing challenging problems by improving both reasoning and retrieval.

Go-Explore: a New Approach for Hard-Exploration Problems

A grand challenge in reinforcement learning is intelligent exploration, especially when rewards are sparse or deceptive. Two Atari games serve as benchmarks for such hard-exploration domains: Montezuma's Revenge and Pitfall. On both games, current RL algorithms perform poorly, even those with intrinsic motivation, which is the dominant method to improve performance on hard-exploration domains. To address this shortfall, we introduce a new algorithm called Go-Explore. It exploits the following principles: (1) remember previously visited states, (2) first return to a promising state (without exploration), then explore from it, and (3) solve simulated environments through any available means (including by introducing determinism), then robustify via imitation learning. The combined effect of these principles is a dramatic performance improvement on hard-exploration problems. On Montezuma's Revenge, Go-Explore scores a mean of over 43k points, almost 4 times the previous state of the art. Go-Explore can also harness human-provided domain knowledge and, when augmented with it, scores a mean of over 650k points on Montezuma's Revenge. Its max performance of nearly 18 million surpasses the human world record, meeting even the strictest definition of "superhuman" performance. On Pitfall, Go-Explore with domain knowledge is the first algorithm to score above zero. Its mean score of almost 60k points exceeds expert human performance. Because Go-Explore produces high-performing demonstrations automatically and cheaply, it also outperforms imitation learning work where humans provide solution demonstrations. Go-Explore opens up many new research directions into improving it and weaving its insights into current RL algorithms. It may also enable progress on previously unsolvable hard-exploration problems in many domains, especially those that harness a simulator during training (e.g. robotics).

RainbowPlus: Enhancing Adversarial Prompt Generation via Evolutionary Quality-Diversity Search

Large Language Models (LLMs) exhibit remarkable capabilities but are susceptible to adversarial prompts that exploit vulnerabilities to produce unsafe or biased outputs. Existing red-teaming methods often face scalability challenges, resource-intensive requirements, or limited diversity in attack strategies. We propose RainbowPlus, a novel red-teaming framework rooted in evolutionary computation, enhancing adversarial prompt generation through an adaptive quality-diversity (QD) search that extends classical evolutionary algorithms like MAP-Elites with innovations tailored for language models. By employing a multi-element archive to store diverse high-quality prompts and a comprehensive fitness function to evaluate multiple prompts concurrently, RainbowPlus overcomes the constraints of single-prompt archives and pairwise comparisons in prior QD methods like Rainbow Teaming. Experiments comparing RainbowPlus to QD methods across six benchmark datasets and four open-source LLMs demonstrate superior attack success rate (ASR) and diversity (Diverse-Score approx 0.84), generating up to 100 times more unique prompts (e.g., 10,418 vs. 100 for Ministral-8B-Instruct-2410). Against nine state-of-the-art methods on the HarmBench dataset with twelve LLMs (ten open-source, two closed-source), RainbowPlus achieves an average ASR of 81.1%, surpassing AutoDAN-Turbo by 3.9%, and is 9 times faster (1.45 vs. 13.50 hours). Our open-source implementation fosters further advancements in LLM safety, offering a scalable tool for vulnerability assessment. Code and resources are publicly available at https://github.com/knoveleng/rainbowplus, supporting reproducibility and future research in LLM red-teaming.

Surgical tool classification and localization: results and methods from the MICCAI 2022 SurgToolLoc challenge

The ability to automatically detect and track surgical instruments in endoscopic videos can enable transformational interventions. Assessing surgical performance and efficiency, identifying skilled tool use and choreography, and planning operational and logistical aspects of OR resources are just a few of the applications that could benefit. Unfortunately, obtaining the annotations needed to train machine learning models to identify and localize surgical tools is a difficult task. Annotating bounding boxes frame-by-frame is tedious and time-consuming, yet large amounts of data with a wide variety of surgical tools and surgeries must be captured for robust training. Moreover, ongoing annotator training is needed to stay up to date with surgical instrument innovation. In robotic-assisted surgery, however, potentially informative data like timestamps of instrument installation and removal can be programmatically harvested. The ability to rely on tool installation data alone would significantly reduce the workload to train robust tool-tracking models. With this motivation in mind we invited the surgical data science community to participate in the challenge, SurgToolLoc 2022. The goal was to leverage tool presence data as weak labels for machine learning models trained to detect tools and localize them in video frames with bounding boxes. We present the results of this challenge along with many of the team's efforts. We conclude by discussing these results in the broader context of machine learning and surgical data science. The training data used for this challenge consisting of 24,695 video clips with tool presence labels is also being released publicly and can be accessed at https://console.cloud.google.com/storage/browser/isi-surgtoolloc-2022.

MetamatBench: Integrating Heterogeneous Data, Computational Tools, and Visual Interface for Metamaterial Discovery

Metamaterials, engineered materials with architected structures across multiple length scales, offer unprecedented and tunable mechanical properties that surpass those of conventional materials. However, leveraging advanced machine learning (ML) for metamaterial discovery is hindered by three fundamental challenges: (C1) Data Heterogeneity Challenge arises from heterogeneous data sources, heterogeneous composition scales, and heterogeneous structure categories; (C2) Model Complexity Challenge stems from the intricate geometric constraints of ML models, which complicate their adaptation to metamaterial structures; and (C3) Human-AI Collaboration Challenge comes from the "dual black-box'' nature of sophisticated ML models and the need for intuitive user interfaces. To tackle these challenges, we introduce a unified framework, named MetamatBench, that operates on three levels. (1) At the data level, we integrate and standardize 5 heterogeneous, multi-modal metamaterial datasets. (2) The ML level provides a comprehensive toolkit that adapts 17 state-of-the-art ML methods for metamaterial discovery. It also includes a comprehensive evaluation suite with 12 novel performance metrics with finite element-based assessments to ensure accurate and reliable model validation. (3) The user level features a visual-interactive interface that bridges the gap between complex ML techniques and non-ML researchers, advancing property prediction and inverse design of metamaterials for research and applications. MetamatBench offers a unified platform deployed at http://zhoulab-1.cs.vt.edu:5550 that enables machine learning researchers and practitioners to develop and evaluate new methodologies in metamaterial discovery. For accessibility and reproducibility, we open-source our benchmark and the codebase at https://github.com/cjpcool/Metamaterial-Benchmark.

Community Research Earth Digital Intelligence Twin (CREDIT)

Recent advancements in artificial intelligence (AI) for numerical weather prediction (NWP) have significantly transformed atmospheric modeling. AI NWP models outperform traditional physics-based systems, such as the Integrated Forecast System (IFS), across several global metrics while requiring fewer computational resources. However, existing AI NWP models face limitations related to training datasets and timestep choices, often resulting in artifacts that reduce model performance. To address these challenges, we introduce the Community Research Earth Digital Intelligence Twin (CREDIT) framework, developed at NSF NCAR. CREDIT provides a flexible, scalable, and user-friendly platform for training and deploying AI-based atmospheric models on high-performance computing systems. It offers an end-to-end pipeline for data preprocessing, model training, and evaluation, democratizing access to advanced AI NWP capabilities. We demonstrate CREDIT's potential through WXFormer, a novel deterministic vision transformer designed to predict atmospheric states autoregressively, addressing common AI NWP issues like compounding error growth with techniques such as spectral normalization, padding, and multi-step training. Additionally, to illustrate CREDIT's flexibility and state-of-the-art model comparisons, we train the FUXI architecture within this framework. Our findings show that both FUXI and WXFormer, trained on six-hourly ERA5 hybrid sigma-pressure levels, generally outperform IFS HRES in 10-day forecasts, offering potential improvements in efficiency and forecast accuracy. CREDIT's modular design enables researchers to explore various models, datasets, and training configurations, fostering innovation within the scientific community.

StarCraft II: A New Challenge for Reinforcement Learning

This paper introduces SC2LE (StarCraft II Learning Environment), a reinforcement learning environment based on the StarCraft II game. This domain poses a new grand challenge for reinforcement learning, representing a more difficult class of problems than considered in most prior work. It is a multi-agent problem with multiple players interacting; there is imperfect information due to a partially observed map; it has a large action space involving the selection and control of hundreds of units; it has a large state space that must be observed solely from raw input feature planes; and it has delayed credit assignment requiring long-term strategies over thousands of steps. We describe the observation, action, and reward specification for the StarCraft II domain and provide an open source Python-based interface for communicating with the game engine. In addition to the main game maps, we provide a suite of mini-games focusing on different elements of StarCraft II gameplay. For the main game maps, we also provide an accompanying dataset of game replay data from human expert players. We give initial baseline results for neural networks trained from this data to predict game outcomes and player actions. Finally, we present initial baseline results for canonical deep reinforcement learning agents applied to the StarCraft II domain. On the mini-games, these agents learn to achieve a level of play that is comparable to a novice player. However, when trained on the main game, these agents are unable to make significant progress. Thus, SC2LE offers a new and challenging environment for exploring deep reinforcement learning algorithms and architectures.

