Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeEuroCropsML: A Time Series Benchmark Dataset For Few-Shot Crop Type Classification
We introduce EuroCropsML, an analysis-ready remote sensing machine learning dataset for time series crop type classification of agricultural parcels in Europe. It is the first dataset designed to benchmark transnational few-shot crop type classification algorithms that supports advancements in algorithmic development and research comparability. It comprises 706 683 multi-class labeled data points across 176 classes, featuring annual time series of per-parcel median pixel values from Sentinel-2 L1C data for 2021, along with crop type labels and spatial coordinates. Based on the open-source EuroCrops collection, EuroCropsML is publicly available on Zenodo.
SSL4EO-S12 v1.1: A Multimodal, Multiseasonal Dataset for Pretraining, Updated
This technical report presents SSL4EO-S12 v1.1, a multimodal, multitemporal Earth Observation dataset designed for pretraining large-scale foundation models. Building on the success of SSL4EO-S12 v1.0, the new version addresses the previous challenges of data misalignment and a limited data structure for low-barrier, analysis-ready EO processing. SSL4EO-S12 v1.1 covers the world's 10,000 largest cities and its surroundings within a 50 km radius across four seasons, resulting in a diverse collection of nearly one million patches. SSL4EO-S12 v1.1 packages the data in Zarr file format for cloud-efficient loading and representation of meta-information such as including cloud masks and geolocation. Released under the CC-BY-4.0 license, SSL4EO-S12 v1.1 facilitates open research and provides a robust foundation for future advancements in self-supervised learning and geospatial analysis. The dataset is available online through https://datapub.fz-juelich.de/ssl4eo-s12, and we provided additional resources at https://github.com/DLR-MF-DAS/SSL4EO-S12-v1.1.
EarthScape: A Multimodal Dataset for Surficial Geologic Mapping and Earth Surface Analysis
Surficial geologic mapping is essential for understanding Earth surface processes, addressing modern challenges such as climate change and national security, and supporting common applications in engineering and resource management. However, traditional mapping methods are labor-intensive, limiting spatial coverage and introducing potential biases. To address these limitations, we introduce EarthScape, a novel, AI-ready multimodal dataset specifically designed for surficial geologic mapping and Earth surface analysis. EarthScape integrates high-resolution aerial RGB and near-infrared (NIR) imagery, digital elevation models (DEM), multi-scale DEM-derived terrain features, and hydrologic and infrastructure vector data. The dataset provides detailed annotations for seven distinct surficial geologic classes encompassing various geological processes. We present a comprehensive data processing pipeline using open-sourced raw data and establish baseline benchmarks using different spatial modalities to demonstrate the utility of EarthScape. As a living dataset with a vision for expansion, EarthScape bridges the gap between computer vision and Earth sciences, offering a valuable resource for advancing research in multimodal learning, geospatial analysis, and geological mapping. Our code is available at https://github.com/masseygeo/earthscape.
Surface-based parcellation and vertex-wise analysis of ultra high-resolution ex vivo 7 tesla MRI in Alzheimer's disease and related dementias
Magnetic resonance imaging (MRI) is the standard modality to understand human brain structure and function in vivo (antemortem). Decades of research in human neuroimaging has led to the widespread development of methods and tools to provide automated volume-based segmentations and surface-based parcellations which help localize brain functions to specialized anatomical regions. Recently ex vivo (postmortem) imaging of the brain has opened-up avenues to study brain structure at sub-millimeter ultra high-resolution revealing details not possible to observe with in vivo MRI. Unfortunately, there has been limited methodological development in ex vivo MRI primarily due to lack of datasets and limited centers with such imaging resources. Therefore, in this work, we present one-of-its-kind dataset of 82 ex vivo T2w whole brain hemispheres MRI at 0.3 mm isotropic resolution spanning Alzheimer's disease and related dementias. We adapted and developed a fast and easy-to-use automated surface-based pipeline to parcellate, for the first time, ultra high-resolution ex vivo brain tissue at the native subject space resolution using the Desikan-Killiany-Tourville (DKT) brain atlas. This allows us to perform vertex-wise analysis in the template space and thereby link morphometry measures with pathology measurements derived from histology. We will open-source our dataset docker container, Jupyter notebooks for ready-to-use out-of-the-box set of tools and command line options to advance ex vivo MRI clinical brain imaging research on the project webpage.