Optimizing NOTEARS Objectives via Topological Swaps

Recently, an intriguing class of non-convex optimization problems has emerged in the context of learning directed acyclic graphs (DAGs). These problems involve minimizing a given loss or score function, subject to a non-convex continuous constraint that penalizes the presence of cycles in a graph. In this work, we delve into the optimization challenges associated with this class of non-convex programs. To address these challenges, we propose a bi-level algorithm that leverages the non-convex constraint in a novel way. The outer level of the algorithm optimizes over topological orders by iteratively swapping pairs of nodes within the topological order of a DAG. A key innovation of our approach is the development of an effective method for generating a set of candidate swapping pairs for each iteration. At the inner level, given a topological order, we utilize off-the-shelf solvers that can handle linear constraints. The key advantage of our proposed algorithm is that it is guaranteed to find a local minimum or a KKT point under weaker conditions compared to previous work and finds solutions with lower scores. Extensive experiments demonstrate that our method outperforms state-of-the-art approaches in terms of achieving a better score. Additionally, our method can also be used as a post-processing algorithm to significantly improve the score of other algorithms. Code implementing the proposed method is available at https://github.com/duntrain/topo.

AeroPath: An airway segmentation benchmark dataset with challenging pathology

To improve the prognosis of patients suffering from pulmonary diseases, such as lung cancer, early diagnosis and treatment are crucial. The analysis of CT images is invaluable for diagnosis, whereas high quality segmentation of the airway tree are required for intervention planning and live guidance during bronchoscopy. Recently, the Multi-domain Airway Tree Modeling (ATM'22) challenge released a large dataset, both enabling training of deep-learning based models and bringing substantial improvement of the state-of-the-art for the airway segmentation task. However, the ATM'22 dataset includes few patients with severe pathologies affecting the airway tree anatomy. In this study, we introduce a new public benchmark dataset (AeroPath), consisting of 27 CT images from patients with pathologies ranging from emphysema to large tumors, with corresponding trachea and bronchi annotations. Second, we present a multiscale fusion design for automatic airway segmentation. Models were trained on the ATM'22 dataset, tested on the AeroPath dataset, and further evaluated against competitive open-source methods. The same performance metrics as used in the ATM'22 challenge were used to benchmark the different considered approaches. Lastly, an open web application is developed, to easily test the proposed model on new data. The results demonstrated that our proposed architecture predicted topologically correct segmentations for all the patients included in the AeroPath dataset. The proposed method is robust and able to handle various anomalies, down to at least the fifth airway generation. In addition, the AeroPath dataset, featuring patients with challenging pathologies, will contribute to development of new state-of-the-art methods. The AeroPath dataset and the web application are made openly available.

Adversarial Training for High-Stakes Reliability

In the future, powerful AI systems may be deployed in high-stakes settings, where a single failure could be catastrophic. One technique for improving AI safety in high-stakes settings is adversarial training, which uses an adversary to generate examples to train on in order to achieve better worst-case performance. In this work, we used a safe language generation task (``avoid injuries'') as a testbed for achieving high reliability through adversarial training. We created a series of adversarial training techniques -- including a tool that assists human adversaries -- to find and eliminate failures in a classifier that filters text completions suggested by a generator. In our task, we determined that we can set very conservative classifier thresholds without significantly impacting the quality of the filtered outputs. We found that adversarial training increased robustness to the adversarial attacks that we trained on -- doubling the time for our contractors to find adversarial examples both with our tool (from 13 to 26 minutes) and without (from 20 to 44 minutes) -- without affecting in-distribution performance. We hope to see further work in the high-stakes reliability setting, including more powerful tools for enhancing human adversaries and better ways to measure high levels of reliability, until we can confidently rule out the possibility of catastrophic deployment-time failures of powerful models.

Automatic Prompt Optimization Techniques: Exploring the Potential for Synthetic Data Generation

Artificial Intelligence (AI) advancement is heavily dependent on access to large-scale, high-quality training data. However, in specialized domains such as healthcare, data acquisition faces significant constraints due to privacy regulations, ethical considerations, and limited availability. While synthetic data generation offers a promising solution, conventional approaches typically require substantial real data for training generative models. The emergence of large-scale prompt-based models presents new opportunities for synthetic data generation without direct access to protected data. However, crafting effective prompts for domain-specific data generation remains challenging, and manual prompt engineering proves insufficient for achieving output with sufficient precision and authenticity. We review recent developments in automatic prompt optimization, following PRISMA guidelines. We analyze six peer-reviewed studies published between 2020 and 2024 that focus on automatic data-free prompt optimization methods. Our analysis reveals three approaches: feedback-driven, error-based, and control-theoretic. Although all approaches demonstrate promising capabilities in prompt refinement and adaptation, our findings suggest the need for an integrated framework that combines complementary optimization techniques to enhance synthetic data generation while minimizing manual intervention. We propose future research directions toward developing robust, iterative prompt optimization frameworks capable of improving the quality of synthetic data. This advancement can be particularly crucial for sensitive fields and in specialized domains where data access is restricted, potentially transforming how we approach synthetic data generation for AI development.

Ferret: Faster and Effective Automated Red Teaming with Reward-Based Scoring Technique

In today's era, where large language models (LLMs) are integrated into numerous real-world applications, ensuring their safety and robustness is crucial for responsible AI usage. Automated red-teaming methods play a key role in this process by generating adversarial attacks to identify and mitigate potential vulnerabilities in these models. However, existing methods often struggle with slow performance, limited categorical diversity, and high resource demands. While Rainbow Teaming, a recent approach, addresses the diversity challenge by framing adversarial prompt generation as a quality-diversity search, it remains slow and requires a large fine-tuned mutator for optimal performance. To overcome these limitations, we propose Ferret, a novel approach that builds upon Rainbow Teaming by generating multiple adversarial prompt mutations per iteration and using a scoring function to rank and select the most effective adversarial prompt. We explore various scoring functions, including reward models, Llama Guard, and LLM-as-a-judge, to rank adversarial mutations based on their potential harm to improve the efficiency of the search for harmful mutations. Our results demonstrate that Ferret, utilizing a reward model as a scoring function, improves the overall attack success rate (ASR) to 95%, which is 46% higher than Rainbow Teaming. Additionally, Ferret reduces the time needed to achieve a 90% ASR by 15.2% compared to the baseline and generates adversarial prompts that are transferable i.e. effective on other LLMs of larger size. Our codes are available at https://github.com/declare-lab/ferret.

TeachMyAgent: a Benchmark for Automatic Curriculum Learning in Deep RL

Training autonomous agents able to generalize to multiple tasks is a key target of Deep Reinforcement Learning (DRL) research. In parallel to improving DRL algorithms themselves, Automatic Curriculum Learning (ACL) study how teacher algorithms can train DRL agents more efficiently by adapting task selection to their evolving abilities. While multiple standard benchmarks exist to compare DRL agents, there is currently no such thing for ACL algorithms. Thus, comparing existing approaches is difficult, as too many experimental parameters differ from paper to paper. In this work, we identify several key challenges faced by ACL algorithms. Based on these, we present TeachMyAgent (TA), a benchmark of current ACL algorithms leveraging procedural task generation. It includes 1) challenge-specific unit-tests using variants of a procedural Box2D bipedal walker environment, and 2) a new procedural Parkour environment combining most ACL challenges, making it ideal for global performance assessment. We then use TeachMyAgent to conduct a comparative study of representative existing approaches, showcasing the competitiveness of some ACL algorithms that do not use expert knowledge. We also show that the Parkour environment remains an open problem. We open-source our environments, all studied ACL algorithms (collected from open-source code or re-implemented), and DRL students in a Python package available at https://github.com/flowersteam/TeachMyAgent.

TaskMatrix.AI: Completing Tasks by Connecting Foundation Models with Millions of APIs

Artificial Intelligence (AI) has made incredible progress recently. On the one hand, advanced foundation models like ChatGPT can offer powerful conversation, in-context learning and code generation abilities on a broad range of open-domain tasks. They can also generate high-level solution outlines for domain-specific tasks based on the common sense knowledge they have acquired. However, they still face difficulties with some specialized tasks because they lack enough domain-specific data during pre-training or they often have errors in their neural network computations on those tasks that need accurate executions. On the other hand, there are also many existing models and systems (symbolic-based or neural-based) that can do some domain-specific tasks very well. However, due to the different implementation or working mechanisms, they are not easily accessible or compatible with foundation models. Therefore, there is a clear and pressing need for a mechanism that can leverage foundation models to propose task solution outlines and then automatically match some of the sub-tasks in the outlines to the off-the-shelf models and systems with special functionalities to complete them. Inspired by this, we introduce TaskMatrix.AI as a new AI ecosystem that connects foundation models with millions of APIs for task completion. Unlike most previous work that aimed to improve a single AI model, TaskMatrix.AI focuses more on using existing foundation models (as a brain-like central system) and APIs of other AI models and systems (as sub-task solvers) to achieve diversified tasks in both digital and physical domains. As a position paper, we will present our vision of how to build such an ecosystem, explain each key component, and use study cases to illustrate both the feasibility of this vision and the main challenges we need to address next.