WxC-Bench: A Novel Dataset for Weather and Climate Downstream Tasks
High-quality machine learning (ML)-ready datasets play a foundational role in developing new artificial intelligence (AI) models or fine-tuning existing models for scientific applications such as weather and climate analysis. Unfortunately, despite the growing development of new deep learning models for weather and climate, there is a scarcity of curated, pre-processed machine learning (ML)-ready datasets. Curating such high-quality datasets for developing new models is challenging particularly because the modality of the input data varies significantly for different downstream tasks addressing different atmospheric scales (spatial and temporal). Here we introduce WxC-Bench (Weather and Climate Bench), a multi-modal dataset designed to support the development of generalizable AI models for downstream use-cases in weather and climate research. WxC-Bench is designed as a dataset of datasets for developing ML-models for a complex weather and climate system, addressing selected downstream tasks as machine learning phenomenon. WxC-Bench encompasses several atmospheric processes from meso-beta (20 - 200 km) scale to synoptic scales (2500 km), such as aviation turbulence, hurricane intensity and track monitoring, weather analog search, gravity wave parameterization, and natural language report generation. We provide a comprehensive description of the dataset and also present a technical validation for baseline analysis. The dataset and code to prepare the ML-ready data have been made publicly available on Hugging Face -- https://huggingface.co/datasets/nasa-impact/WxC-Bench
FRoundation: Are Foundation Models Ready for Face Recognition?
Foundation models are predominantly trained in an unsupervised or self-supervised manner on highly diverse and large-scale datasets, making them broadly applicable to various downstream tasks. In this work, we investigate for the first time whether such models are suitable for the specific domain of face recognition. We further propose and demonstrate the adaptation of these models for face recognition across different levels of data availability. Extensive experiments are conducted on multiple foundation models and datasets of varying scales for training and fine-tuning, with evaluation on a wide range of benchmarks. Our results indicate that, despite their versatility, pre-trained foundation models underperform in face recognition compared to similar architectures trained specifically for this task. However, fine-tuning foundation models yields promising results, often surpassing models trained from scratch when training data is limited. Even with access to large-scale face recognition training datasets, fine-tuned foundation models perform comparably to models trained from scratch, but with lower training computational costs and without relying on the assumption of extensive data availability. Our analysis also explores bias in face recognition, with slightly higher bias observed in some settings when using foundation models.
Towards Enterprise-Ready Computer Using Generalist Agent
This paper presents our ongoing work toward developing an enterprise-ready Computer Using Generalist Agent (CUGA) system. Our research highlights the evolutionary nature of building agentic systems suitable for enterprise environments. By integrating state-of-the-art agentic AI techniques with a systematic approach to iterative evaluation, analysis, and refinement, we have achieved rapid and cost-effective performance gains, notably reaching a new state-of-the-art performance on the WebArena benchmark. We detail our development roadmap, the methodology and tools that facilitated rapid learning from failures and continuous system refinement, and discuss key lessons learned and future challenges for enterprise adoption.
Training Language Models to Generate Quality Code with Program Analysis Feedback
Code generation with large language models (LLMs), often termed vibe coding, is increasingly adopted in production but fails to ensure code quality, particularly in security (e.g., SQL injection vulnerabilities) and maintainability (e.g., missing type annotations). Existing methods, such as supervised fine-tuning and rule-based post-processing, rely on labor-intensive annotations or brittle heuristics, limiting their scalability and effectiveness. We propose REAL, a reinforcement learning framework that incentivizes LLMs to generate production-quality code using program analysis-guided feedback. Specifically, REAL integrates two automated signals: (1) program analysis detecting security or maintainability defects and (2) unit tests ensuring functional correctness. Unlike prior work, our framework is prompt-agnostic and reference-free, enabling scalable supervision without manual intervention. Experiments across multiple datasets and model scales demonstrate that REAL outperforms state-of-the-art methods in simultaneous assessments of functionality and code quality. Our work bridges the gap between rapid prototyping and production-ready code, enabling LLMs to deliver both speed and quality.
VascX Models: Model Ensembles for Retinal Vascular Analysis from Color Fundus Images
We introduce VascX models, a comprehensive set of model ensembles for analyzing retinal vasculature from color fundus images (CFIs). Annotated CFIs were aggregated from public datasets for vessel, artery-vein, and disc segmentation; and fovea localization. Additional CFIs from the population-based Rotterdam Study were, with arteries and veins annotated by graders at pixel level. Our models achieved robust performance across devices from different vendors, varying levels of image quality levels, and diverse pathologies. Our models demonstrated superior segmentation performance compared to existing systems under a variety of conditions. Significant enhancements were observed in artery-vein and disc segmentation performance, particularly in segmentations of these structures on CFIs of intermediate quality, a common characteristic of large cohorts and clinical datasets. Our model outperformed human graders in segmenting vessels with greater precision. With VascX models we provide a robust, ready-to-use set of model ensembles and inference code aimed at simplifying the implementation and enhancing the quality of automated retinal vasculature analyses. The precise vessel parameters generated by the model can serve as starting points for the identification of disease patterns in and outside of the eye.
Deep Learning, Machine Learning, Advancing Big Data Analytics and Management
Advancements in artificial intelligence, machine learning, and deep learning have catalyzed the transformation of big data analytics and management into pivotal domains for research and application. This work explores the theoretical foundations, methodological advancements, and practical implementations of these technologies, emphasizing their role in uncovering actionable insights from massive, high-dimensional datasets. The study presents a systematic overview of data preprocessing techniques, including data cleaning, normalization, integration, and dimensionality reduction, to prepare raw data for analysis. Core analytics methodologies such as classification, clustering, regression, and anomaly detection are examined, with a focus on algorithmic innovation and scalability. Furthermore, the text delves into state-of-the-art frameworks for data mining and predictive modeling, highlighting the role of neural networks, support vector machines, and ensemble methods in tackling complex analytical challenges. Special emphasis is placed on the convergence of big data with distributed computing paradigms, including cloud and edge computing, to address challenges in storage, computation, and real-time analytics. The integration of ethical considerations, including data privacy and compliance with global standards, ensures a holistic perspective on data management. Practical applications across healthcare, finance, marketing, and policy-making illustrate the real-world impact of these technologies. Through comprehensive case studies and Python-based implementations, this work equips researchers, practitioners, and data enthusiasts with the tools to navigate the complexities of modern data analytics. It bridges the gap between theory and practice, fostering the development of innovative solutions for managing and leveraging data in the era of artificial intelligence.
Understanding and Mitigating Toxicity in Image-Text Pretraining Datasets: A Case Study on LLaVA
Pretraining datasets are foundational to the development of multimodal models, yet they often have inherent biases and toxic content from the web-scale corpora they are sourced from. In this paper, we investigate the prevalence of toxicity in LLaVA image-text pretraining dataset, examining how harmful content manifests in different modalities. We present a comprehensive analysis of common toxicity categories and propose targeted mitigation strategies, resulting in the creation of a refined toxicity-mitigated dataset. This dataset removes 7,531 of toxic image-text pairs in the LLaVA pre-training dataset. We offer guidelines for implementing robust toxicity detection pipelines. Our findings underscore the need to actively identify and filter toxic content - such as hate speech, explicit imagery, and targeted harassment - to build more responsible and equitable multimodal systems. The toxicity-mitigated dataset is open source and is available for further research.
Layered Insights: Generalizable Analysis of Authorial Style by Leveraging All Transformer Layers
We propose a new approach for the authorship attribution task that leverages the various linguistic representations learned at different layers of pre-trained transformer-based models. We evaluate our approach on three datasets, comparing it to a state-of-the-art baseline in in-domain and out-of-domain scenarios. We found that utilizing various transformer layers improves the robustness of authorship attribution models when tested on out-of-domain data, resulting in new state-of-the-art results. Our analysis gives further insights into how our model's different layers get specialized in representing certain stylistic features that benefit the model when tested out of the domain.
Deceptive Humor: A Synthetic Multilingual Benchmark Dataset for Bridging Fabricated Claims with Humorous Content
This paper presents the Deceptive Humor Dataset (DHD), a novel resource for studying humor derived from fabricated claims and misinformation. In an era of rampant misinformation, understanding how humor intertwines with deception is essential. DHD consists of humor-infused comments generated from false narratives, incorporating fabricated claims and manipulated information using the ChatGPT-4o model. Each instance is labeled with a Satire Level, ranging from 1 for subtle satire to 3 for high-level satire and classified into five distinct Humor Categories: Dark Humor, Irony, Social Commentary, Wordplay, and Absurdity. The dataset spans multiple languages including English, Telugu, Hindi, Kannada, Tamil, and their code-mixed variants (Te-En, Hi-En, Ka-En, Ta-En), making it a valuable multilingual benchmark. By introducing DHD, we establish a structured foundation for analyzing humor in deceptive contexts, paving the way for a new research direction that explores how humor not only interacts with misinformation but also influences its perception and spread. We establish strong baselines for the proposed dataset, providing a foundation for future research to benchmark and advance deceptive humor detection models.