Evaluating Language-Model Agents on Realistic Autonomous Tasks

In this report, we explore the ability of language model agents to acquire resources, create copies of themselves, and adapt to novel challenges they encounter in the wild. We refer to this cluster of capabilities as "autonomous replication and adaptation" or ARA. We believe that systems capable of ARA could have wide-reaching and hard-to-anticipate consequences, and that measuring and forecasting ARA may be useful for informing measures around security, monitoring, and alignment. Additionally, once a system is capable of ARA, placing bounds on a system's capabilities may become significantly more difficult. We construct four simple example agents that combine language models with tools that allow them to take actions in the world. We then evaluate these agents on 12 tasks relevant to ARA. We find that these language model agents can only complete the easiest tasks from this list, although they make some progress on the more challenging tasks. Unfortunately, these evaluations are not adequate to rule out the possibility that near-future agents will be capable of ARA. In particular, we do not think that these evaluations provide good assurance that the ``next generation'' of language models (e.g. 100x effective compute scaleup on existing models) will not yield agents capable of ARA, unless intermediate evaluations are performed during pretraining. Relatedly, we expect that fine-tuning of the existing models could produce substantially more competent agents, even if the fine-tuning is not directly targeted at ARA.

Scalable Reinforcement Post-Training Beyond Static Human Prompts: Evolving Alignment via Asymmetric Self-Play

Current reinforcement learning (RL) frameworks for large language models (LLM) post-training typically assume a fixed prompt distribution, which is sub-optimal and bottlenecks scalability. Prior works have explored prompt evolving, but are often limited to the supervised fine-tuning stage, and prompts are sampled and evolved uniformly without signals. This empirical work presents a paradigm shift: Evolving Alignment via Asymmetric Self-Play (eva), that casts post-training as an infinite game with regret-based signals for 2 players: (i) a creator, who strategically samples and creates new informative prompts and (ii) a solver, who learns to produce preferred responses. eva is the first method that allows language models to adaptively create training prompts in both offline and online RL post-training. The design is simple, easy-to-use yet remarkably effective: eva sets a new SOTA on challenging benchmarks, without any extra human prompts, e.g. it boosts the win-rate of gemma-2-9b-it on Arena-Hard by 51.6% -> 60.1% for DPO and 52.6% -> 62.4% for RLOO, surpassing claude-3-opus and catching up to gemini-1.5-pro, both of which are orders of magnitude larger. Extensive experiments show eva can create effective RL curricula and is robust across ablations. We believe adaptively evolving prompts are key to designing the next-generation RL post-training scheme.

The state-of-the-art in Cardiac MRI Reconstruction: Results of the CMRxRecon Challenge in MICCAI 2023

Cardiac MRI, crucial for evaluating heart structure and function, faces limitations like slow imaging and motion artifacts. Undersampling reconstruction, especially data-driven algorithms, has emerged as a promising solution to accelerate scans and enhance imaging performance using highly under-sampled data. Nevertheless, the scarcity of publicly available cardiac k-space datasets and evaluation platform hinder the development of data-driven reconstruction algorithms. To address this issue, we organized the Cardiac MRI Reconstruction Challenge (CMRxRecon) in 2023, in collaboration with the 26th International Conference on MICCAI. CMRxRecon presented an extensive k-space dataset comprising cine and mapping raw data, accompanied by detailed annotations of cardiac anatomical structures. With overwhelming participation, the challenge attracted more than 285 teams and over 600 participants. Among them, 22 teams successfully submitted Docker containers for the testing phase, with 7 teams submitted for both cine and mapping tasks. All teams use deep learning based approaches, indicating that deep learning has predominately become a promising solution for the problem. The first-place winner of both tasks utilizes the E2E-VarNet architecture as backbones. In contrast, U-Net is still the most popular backbone for both multi-coil and single-coil reconstructions. This paper provides a comprehensive overview of the challenge design, presents a summary of the submitted results, reviews the employed methods, and offers an in-depth discussion that aims to inspire future advancements in cardiac MRI reconstruction models. The summary emphasizes the effective strategies observed in Cardiac MRI reconstruction, including backbone architecture, loss function, pre-processing techniques, physical modeling, and model complexity, thereby providing valuable insights for further developments in this field.

3DPFIX: Improving Remote Novices' 3D Printing Troubleshooting through Human-AI Collaboration

The widespread consumer-grade 3D printers and learning resources online enable novices to self-train in remote settings. While troubleshooting plays an essential part of 3D printing, the process remains challenging for many remote novices even with the help of well-developed online sources, such as online troubleshooting archives and online community help. We conducted a formative study with 76 active 3D printing users to learn how remote novices leverage online resources in troubleshooting and their challenges. We found that remote novices cannot fully utilize online resources. For example, the online archives statically provide general information, making it hard to search and relate their unique cases with existing descriptions. Online communities can potentially ease their struggles by providing more targeted suggestions, but a helper who can provide custom help is rather scarce, making it hard to obtain timely assistance. We propose 3DPFIX, an interactive 3D troubleshooting system powered by the pipeline to facilitate Human-AI Collaboration, designed to improve novices' 3D printing experiences and thus help them easily accumulate their domain knowledge. We built 3DPFIX that supports automated diagnosis and solution-seeking. 3DPFIX was built upon shared dialogues about failure cases from Q&A discourses accumulated in online communities. We leverage social annotations (i.e., comments) to build an annotated failure image dataset for AI classifiers and extract a solution pool. Our summative study revealed that using 3DPFIX helped participants spend significantly less effort in diagnosing failures and finding a more accurate solution than relying on their common practice. We also found that 3DPFIX users learn about 3D printing domain-specific knowledge. We discuss the implications of leveraging community-driven data in developing future Human-AI Collaboration designs.

Describe, Explain, Plan and Select: Interactive Planning with Large Language Models Enables Open-World Multi-Task Agents

In this paper, we study the problem of planning in Minecraft, a popular, democratized yet challenging open-ended environment for developing multi-task embodied agents. We've found two primary challenges of empowering such agents with planning: 1) planning in an open-ended world like Minecraft requires precise and multi-step reasoning due to the long-term nature of the tasks, and 2) as vanilla planners do not consider the proximity to the current agent when ordering parallel sub-goals within a complicated plan, the resulting plan could be inefficient. To this end, we propose "Describe, Explain, Plan and Select" (DEPS), an interactive planning approach based on Large Language Models (LLMs). Our approach helps with better error correction from the feedback during the long-haul planning, while also bringing the sense of proximity via goal Selector, a learnable module that ranks parallel sub-goals based on the estimated steps of completion and improves the original plan accordingly. Our experiments mark the milestone of the first multi-task agent that can robustly accomplish 70+ Minecraft tasks and nearly doubles the overall performances. Finally, the ablation and exploratory studies detail how our design beats the counterparts and provide a promising update on the ObtainDiamond grand challenge with our approach. The code is released at https://github.com/CraftJarvis/MC-Planner.

sharpDARTS: Faster and More Accurate Differentiable Architecture Search

Neural Architecture Search (NAS) has been a source of dramatic improvements in neural network design, with recent results meeting or exceeding the performance of hand-tuned architectures. However, our understanding of how to represent the search space for neural net architectures and how to search that space efficiently are both still in their infancy. We have performed an in-depth analysis to identify limitations in a widely used search space and a recent architecture search method, Differentiable Architecture Search (DARTS). These findings led us to introduce novel network blocks with a more general, balanced, and consistent design; a better-optimized Cosine Power Annealing learning rate schedule; and other improvements. Our resulting sharpDARTS search is 50% faster with a 20-30% relative improvement in final model error on CIFAR-10 when compared to DARTS. Our best single model run has 1.93% (1.98+/-0.07) validation error on CIFAR-10 and 5.5% error (5.8+/-0.3) on the recently released CIFAR-10.1 test set. To our knowledge, both are state of the art for models of similar size. This model also generalizes competitively to ImageNet at 25.1% top-1 (7.8% top-5) error. We found improvements for existing search spaces but does DARTS generalize to new domains? We propose Differentiable Hyperparameter Grid Search and the HyperCuboid search space, which are representations designed to leverage DARTS for more general parameter optimization. Here we find that DARTS fails to generalize when compared against a human's one shot choice of models. We look back to the DARTS and sharpDARTS search spaces to understand why, and an ablation study reveals an unusual generalization gap. We finally propose Max-W regularization to solve this problem, which proves significantly better than the handmade design. Code will be made available.

Towards an AI co-scientist

Scientific discovery relies on scientists generating novel hypotheses that undergo rigorous experimental validation. To augment this process, we introduce an AI co-scientist, a multi-agent system built on Gemini 2.0. The AI co-scientist is intended to help uncover new, original knowledge and to formulate demonstrably novel research hypotheses and proposals, building upon prior evidence and aligned to scientist-provided research objectives and guidance. The system's design incorporates a generate, debate, and evolve approach to hypothesis generation, inspired by the scientific method and accelerated by scaling test-time compute. Key contributions include: (1) a multi-agent architecture with an asynchronous task execution framework for flexible compute scaling; (2) a tournament evolution process for self-improving hypotheses generation. Automated evaluations show continued benefits of test-time compute, improving hypothesis quality. While general purpose, we focus development and validation in three biomedical areas: drug repurposing, novel target discovery, and explaining mechanisms of bacterial evolution and anti-microbial resistance. For drug repurposing, the system proposes candidates with promising validation findings, including candidates for acute myeloid leukemia that show tumor inhibition in vitro at clinically applicable concentrations. For novel target discovery, the AI co-scientist proposed new epigenetic targets for liver fibrosis, validated by anti-fibrotic activity and liver cell regeneration in human hepatic organoids. Finally, the AI co-scientist recapitulated unpublished experimental results via a parallel in silico discovery of a novel gene transfer mechanism in bacterial evolution. These results, detailed in separate, co-timed reports, demonstrate the potential to augment biomedical and scientific discovery and usher an era of AI empowered scientists.

MLRC-Bench: Can Language Agents Solve Machine Learning Research Challenges?

Existing evaluation of large language model (LLM) agents on scientific discovery lacks objective baselines and metrics to assess the viability of their proposed methods. To address this issue, we introduce MLRC-Bench, a benchmark designed to quantify how effectively language agents can tackle challenging Machine Learning (ML) Research Competitions. Our benchmark highlights open research problems that demand novel methodologies, in contrast to recent benchmarks such as OpenAI's MLE-Bench (Chan et al., 2024) and METR's RE-Bench (Wijk et al., 2024), which focus on well-established research tasks that are largely solvable through sufficient engineering effort. Unlike prior work, e.g., AI Scientist (Lu et al., 2024b), which evaluates the end-to-end agentic pipeline by using LLM-as-a-judge, MLRC-Bench measures the key steps of proposing and implementing novel research methods and evaluates them with newly proposed rigorous protocol and objective metrics. Our curated suite of 7 competition tasks reveals significant challenges for LLM agents. Even the best-performing tested agent (gemini-exp-1206 under MLAB (Huang et al., 2024a)) closes only 9.3% of the gap between baseline and top human participant scores. Furthermore, our analysis reveals a misalignment between the LLM-judged innovation and their actual performance on cutting-edge ML research problems. MLRC-Bench is a dynamic benchmark, which is designed to continually grow with new ML competitions to encourage rigorous and objective evaluations of AI's research capabilities.

BountyBench: Dollar Impact of AI Agent Attackers and Defenders on Real-World Cybersecurity Systems

AI agents have the potential to significantly alter the cybersecurity landscape. To help us understand this change, we introduce the first framework to capture offensive and defensive cyber-capabilities in evolving real-world systems. Instantiating this framework with BountyBench, we set up 25 systems with complex, real-world codebases. To capture the vulnerability lifecycle, we define three task types: Detect (detecting a new vulnerability), Exploit (exploiting a specific vulnerability), and Patch (patching a specific vulnerability). For Detect, we construct a new success indicator, which is general across vulnerability types and provides localized evaluation. We manually set up the environment for each system, including installing packages, setting up server(s), and hydrating database(s). We add 40 bug bounties, which are vulnerabilities with monetary awards from \10 to 30,485, and cover 9 of the OWASP Top 10 Risks. To modulate task difficulty, we devise a new strategy based on information to guide detection, interpolating from identifying a zero day to exploiting a specific vulnerability. We evaluate 5 agents: Claude Code, OpenAI Codex CLI, and custom agents with GPT-4.1, Gemini 2.5 Pro Preview, and Claude 3.7 Sonnet Thinking. Given up to three attempts, the top-performing agents are Claude Code (5% on Detect, mapping to \1,350), Custom Agent with Claude 3.7 Sonnet Thinking (5% on Detect, mapping to 1,025; 67.5% on Exploit), and OpenAI Codex CLI (5% on Detect, mapping to \2,400; 90% on Patch, mapping to 14,422). OpenAI Codex CLI and Claude Code are more capable at defense, achieving higher Patch scores of 90% and 87.5%, compared to Exploit scores of 32.5% and 57.5% respectively; in contrast, the custom agents are relatively balanced between offense and defense, achieving Exploit scores of 40-67.5% and Patch scores of 45-60%.

EXAdam: The Power of Adaptive Cross-Moments

This paper introduces EXAdam (EXtended Adam), a novel optimization algorithm that builds upon the widely-used Adam optimizer. EXAdam incorporates three key enhancements: (1) new debiasing terms for improved moment estimation, (2) a gradient-based acceleration mechanism for increased responsiveness to the current loss landscape, and (3) a dynamic step size formula that allows for continuous growth of the learning rate throughout training. These innovations work synergistically to address limitations of the original Adam algorithm, potentially offering improved convergence properties, enhanced ability to escape saddle points, and greater robustness to hyperparameter choices. I provide a theoretical analysis of EXAdam's components and their interactions, highlighting the algorithm's potential advantages in navigating complex optimization landscapes. Empirical evaluations demonstrate EXAdam's superiority over Adam, achieving 48.07% faster convergence and yielding improvements of 4.6%, 4.13%, and 2.39% in training, validation, and testing accuracies, respectively, when applied to a CNN trained on the CIFAR-10 dataset. While these results are promising, further empirical validation across diverse tasks is essential to fully gauge EXAdam's efficacy. Nevertheless, EXAdam represents a significant advancement in adaptive optimization techniques, with promising implications for a wide range of machine learning applications. This work aims to contribute to the ongoing development of more efficient, adaptive, and universally applicable optimization methods in the field of machine learning and artificial intelligence.

AI4Research: A Survey of Artificial Intelligence for Scientific Research

Recent advancements in artificial intelligence (AI), particularly in large language models (LLMs) such as OpenAI-o1 and DeepSeek-R1, have demonstrated remarkable capabilities in complex domains such as logical reasoning and experimental coding. Motivated by these advancements, numerous studies have explored the application of AI in the innovation process, particularly in the context of scientific research. These AI technologies primarily aim to develop systems that can autonomously conduct research processes across a wide range of scientific disciplines. Despite these significant strides, a comprehensive survey on AI for Research (AI4Research) remains absent, which hampers our understanding and impedes further development in this field. To address this gap, we present a comprehensive survey and offer a unified perspective on AI4Research. Specifically, the main contributions of our work are as follows: (1) Systematic taxonomy: We first introduce a systematic taxonomy to classify five mainstream tasks in AI4Research. (2) New frontiers: Then, we identify key research gaps and highlight promising future directions, focusing on the rigor and scalability of automated experiments, as well as the societal impact. (3) Abundant applications and resources: Finally, we compile a wealth of resources, including relevant multidisciplinary applications, data corpora, and tools. We hope our work will provide the research community with quick access to these resources and stimulate innovative breakthroughs in AI4Research.

Automated Deep Learning: Neural Architecture Search Is Not the End

Deep learning (DL) has proven to be a highly effective approach for developing models in diverse contexts, including visual perception, speech recognition, and machine translation. However, the end-to-end process for applying DL is not trivial. It requires grappling with problem formulation and context understanding, data engineering, model development, deployment, continuous monitoring and maintenance, and so on. Moreover, each of these steps typically relies heavily on humans, in terms of both knowledge and interactions, which impedes the further advancement and democratization of DL. Consequently, in response to these issues, a new field has emerged over the last few years: automated deep learning (AutoDL). This endeavor seeks to minimize the need for human involvement and is best known for its achievements in neural architecture search (NAS), a topic that has been the focus of several surveys. That stated, NAS is not the be-all and end-all of AutoDL. Accordingly, this review adopts an overarching perspective, examining research efforts into automation across the entirety of an archetypal DL workflow. In so doing, this work also proposes a comprehensive set of ten criteria by which to assess existing work in both individual publications and broader research areas. These criteria are: novelty, solution quality, efficiency, stability, interpretability, reproducibility, engineering quality, scalability, generalizability, and eco-friendliness. Thus, ultimately, this review provides an evaluative overview of AutoDL in the early 2020s, identifying where future opportunities for progress may exist.

CycleResearcher: Improving Automated Research via Automated Review

The automation of scientific discovery has been a long-standing goal within the research community, driven by the potential to accelerate knowledge creation. While significant progress has been made using commercial large language models (LLMs) as research assistants or idea generators, the possibility of automating the entire research process with open-source LLMs remains largely unexplored. This paper explores the feasibility of using open-source post-trained LLMs as autonomous agents capable of performing the full cycle of automated research and review, from literature review and manuscript preparation to peer review and paper revision. Our iterative preference training framework consists of CycleResearcher, which conducts research tasks, and CycleReviewer, which simulates the peer review process, providing iterative feedback via reinforcement learning. To train these models, we develop two new datasets, Review-5k and Research-14k, reflecting real-world machine learning research and peer review dynamics. Our results demonstrate that CycleReviewer achieves a 26.89\% improvement in mean absolute error (MAE) over individual human reviewers in predicting paper scores, indicating that LLMs can surpass expert-level performance in research evaluation. In research, the papers generated by the CycleResearcher model achieved a score of 5.36 in simulated peer reviews, surpassing the preprint level of 5.24 from human experts and approaching the accepted paper level of 5.69. This work represents a significant step toward fully automated scientific inquiry, providing ethical safeguards and advancing AI-driven research capabilities. The code, dataset and model weight are released at http://github/minjun-zhu/Researcher.