An Analysis of Multilingual FActScore
FActScore has gained popularity as a metric to estimate the factuality of long-form texts generated by Large Language Models (LLMs) in English. However, there has not been any work in studying the behavior of FActScore in other languages. This paper studies the limitations of each component in the four-component pipeline of FActScore in the multilingual setting. We introduce a new dataset for FActScore on texts generated by strong multilingual LLMs. Our evaluation shows that LLMs exhibit distinct behaviors in both fact extraction and fact scoring tasks. No LLM produces consistent and reliable FActScore across languages with varying levels of resources. We also find that the knowledge source plays an important role in the quality of the estimated FActScore. Using Wikipedia as the knowledge source may hinder the true FActScore of long-form text due to its limited coverage in medium- and low-resource languages. We also incorporate three mitigations to our knowledge source that ultimately improve FActScore estimation across all languages.
InsightBench: Evaluating Business Analytics Agents Through Multi-Step Insight Generation
Data analytics is essential for extracting valuable insights from data that can assist organizations in making effective decisions. We introduce InsightBench, a benchmark dataset with three key features. First, it consists of 100 datasets representing diverse business use cases such as finance and incident management, each accompanied by a carefully curated set of insights planted in the datasets. Second, unlike existing benchmarks focusing on answering single queries, InsightBench evaluates agents based on their ability to perform end-to-end data analytics, including formulating questions, interpreting answers, and generating a summary of insights and actionable steps. Third, we conducted comprehensive quality assurance to ensure that each dataset in the benchmark had clear goals and included relevant and meaningful questions and analysis. Furthermore, we implement a two-way evaluation mechanism using LLaMA-3 as an effective, open-source evaluator to assess agents' ability to extract insights. We also propose AgentPoirot, our baseline data analysis agent capable of performing end-to-end data analytics. Our evaluation on InsightBench shows that AgentPoirot outperforms existing approaches (such as Pandas Agent) that focus on resolving single queries. We also compare the performance of open- and closed-source LLMs and various evaluation strategies. Overall, this benchmark serves as a testbed to motivate further development in comprehensive automated data analytics and can be accessed here: https://github.com/ServiceNow/insight-bench.
Just read twice: closing the recall gap for recurrent language models
Recurrent large language models that compete with Transformers in language modeling perplexity are emerging at a rapid rate (e.g., Mamba, RWKV). Excitingly, these architectures use a constant amount of memory during inference. However, due to the limited memory, recurrent LMs cannot recall and use all the information in long contexts leading to brittle in-context learning (ICL) quality. A key challenge for efficient LMs is selecting what information to store versus discard. In this work, we observe the order in which information is shown to the LM impacts the selection difficulty. To formalize this, we show that the hardness of information recall reduces to the hardness of a problem called set disjointness (SD), a quintessential problem in communication complexity that requires a streaming algorithm (e.g., recurrent model) to decide whether inputted sets are disjoint. We empirically and theoretically show that the recurrent memory required to solve SD changes with set order, i.e., whether the smaller set appears first in-context. Our analysis suggests, to mitigate the reliance on data order, we can put information in the right order in-context or process prompts non-causally. Towards that end, we propose: (1) JRT-Prompt, where context gets repeated multiple times in the prompt, effectively showing the model all data orders. This gives 11.0 pm 1.3 points of improvement, averaged across 16 recurrent LMs and the 6 ICL tasks, with 11.9times higher throughput than FlashAttention-2 for generation prefill (length 32k, batch size 16, NVidia H100). We then propose (2) JRT-RNN, which uses non-causal prefix-linear-attention to process prompts and provides 99% of Transformer quality at 360M params., 30B tokens and 96% at 1.3B params., 50B tokens on average across the tasks, with 19.2times higher throughput for prefill than FA2.