Crafting Distribution Shifts for Validation and Training in Single Source Domain Generalization

Single-source domain generalization attempts to learn a model on a source domain and deploy it to unseen target domains. Limiting access only to source domain data imposes two key challenges - how to train a model that can generalize and how to verify that it does. The standard practice of validation on the training distribution does not accurately reflect the model's generalization ability, while validation on the test distribution is a malpractice to avoid. In this work, we construct an independent validation set by transforming source domain images with a comprehensive list of augmentations, covering a broad spectrum of potential distribution shifts in target domains. We demonstrate a high correlation between validation and test performance for multiple methods and across various datasets. The proposed validation achieves a relative accuracy improvement over the standard validation equal to 15.4% or 1.6% when used for method selection or learning rate tuning, respectively. Furthermore, we introduce a novel family of methods that increase the shape bias through enhanced edge maps. To benefit from the augmentations during training and preserve the independence of the validation set, a k-fold validation process is designed to separate the augmentation types used in training and validation. The method that achieves the best performance on the augmented validation is selected from the proposed family. It achieves state-of-the-art performance on various standard benchmarks. Code at: https://github.com/NikosEfth/crafting-shifts

Robustifying and Boosting Training-Free Neural Architecture Search

Neural architecture search (NAS) has become a key component of AutoML and a standard tool to automate the design of deep neural networks. Recently, training-free NAS as an emerging paradigm has successfully reduced the search costs of standard training-based NAS by estimating the true architecture performance with only training-free metrics. Nevertheless, the estimation ability of these metrics typically varies across different tasks, making it challenging to achieve robust and consistently good search performance on diverse tasks with only a single training-free metric. Meanwhile, the estimation gap between training-free metrics and the true architecture performances limits training-free NAS to achieve superior performance. To address these challenges, we propose the robustifying and boosting training-free NAS (RoBoT) algorithm which (a) employs the optimized combination of existing training-free metrics explored from Bayesian optimization to develop a robust and consistently better-performing metric on diverse tasks, and (b) applies greedy search, i.e., the exploitation, on the newly developed metric to bridge the aforementioned gap and consequently to boost the search performance of standard training-free NAS further. Remarkably, the expected performance of our RoBoT can be theoretically guaranteed, which improves over the existing training-free NAS under mild conditions with additional interesting insights. Our extensive experiments on various NAS benchmark tasks yield substantial empirical evidence to support our theoretical results.

The AI Scientist: Towards Fully Automated Open-Ended Scientific Discovery

One of the grand challenges of artificial general intelligence is developing agents capable of conducting scientific research and discovering new knowledge. While frontier models have already been used as aids to human scientists, e.g. for brainstorming ideas, writing code, or prediction tasks, they still conduct only a small part of the scientific process. This paper presents the first comprehensive framework for fully automatic scientific discovery, enabling frontier large language models to perform research independently and communicate their findings. We introduce The AI Scientist, which generates novel research ideas, writes code, executes experiments, visualizes results, describes its findings by writing a full scientific paper, and then runs a simulated review process for evaluation. In principle, this process can be repeated to iteratively develop ideas in an open-ended fashion, acting like the human scientific community. We demonstrate its versatility by applying it to three distinct subfields of machine learning: diffusion modeling, transformer-based language modeling, and learning dynamics. Each idea is implemented and developed into a full paper at a cost of less than $15 per paper. To evaluate the generated papers, we design and validate an automated reviewer, which we show achieves near-human performance in evaluating paper scores. The AI Scientist can produce papers that exceed the acceptance threshold at a top machine learning conference as judged by our automated reviewer. This approach signifies the beginning of a new era in scientific discovery in machine learning: bringing the transformative benefits of AI agents to the entire research process of AI itself, and taking us closer to a world where endless affordable creativity and innovation can be unleashed on the world's most challenging problems. Our code is open-sourced at https://github.com/SakanaAI/AI-Scientist

Rethinking the "Heatmap + Monte Carlo Tree Search" Paradigm for Solving Large Scale TSP

The Travelling Salesman Problem (TSP) remains a fundamental challenge in combinatorial optimization, inspiring diverse algorithmic strategies. This paper revisits the "heatmap + Monte Carlo Tree Search (MCTS)" paradigm that has recently gained traction for learning-based TSP solutions. Within this framework, heatmaps encode the likelihood of edges forming part of the optimal tour, and MCTS refines this probabilistic guidance to discover optimal solutions. Contemporary approaches have predominantly emphasized the refinement of heatmap generation through sophisticated learning models, inadvertently sidelining the critical role of MCTS. Our extensive empirical analysis reveals two pivotal insights: 1) The configuration of MCTS strategies profoundly influences the solution quality, demanding meticulous tuning to leverage their full potential; 2) Our findings demonstrate that a rudimentary and parameter-free heatmap, derived from the intrinsic k-nearest nature of TSP, can rival or even surpass the performance of complicated heatmaps, with strong generalizability across various scales. Empirical evaluations across various TSP scales underscore the efficacy of our approach, achieving competitive results. These observations challenge the prevailing focus on heatmap sophistication, advocating a reevaluation of the paradigm to harness both components synergistically. Our code is available at: https://github.com/LOGO-CUHKSZ/rethink_mcts_tsp.

A hybrid deep-learning-metaheuristic framework for bi-level network design problems

This study proposes a hybrid deep-learning-metaheuristic framework with a bi-level architecture for road network design problems (NDPs). We train a graph neural network (GNN) to approximate the solution of the user equilibrium (UE) traffic assignment problem and use inferences made by the trained model to calculate fitness function evaluations of a genetic algorithm (GA) to approximate solutions for NDPs. Using three test networks, two NDP variants and an exact solver as benchmark, we show that on average, our proposed framework can provide solutions within 1.5% gap of the best results in less than 0.5% of the time used by the exact solution procedure. Our framework can be utilized within an expert system for infrastructure planning to determine the best infrastructure planning and management decisions under different scenarios. Given the flexibility of the framework, it can easily be adapted to many other decision problems that can be modeled as bi-level problems on graphs. Moreover, we foreseen interesting future research directions, thus we also put forward a brief research agenda for this topic. The key observation from our research that can shape future research is that the fitness function evaluation time using the inferences made by the GNN model was in the order of milliseconds, which points to an opportunity and a need for novel heuristics that 1) can cope well with noisy fitness function values provided by deep learning models, and 2) can use the significantly enlarged efficiency of the evaluation step to explore the search space effectively (rather than efficiently). This opens a new avenue for a modern class of metaheuristics that are crafted for use with AI-powered predictors.

Robust Model-Based Optimization for Challenging Fitness Landscapes

Protein design, a grand challenge of the day, involves optimization on a fitness landscape, and leading methods adopt a model-based approach where a model is trained on a training set (protein sequences and fitness) and proposes candidates to explore next. These methods are challenged by sparsity of high-fitness samples in the training set, a problem that has been in the literature. A less recognized but equally important problem stems from the distribution of training samples in the design space: leading methods are not designed for scenarios where the desired optimum is in a region that is not only poorly represented in training data, but also relatively far from the highly represented low-fitness regions. We show that this problem of "separation" in the design space is a significant bottleneck in existing model-based optimization tools and propose a new approach that uses a novel VAE as its search model to overcome the problem. We demonstrate its advantage over prior methods in robustly finding improved samples, regardless of the imbalance and separation between low- and high-fitness training samples. Our comprehensive benchmark on real and semi-synthetic protein datasets as well as solution design for physics-informed neural networks, showcases the generality of our approach in discrete and continuous design spaces. Our implementation is available at https://github.com/sabagh1994/PGVAE.

ImagineBench: Evaluating Reinforcement Learning with Large Language Model Rollouts

A central challenge in reinforcement learning (RL) is its dependence on extensive real-world interaction data to learn task-specific policies. While recent work demonstrates that large language models (LLMs) can mitigate this limitation by generating synthetic experience (noted as imaginary rollouts) for mastering novel tasks, progress in this emerging field is hindered due to the lack of a standard benchmark. To bridge this gap, we introduce ImagineBench, the first comprehensive benchmark for evaluating offline RL algorithms that leverage both real rollouts and LLM-imaginary rollouts. The key features of ImagineBench include: (1) datasets comprising environment-collected and LLM-imaginary rollouts; (2) diverse domains of environments covering locomotion, robotic manipulation, and navigation tasks; and (3) natural language task instructions with varying complexity levels to facilitate language-conditioned policy learning. Through systematic evaluation of state-of-the-art offline RL algorithms, we observe that simply applying existing offline RL algorithms leads to suboptimal performance on unseen tasks, achieving 35.44% success rate in hard tasks in contrast to 64.37% of method training on real rollouts for hard tasks. This result highlights the need for algorithm advancements to better leverage LLM-imaginary rollouts. Additionally, we identify key opportunities for future research: including better utilization of imaginary rollouts, fast online adaptation and continual learning, and extension to multi-modal tasks. Our code is publicly available at https://github.com/LAMDA-RL/ImagineBench.

The KiTS21 Challenge: Automatic segmentation of kidneys, renal tumors, and renal cysts in corticomedullary-phase CT

This paper presents the challenge report for the 2021 Kidney and Kidney Tumor Segmentation Challenge (KiTS21) held in conjunction with the 2021 international conference on Medical Image Computing and Computer Assisted Interventions (MICCAI). KiTS21 is a sequel to its first edition in 2019, and it features a variety of innovations in how the challenge was designed, in addition to a larger dataset. A novel annotation method was used to collect three separate annotations for each region of interest, and these annotations were performed in a fully transparent setting using a web-based annotation tool. Further, the KiTS21 test set was collected from an outside institution, challenging participants to develop methods that generalize well to new populations. Nonetheless, the top-performing teams achieved a significant improvement over the state of the art set in 2019, and this performance is shown to inch ever closer to human-level performance. An in-depth meta-analysis is presented describing which methods were used and how they faired on the leaderboard, as well as the characteristics of which cases generally saw good performance, and which did not. Overall KiTS21 facilitated a significant advancement in the state of the art in kidney tumor segmentation, and provides useful insights that are applicable to the field of semantic segmentation as a whole.

Safety at Scale: A Comprehensive Survey of Large Model Safety

The rapid advancement of large models, driven by their exceptional abilities in learning and generalization through large-scale pre-training, has reshaped the landscape of Artificial Intelligence (AI). These models are now foundational to a wide range of applications, including conversational AI, recommendation systems, autonomous driving, content generation, medical diagnostics, and scientific discovery. However, their widespread deployment also exposes them to significant safety risks, raising concerns about robustness, reliability, and ethical implications. This survey provides a systematic review of current safety research on large models, covering Vision Foundation Models (VFMs), Large Language Models (LLMs), Vision-Language Pre-training (VLP) models, Vision-Language Models (VLMs), Diffusion Models (DMs), and large-model-based Agents. Our contributions are summarized as follows: (1) We present a comprehensive taxonomy of safety threats to these models, including adversarial attacks, data poisoning, backdoor attacks, jailbreak and prompt injection attacks, energy-latency attacks, data and model extraction attacks, and emerging agent-specific threats. (2) We review defense strategies proposed for each type of attacks if available and summarize the commonly used datasets and benchmarks for safety research. (3) Building on this, we identify and discuss the open challenges in large model safety, emphasizing the need for comprehensive safety evaluations, scalable and effective defense mechanisms, and sustainable data practices. More importantly, we highlight the necessity of collective efforts from the research community and international collaboration. Our work can serve as a useful reference for researchers and practitioners, fostering the ongoing development of comprehensive defense systems and platforms to safeguard AI models.

Deep Learning based Computer Vision Methods for Complex Traffic Environments Perception: A Review

Computer vision applications in intelligent transportation systems (ITS) and autonomous driving (AD) have gravitated towards deep neural network architectures in recent years. While performance seems to be improving on benchmark datasets, many real-world challenges are yet to be adequately considered in research. This paper conducted an extensive literature review on the applications of computer vision in ITS and AD, and discusses challenges related to data, models, and complex urban environments. The data challenges are associated with the collection and labeling of training data and its relevance to real world conditions, bias inherent in datasets, the high volume of data needed to be processed, and privacy concerns. Deep learning (DL) models are commonly too complex for real-time processing on embedded hardware, lack explainability and generalizability, and are hard to test in real-world settings. Complex urban traffic environments have irregular lighting and occlusions, and surveillance cameras can be mounted at a variety of angles, gather dirt, shake in the wind, while the traffic conditions are highly heterogeneous, with violation of rules and complex interactions in crowded scenarios. Some representative applications that suffer from these problems are traffic flow estimation, congestion detection, autonomous driving perception, vehicle interaction, and edge computing for practical deployment. The possible ways of dealing with the challenges are also explored while prioritizing practical deployment.

AURORA:Automated Training Framework of Universal Process Reward Models via Ensemble Prompting and Reverse Verification

The reasoning capabilities of advanced large language models (LLMs) like o1 have revolutionized artificial intelligence applications. Nevertheless, evaluating and optimizing complex reasoning processes remain significant challenges due to diverse policy distributions and the inherent limitations of human effort and accuracy. In this paper, we present AURORA, a novel automated framework for training universal process reward models (PRMs) using ensemble prompting and reverse verification. The framework employs a two-phase approach: First, it uses diverse prompting strategies and ensemble methods to perform automated annotation and evaluation of processes, ensuring robust assessments for reward learning. Second, it leverages practical reference answers for reverse verification, enhancing the model's ability to validate outputs and improving training accuracy. To assess the framework's performance, we extend beyond the existing ProcessBench benchmark by introducing UniversalBench, which evaluates reward predictions across full trajectories under diverse policy distribtion with long Chain-of-Thought (CoT) outputs. Experimental results demonstrate that AURORA enhances process evaluation accuracy, improves PRMs' accuracy for diverse policy distributions and long-CoT responses. The project will be open-sourced at https://auroraprm.github.io/. The Universal-PRM-7B is available at https://huggingface.co/infly/Universal-PRM-7B.

Heimdall: test-time scaling on the generative verification

An AI system can create and maintain knowledge only to the extent that it can verify that knowledge itself. Recent work on long Chain-of-Thought reasoning has demonstrated great potential of LLMs on solving competitive problems, but their verification ability remains to be weak and not sufficiently investigated. In this paper, we propose Heimdall, the long CoT verification LLM that can accurately judge the correctness of solutions. With pure reinforcement learning, we boost the verification accuracy from 62.5% to 94.5% on competitive math problems. By scaling with repeated sampling, the accuracy further increases to 97.5%. Through human evaluation, Heimdall demonstrates impressive generalization capabilities, successfully detecting most issues in challenging math proofs, the type of which is not included during training. Furthermore, we propose Pessimistic Verification to extend the functionality of Heimdall to scaling up the problem solving. It calls Heimdall to judge the solutions from a solver model and based on the pessimistic principle, selects the most likely correct solution with the least uncertainty. Taking DeepSeek-R1-Distill-Qwen-32B as the solver model, Pessimistic Verification improves the solution accuracy on AIME2025 from 54.2% to 70.0% with 16x compute budget and to 83.3% with more compute budget. With the stronger solver Gemini 2.5 Pro, the score reaches 93.0%. Finally, we prototype an automatic knowledge discovery system, a ternary system where one poses questions, another provides solutions, and the third verifies the solutions. Using the data synthesis work NuminaMath for the first two components, Heimdall effectively identifies problematic records within the dataset and reveals that nearly half of the data is flawed, which interestingly aligns with the recent ablation studies from NuminaMath.

RAGent: Retrieval-based Access Control Policy Generation

Manually generating access control policies from an organization's high-level requirement specifications poses significant challenges. It requires laborious efforts to sift through multiple documents containing such specifications and translate their access requirements into access control policies. Also, the complexities and ambiguities of these specifications often result in errors by system administrators during the translation process, leading to data breaches. However, the automated policy generation frameworks designed to help administrators in this process are unreliable due to limitations, such as the lack of domain adaptation. Therefore, to improve the reliability of access control policy generation, we propose RAGent, a novel retrieval-based access control policy generation framework based on language models. RAGent identifies access requirements from high-level requirement specifications with an average state-of-the-art F1 score of 87.9%. Through retrieval augmented generation, RAGent then translates the identified access requirements into access control policies with an F1 score of 77.9%. Unlike existing frameworks, RAGent generates policies with complex components like purposes and conditions, in addition to subjects, actions, and resources. Moreover, RAGent automatically verifies the generated policies and iteratively refines them through a novel verification-refinement mechanism, further improving the reliability of the process by 3%, reaching the F1 score of 80.6%. We also introduce three annotated datasets for developing access control policy generation frameworks in the future, addressing the data scarcity of the domain.

Automating High Quality RT Planning at Scale

Radiotherapy (RT) planning is complex, subjective, and time-intensive. Advances in artificial intelligence (AI) promise to improve its precision, efficiency, and consistency, but progress is often limited by the scarcity of large, standardized datasets. To address this, we introduce the Automated Iterative RT Planning (AIRTP) system, a scalable solution for generating high-quality treatment plans. This scalable solution is designed to generate substantial volumes of consistently high-quality treatment plans, overcoming a key obstacle in the advancement of AI-driven RT planning. Our AIRTP pipeline adheres to clinical guidelines and automates essential steps, including organ-at-risk (OAR) contouring, helper structure creation, beam setup, optimization, and plan quality improvement, using AI integrated with RT planning software like Eclipse of Varian. Furthermore, a novel approach for determining optimization parameters to reproduce 3D dose distributions, i.e. a method to convert dose predictions to deliverable treatment plans constrained by machine limitations. A comparative analysis of plan quality reveals that our automated pipeline produces treatment plans of quality comparable to those generated manually, which traditionally require several hours of labor per plan. Committed to public research, the first data release of our AIRTP pipeline includes nine cohorts covering head-and-neck and lung cancer sites to support an AAPM 2025 challenge. This data set features more than 10 times the number of plans compared to the largest existing well-curated public data set to our best knowledge. Repo:{https://github.com/RiqiangGao/GDP-HMM_AAPMChallenge}

AdaCtrl: Towards Adaptive and Controllable Reasoning via Difficulty-Aware Budgeting

Modern large reasoning models demonstrate impressive problem-solving capabilities by employing sophisticated reasoning strategies. However, they often struggle to balance efficiency and effectiveness, frequently generating unnecessarily lengthy reasoning chains for simple problems. In this work, we propose AdaCtrl, a novel framework to support both difficulty-aware adaptive reasoning budget allocation and explicit user control over reasoning depth. AdaCtrl dynamically adjusts its reasoning length based on self-assessed problem difficulty, while also allowing users to manually control the budget to prioritize either efficiency or effectiveness. This is achieved through a two-stage training pipeline: an initial cold-start fine-tuning phase to instill the ability to self-aware difficulty and adjust reasoning budget, followed by a difficulty-aware reinforcement learning (RL) stage that refines the model's adaptive reasoning strategies and calibrates its difficulty assessments based on its evolving capabilities during online training. To enable intuitive user interaction, we design explicit length-triggered tags that function as a natural interface for budget control. Empirical results show that AdaCtrl adapts reasoning length based on estimated difficulty, compared to the standard training baseline that also incorporates fine-tuning and RL, it yields performance improvements and simultaneously reduces response length by 10.06% and 12.14% on the more challenging AIME2024 and AIME2025 datasets, which require elaborate reasoning, and by 62.05% and 91.04% on the MATH500 and GSM8K datasets, where more concise responses are sufficient. Furthermore, AdaCtrl enables precise user control over the reasoning budget, allowing for tailored responses to meet specific needs.