IfQA: A Dataset for Open-domain Question Answering under Counterfactual Presuppositions
Although counterfactual reasoning is a fundamental aspect of intelligence, the lack of large-scale counterfactual open-domain question-answering (QA) benchmarks makes it difficult to evaluate and improve models on this ability. To address this void, we introduce the first such dataset, named IfQA, where each question is based on a counterfactual presupposition via an "if" clause. For example, if Los Angeles was on the east coast of the U.S., what would be the time difference between Los Angeles and Paris? Such questions require models to go beyond retrieving direct factual knowledge from the Web: they must identify the right information to retrieve and reason about an imagined situation that may even go against the facts built into their parameters. The IfQA dataset contains over 3,800 questions that were annotated annotated by crowdworkers on relevant Wikipedia passages. Empirical analysis reveals that the IfQA dataset is highly challenging for existing open-domain QA methods, including supervised retrieve-then-read pipeline methods (EM score 36.2), as well as recent few-shot approaches such as chain-of-thought prompting with GPT-3 (EM score 27.4). The unique challenges posed by the IfQA benchmark will push open-domain QA research on both retrieval and counterfactual reasoning fronts.
EXPRESSO: A Benchmark and Analysis of Discrete Expressive Speech Resynthesis
Recent work has shown that it is possible to resynthesize high-quality speech based, not on text, but on low bitrate discrete units that have been learned in a self-supervised fashion and can therefore capture expressive aspects of speech that are hard to transcribe (prosody, voice styles, non-verbal vocalization). The adoption of these methods is still limited by the fact that most speech synthesis datasets are read, severely limiting spontaneity and expressivity. Here, we introduce Expresso, a high-quality expressive speech dataset for textless speech synthesis that includes both read speech and improvised dialogues rendered in 26 spontaneous expressive styles. We illustrate the challenges and potentials of this dataset with an expressive resynthesis benchmark where the task is to encode the input in low-bitrate units and resynthesize it in a target voice while preserving content and style. We evaluate resynthesis quality with automatic metrics for different self-supervised discrete encoders, and explore tradeoffs between quality, bitrate and invariance to speaker and style. All the dataset, evaluation metrics and baseline models are open source
NCL-SM: A Fully Annotated Dataset of Images from Human Skeletal Muscle Biopsies
Single cell analysis of human skeletal muscle (SM) tissue cross-sections is a fundamental tool for understanding many neuromuscular disorders. For this analysis to be reliable and reproducible, identification of individual fibres within microscopy images (segmentation) of SM tissue should be automatic and precise. Biomedical scientists in this field currently rely on custom tools and general machine learning (ML) models, both followed by labour intensive and subjective manual interventions to fine-tune segmentation. We believe that fully automated, precise, reproducible segmentation is possible by training ML models. However, in this important biomedical domain, there are currently no good quality, publicly available annotated imaging datasets available for ML model training. In this paper we release NCL-SM: a high quality bioimaging dataset of 46 human SM tissue cross-sections from both healthy control subjects and from patients with genetically diagnosed muscle pathology. These images include > 50k manually segmented muscle fibres (myofibres). In addition we also curated high quality myofibre segmentations, annotating reasons for rejecting low quality myofibres and low quality regions in SM tissue images, making these annotations completely ready for downstream analysis. This, we believe, will pave the way for development of a fully automatic pipeline that identifies individual myofibres within images of tissue sections and, in particular, also classifies individual myofibres that are fit for further analysis.
Maya: An Instruction Finetuned Multilingual Multimodal Model
The rapid development of large Vision-Language Models (VLMs) has led to impressive results on academic benchmarks, primarily in widely spoken languages. However, significant gaps remain in the ability of current VLMs to handle low-resource languages and varied cultural contexts, largely due to a lack of high-quality, diverse, and safety-vetted data. Consequently, these models often struggle to understand low-resource languages and cultural nuances in a manner free from toxicity. To address these limitations, we introduce Maya, an open-source Multimodal Multilingual model. Our contributions are threefold: 1) a multilingual image-text pretraining dataset in eight languages, based on the LLaVA pretraining dataset; 2) a thorough analysis of toxicity within the LLaVA dataset, followed by the creation of a novel toxicity-free version across eight languages; and 3) a multilingual image-text model supporting these languages, enhancing cultural and linguistic comprehension in vision-language tasks. Code available at https://github.com/nahidalam/maya.