SuperHF: Supervised Iterative Learning from Human Feedback

While large language models demonstrate remarkable capabilities, they often present challenges in terms of safety, alignment with human values, and stability during training. Here, we focus on two prevalent methods used to align these models, Supervised Fine-Tuning (SFT) and Reinforcement Learning from Human Feedback (RLHF). SFT is simple and robust, powering a host of open-source models, while RLHF is a more sophisticated method used in top-tier models like ChatGPT but also suffers from instability and susceptibility to reward hacking. We propose a novel approach, Supervised Iterative Learning from Human Feedback (SuperHF), which seeks to leverage the strengths of both methods. Our hypothesis is two-fold: that the reward model used in RLHF is critical for efficient data use and model generalization and that the use of Proximal Policy Optimization (PPO) in RLHF may not be necessary and could contribute to instability issues. SuperHF replaces PPO with a simple supervised loss and a Kullback-Leibler (KL) divergence prior. It creates its own training data by repeatedly sampling a batch of model outputs and filtering them through the reward model in an online learning regime. We then break down the reward optimization problem into three components: robustly optimizing the training rewards themselves, preventing reward hacking-exploitation of the reward model that degrades model performance-as measured by a novel METEOR similarity metric, and maintaining good performance on downstream evaluations. Our experimental results show SuperHF exceeds PPO-based RLHF on the training objective, easily and favorably trades off high reward with low reward hacking, improves downstream calibration, and performs the same on our GPT-4 based qualitative evaluation scheme all the while being significantly simpler to implement, highlighting SuperHF's potential as a competitive language model alignment technique.

A Survey on Bias and Fairness in Machine Learning

With the widespread use of AI systems and applications in our everyday lives, it is important to take fairness issues into consideration while designing and engineering these types of systems. Such systems can be used in many sensitive environments to make important and life-changing decisions; thus, it is crucial to ensure that the decisions do not reflect discriminatory behavior toward certain groups or populations. We have recently seen work in machine learning, natural language processing, and deep learning that addresses such challenges in different subdomains. With the commercialization of these systems, researchers are becoming aware of the biases that these applications can contain and have attempted to address them. In this survey we investigated different real-world applications that have shown biases in various ways, and we listed different sources of biases that can affect AI applications. We then created a taxonomy for fairness definitions that machine learning researchers have defined in order to avoid the existing bias in AI systems. In addition to that, we examined different domains and subdomains in AI showing what researchers have observed with regard to unfair outcomes in the state-of-the-art methods and how they have tried to address them. There are still many future directions and solutions that can be taken to mitigate the problem of bias in AI systems. We are hoping that this survey will motivate researchers to tackle these issues in the near future by observing existing work in their respective fields.

The AI Scientist-v2: Workshop-Level Automated Scientific Discovery via Agentic Tree Search

AI is increasingly playing a pivotal role in transforming how scientific discoveries are made. We introduce The AI Scientist-v2, an end-to-end agentic system capable of producing the first entirely AI generated peer-review-accepted workshop paper. This system iteratively formulates scientific hypotheses, designs and executes experiments, analyzes and visualizes data, and autonomously authors scientific manuscripts. Compared to its predecessor (v1, Lu et al., 2024 arXiv:2408.06292), The AI Scientist-v2 eliminates the reliance on human-authored code templates, generalizes effectively across diverse machine learning domains, and leverages a novel progressive agentic tree-search methodology managed by a dedicated experiment manager agent. Additionally, we enhance the AI reviewer component by integrating a Vision-Language Model (VLM) feedback loop for iterative refinement of content and aesthetics of the figures. We evaluated The AI Scientist-v2 by submitting three fully autonomous manuscripts to a peer-reviewed ICLR workshop. Notably, one manuscript achieved high enough scores to exceed the average human acceptance threshold, marking the first instance of a fully AI-generated paper successfully navigating a peer review. This accomplishment highlights the growing capability of AI in conducting all aspects of scientific research. We anticipate that further advancements in autonomous scientific discovery technologies will profoundly impact human knowledge generation, enabling unprecedented scalability in research productivity and significantly accelerating scientific breakthroughs, greatly benefiting society at large. We have open-sourced the code at https://github.com/SakanaAI/AI-Scientist-v2 to foster the future development of this transformative technology. We also discuss the role of AI in science, including AI safety.

Competition-Level Code Generation with AlphaCode

Programming is a powerful and ubiquitous problem-solving tool. Developing systems that can assist programmers or even generate programs independently could make programming more productive and accessible, yet so far incorporating innovations in AI has proven challenging. Recent large-scale language models have demonstrated an impressive ability to generate code, and are now able to complete simple programming tasks. However, these models still perform poorly when evaluated on more complex, unseen problems that require problem-solving skills beyond simply translating instructions into code. For example, competitive programming problems which require an understanding of algorithms and complex natural language remain extremely challenging. To address this gap, we introduce AlphaCode, a system for code generation that can create novel solutions to these problems that require deeper reasoning. In simulated evaluations on recent programming competitions on the Codeforces platform, AlphaCode achieved on average a ranking of top 54.3% in competitions with more than 5,000 participants. We found that three key components were critical to achieve good and reliable performance: (1) an extensive and clean competitive programming dataset for training and evaluation, (2) large and efficient-to-sample transformer-based architectures, and (3) large-scale model sampling to explore the search space, followed by filtering based on program behavior to a small set of submissions.

From Reasoning to Generalization: Knowledge-Augmented LLMs for ARC Benchmark

Recent reasoning-oriented LLMs have demonstrated strong performance on challenging tasks such as mathematics and science examinations. However, core cognitive faculties of human intelligence, such as abstract reasoning and generalization, remain underexplored. To address this, we evaluate recent reasoning-oriented LLMs on the Abstraction and Reasoning Corpus (ARC) benchmark, which explicitly demands both faculties. We formulate ARC as a program synthesis task and propose nine candidate solvers. Experimental results show that repeated-sampling planning-aided code generation (RSPC) achieves the highest test accuracy and demonstrates consistent generalization across most LLMs. To further improve performance, we introduce an ARC solver, Knowledge Augmentation for Abstract Reasoning (KAAR), which encodes core knowledge priors within an ontology that classifies priors into three hierarchical levels based on their dependencies. KAAR progressively expands LLM reasoning capacity by gradually augmenting priors at each level, and invokes RSPC to generate candidate solutions after each augmentation stage. This stage-wise reasoning reduces interference from irrelevant priors and improves LLM performance. Empirical results show that KAAR maintains strong generalization and consistently outperforms non-augmented RSPC across all evaluated LLMs, achieving around 5% absolute gains and up to 64.52% relative improvement. Despite these achievements, ARC remains a challenging benchmark for reasoning-oriented LLMs, highlighting future avenues of progress in LLMs.

Ark: An Open-source Python-based Framework for Robot Learning

Robotics has made remarkable hardware strides-from DARPA's Urban and Robotics Challenges to the first humanoid-robot kickboxing tournament-yet commercial autonomy still lags behind progress in machine learning. A major bottleneck is software: current robot stacks demand steep learning curves, low-level C/C++ expertise, fragmented tooling, and intricate hardware integration, in stark contrast to the Python-centric, well-documented ecosystems that propelled modern AI. We introduce ARK, an open-source, Python-first robotics framework designed to close that gap. ARK presents a Gym-style environment interface that allows users to collect data, preprocess it, and train policies using state-of-the-art imitation-learning algorithms (e.g., ACT, Diffusion Policy) while seamlessly toggling between high-fidelity simulation and physical robots. A lightweight client-server architecture provides networked publisher-subscriber communication, and optional C/C++ bindings ensure real-time performance when needed. ARK ships with reusable modules for control, SLAM, motion planning, system identification, and visualization, along with native ROS interoperability. Comprehensive documentation and case studies-from manipulation to mobile navigation-demonstrate rapid prototyping, effortless hardware swapping, and end-to-end pipelines that rival the convenience of mainstream machine-learning workflows. By unifying robotics and AI practices under a common Python umbrella, ARK lowers entry barriers and accelerates research and commercial deployment of autonomous robots.

RE-Bench: Evaluating frontier AI R&D capabilities of language model agents against human experts

Frontier AI safety policies highlight automation of AI research and development (R&D) by AI agents as an important capability to anticipate. However, there exist few evaluations for AI R&D capabilities, and none that are highly realistic and have a direct comparison to human performance. We introduce RE-Bench (Research Engineering Benchmark, v1), which consists of 7 challenging, open-ended ML research engineering environments and data from 71 8-hour attempts by 61 distinct human experts. We confirm that our experts make progress in the environments given 8 hours, with 82% of expert attempts achieving a non-zero score and 24% matching or exceeding our strong reference solutions. We compare humans to several public frontier models through best-of-k with varying time budgets and agent designs, and find that the best AI agents achieve a score 4x higher than human experts when both are given a total time budget of 2 hours per environment. However, humans currently display better returns to increasing time budgets, narrowly exceeding the top AI agent scores given an 8-hour budget, and achieving 2x the score of the top AI agent when both are given 32 total hours (across different attempts). Qualitatively, we find that modern AI agents possess significant expertise in many ML topics -- e.g. an agent wrote a faster custom Triton kernel than any of our human experts' -- and can generate and test solutions over ten times faster than humans, at much lower cost. We open-source the evaluation environments, human expert data, analysis code and agent trajectories to facilitate future research.

TimeSeriesGym: A Scalable Benchmark for (Time Series) Machine Learning Engineering Agents

We introduce TimeSeriesGym, a scalable benchmarking framework for evaluating Artificial Intelligence (AI) agents on time series machine learning engineering challenges. Existing benchmarks lack scalability, focus narrowly on model building in well-defined settings, and evaluate only a limited set of research artifacts (e.g., CSV submission files). To make AI agent benchmarking more relevant to the practice of machine learning engineering, our framework scales along two critical dimensions. First, recognizing that effective ML engineering requires a range of diverse skills, TimeSeriesGym incorporates challenges from diverse sources spanning multiple domains and tasks. We design challenges to evaluate both isolated capabilities (including data handling, understanding research repositories, and code translation) and their combinations, and rather than addressing each challenge independently, we develop tools that support designing multiple challenges at scale. Second, we implement evaluation mechanisms for multiple research artifacts, including submission files, code, and models, using both precise numeric measures and more flexible LLM-based evaluation approaches. This dual strategy balances objective assessment with contextual judgment. Although our initial focus is on time series applications, our framework can be readily extended to other data modalities, broadly enhancing the comprehensiveness and practical utility of agentic AI evaluation. We open-source our benchmarking framework to facilitate future research on the ML engineering capabilities of AI agents.

Auto-GNN: Neural Architecture Search of Graph Neural Networks

Graph neural networks (GNN) has been successfully applied to operate on the graph-structured data. Given a specific scenario, rich human expertise and tremendous laborious trials are usually required to identify a suitable GNN architecture. It is because the performance of a GNN architecture is significantly affected by the choice of graph convolution components, such as aggregate function and hidden dimension. Neural architecture search (NAS) has shown its potential in discovering effective deep architectures for learning tasks in image and language modeling. However, existing NAS algorithms cannot be directly applied to the GNN search problem. First, the search space of GNN is different from the ones in existing NAS work. Second, the representation learning capacity of GNN architecture changes obviously with slight architecture modifications. It affects the search efficiency of traditional search methods. Third, widely used techniques in NAS such as parameter sharing might become unstable in GNN. To bridge the gap, we propose the automated graph neural networks (AGNN) framework, which aims to find an optimal GNN architecture within a predefined search space. A reinforcement learning based controller is designed to greedily validate architectures via small steps. AGNN has a novel parameter sharing strategy that enables homogeneous architectures to share parameters, based on a carefully-designed homogeneity definition. Experiments on real-world benchmark datasets demonstrate that the GNN architecture identified by AGNN achieves the best performance, comparing with existing handcrafted models and tradistional search methods.

AstroMLab 1: Who Wins Astronomy Jeopardy!?

We present a comprehensive evaluation of proprietary and open-weights large language models using the first astronomy-specific benchmarking dataset. This dataset comprises 4,425 multiple-choice questions curated from the Annual Review of Astronomy and Astrophysics, covering a broad range of astrophysical topics. Our analysis examines model performance across various astronomical subfields and assesses response calibration, crucial for potential deployment in research environments. Claude-3.5-Sonnet outperforms competitors by up to 4.6 percentage points, achieving 85.0% accuracy. For proprietary models, we observed a universal reduction in cost every 3-to-12 months to achieve similar score in this particular astronomy benchmark. Open-source models have rapidly improved, with LLaMA-3-70b (80.6%) and Qwen-2-72b (77.7%) now competing with some of the best proprietary models. We identify performance variations across topics, with non-English-focused models generally struggling more in exoplanet-related fields, stellar astrophysics, and instrumentation related questions. These challenges likely stem from less abundant training data, limited historical context, and rapid recent developments in these areas. This pattern is observed across both open-weights and proprietary models, with regional dependencies evident, highlighting the impact of training data diversity on model performance in specialized scientific domains. Top-performing models demonstrate well-calibrated confidence, with correlations above 0.9 between confidence and correctness, though they tend to be slightly underconfident. The development for fast, low-cost inference of open-weights models presents new opportunities for affordable deployment in astronomy. The rapid progress observed suggests that LLM-driven research in astronomy may become feasible in the near future.

A Review of Deep Learning with Special Emphasis on Architectures, Applications and Recent Trends

Deep learning has solved a problem that as little as five years ago was thought by many to be intractable - the automatic recognition of patterns in data; and it can do so with accuracy that often surpasses human beings. It has solved problems beyond the realm of traditional, hand-crafted machine learning algorithms and captured the imagination of practitioners trying to make sense out of the flood of data that now inundates our society. As public awareness of the efficacy of DL increases so does the desire to make use of it. But even for highly trained professionals it can be daunting to approach the rapidly increasing body of knowledge produced by experts in the field. Where does one start? How does one determine if a particular model is applicable to their problem? How does one train and deploy such a network? A primer on the subject can be a good place to start. With that in mind, we present an overview of some of the key multilayer ANNs that comprise DL. We also discuss some new automatic architecture optimization protocols that use multi-agent approaches. Further, since guaranteeing system uptime is becoming critical to many computer applications, we include a section on using neural networks for fault detection and subsequent mitigation. This is followed by an exploratory survey of several application areas where DL has emerged as a game-changing technology: anomalous behavior detection in financial applications or in financial time-series forecasting, predictive and prescriptive analytics, medical image processing and analysis and power systems research. The thrust of this review is to outline emerging areas of application-oriented research within the DL community as well as to provide a reference to researchers seeking to use it in their work for what it does best: statistical pattern recognition with unparalleled learning capacity with the ability to scale with information.

DART-Math: Difficulty-Aware Rejection Tuning for Mathematical Problem-Solving

Solving mathematical problems requires advanced reasoning abilities and presents notable challenges for large language models. Previous works usually synthesize data from proprietary models to augment existing datasets, followed by instruction tuning to achieve top-tier results. However, our analysis of these datasets reveals severe biases towards easy queries, with frequent failures to generate any correct response for the most challenging queries. Hypothesizing that difficult queries are crucial to learn complex reasoning, we propose Difficulty-Aware Rejection Tuning (DART), a method that allocates difficult queries more trials during the synthesis phase, enabling more extensive training on difficult samples. Utilizing DART, we have created new datasets for mathematical problem-solving that focus more on difficult queries and are substantially smaller than previous ones. Remarkably, our synthesis process solely relies on a 7B-sized open-weight model, without reliance on the commonly used proprietary GPT-4. We fine-tune various base models on our datasets ranging from 7B to 70B in size, resulting in a series of strong models called DART-MATH. In comprehensive in-domain and out-of-domain evaluation on 6 mathematical benchmarks, DART-MATH outperforms vanilla rejection tuning significantly, being superior or comparable to previous arts, despite using much smaller datasets and no proprietary models. Furthermore, our results position our synthetic datasets as the most effective and cost-efficient publicly available resources for advancing mathematical problem-solving.

Rich Feature Construction for the Optimization-Generalization Dilemma

There often is a dilemma between ease of optimization and robust out-of-distribution (OoD) generalization. For instance, many OoD methods rely on penalty terms whose optimization is challenging. They are either too strong to optimize reliably or too weak to achieve their goals. We propose to initialize the networks with a rich representation containing a palette of potentially useful features, ready to be used by even simple models. On the one hand, a rich representation provides a good initialization for the optimizer. On the other hand, it also provides an inductive bias that helps OoD generalization. Such a representation is constructed with the Rich Feature Construction (RFC) algorithm, also called the Bonsai algorithm, which consists of a succession of training episodes. During discovery episodes, we craft a multi-objective optimization criterion and its associated datasets in a manner that prevents the network from using the features constructed in the previous iterations. During synthesis episodes, we use knowledge distillation to force the network to simultaneously represent all the previously discovered features. Initializing the networks with Bonsai representations consistently helps six OoD methods achieve top performance on ColoredMNIST benchmark. The same technique substantially outperforms comparable results on the Wilds Camelyon17 task, eliminates the high result variance that plagues other methods, and makes hyperparameter tuning and model selection more reliable.

LADDER: Language Driven Slice Discovery and Error Rectification

Error slice discovery is crucial to diagnose and mitigate model errors. Current clustering or discrete attribute-based slice discovery methods face key limitations: 1) clustering results in incoherent slices, while assigning discrete attributes to slices leads to incomplete coverage of error patterns due to missing or insufficient attributes; 2) these methods lack complex reasoning, preventing them from fully explaining model biases; 3) they fail to integrate domain knowledge, limiting their usage in specialized fields \eg radiology. We propose\ladder (Language-Driven Discovery and Error Rectification), to address the limitations by: (1) leveraging the flexibility of natural language to address incompleteness, (2) employing LLM's latent domain knowledge and advanced reasoning to analyze sentences and derive testable hypotheses directly, identifying biased attributes, and form coherent error slices without clustering. Existing mitigation methods typically address only the worst-performing group, often amplifying errors in other subgroups. In contrast,\ladder generates pseudo attributes from the discovered hypotheses to mitigate errors across all biases without explicit attribute annotations or prior knowledge of bias. Rigorous evaluations on 6 datasets spanning natural and medical images -- comparing 200+ classifiers with diverse architectures, pretraining strategies, and LLMs -- show that\ladder consistently outperforms existing baselines in discovering and mitigating biases.