SNIP: Bridging Mathematical Symbolic and Numeric Realms with Unified Pre-training
In an era where symbolic mathematical equations are indispensable for modeling complex natural phenomena, scientific inquiry often involves collecting observations and translating them into mathematical expressions. Recently, deep learning has emerged as a powerful tool for extracting insights from data. However, existing models typically specialize in either numeric or symbolic domains, and are usually trained in a supervised manner tailored to specific tasks. This approach neglects the substantial benefits that could arise from a task-agnostic unified understanding between symbolic equations and their numeric counterparts. To bridge the gap, we introduce SNIP, a Symbolic-Numeric Integrated Pre-training, which employs joint contrastive learning between symbolic and numeric domains, enhancing their mutual similarities in the pre-trained embeddings. By performing latent space analysis, we observe that SNIP provides cross-domain insights into the representations, revealing that symbolic supervision enhances the embeddings of numeric data and vice versa. We evaluate SNIP across diverse tasks, including symbolic-to-numeric mathematical property prediction and numeric-to-symbolic equation discovery, commonly known as symbolic regression. Results show that SNIP effectively transfers to various tasks, consistently outperforming fully supervised baselines and competing strongly with established task-specific methods, especially in few-shot learning scenarios where available data is limited.
In-Context Learning Strategies Emerge Rationally
Recent work analyzing in-context learning (ICL) has identified a broad set of strategies that describe model behavior in different experimental conditions. We aim to unify these findings by asking why a model learns these disparate strategies in the first place. Specifically, we start with the observation that when trained to learn a mixture of tasks, as is popular in the literature, the strategies learned by a model for performing ICL can be captured by a family of Bayesian predictors: a memorizing predictor, which assumes a discrete prior on the set of seen tasks, and a generalizing predictor, where the prior matches the underlying task distribution. Adopting the normative lens of rational analysis, where a learner's behavior is explained as an optimal adaptation to data given computational constraints, we develop a hierarchical Bayesian framework that almost perfectly predicts Transformer next-token predictions throughout training -- without assuming access to its weights. Under this framework, pretraining is viewed as a process of updating the posterior probability of different strategies, and inference-time behavior as a posterior-weighted average over these strategies' predictions. Our framework draws on common assumptions about neural network learning dynamics, which make explicit a tradeoff between loss and complexity among candidate strategies: beyond how well it explains the data, a model's preference towards implementing a strategy is dictated by its complexity. This helps explain well-known ICL phenomena, while offering novel predictions: e.g., we show a superlinear trend in the timescale for transitioning from generalization to memorization as task diversity increases. Overall, our work advances an explanatory and predictive account of ICL grounded in tradeoffs between strategy loss and complexity.
LLM2Vec: Large Language Models Are Secretly Powerful Text Encoders
Large decoder-only language models (LLMs) are the state-of-the-art models on most of today's NLP tasks and benchmarks. Yet, the community is only slowly adopting these models for text embedding tasks, which require rich contextualized representations. In this work, we introduce LLM2Vec, a simple unsupervised approach that can transform any decoder-only LLM into a strong text encoder. LLM2Vec consists of three simple steps: 1) enabling bidirectional attention, 2) masked next token prediction, and 3) unsupervised contrastive learning. We demonstrate the effectiveness of LLM2Vec by applying it to 3 popular LLMs ranging from 1.3B to 7B parameters and evaluate the transformed models on English word- and sequence-level tasks. We outperform encoder-only models by a large margin on word-level tasks and reach a new unsupervised state-of-the-art performance on the Massive Text Embeddings Benchmark (MTEB). Moreover, when combining LLM2Vec with supervised contrastive learning, we achieve state-of-the-art performance on MTEB among models that train only on publicly available data. Our strong empirical results and extensive analysis demonstrate that LLMs can be effectively transformed into universal text encoders in a parameter-efficient manner without the need for expensive adaptation or synthetic GPT-4 generated data.
FinAudio: A Benchmark for Audio Large Language Models in Financial Applications
Audio Large Language Models (AudioLLMs) have received widespread attention and have significantly improved performance on audio tasks such as conversation, audio understanding, and automatic speech recognition (ASR). Despite these advancements, there is an absence of a benchmark for assessing AudioLLMs in financial scenarios, where audio data, such as earnings conference calls and CEO speeches, are crucial resources for financial analysis and investment decisions. In this paper, we introduce FinAudio, the first benchmark designed to evaluate the capacity of AudioLLMs in the financial domain. We first define three tasks based on the unique characteristics of the financial domain: 1) ASR for short financial audio, 2) ASR for long financial audio, and 3) summarization of long financial audio. Then, we curate two short and two long audio datasets, respectively, and develop a novel dataset for financial audio summarization, comprising the FinAudio benchmark. Then, we evaluate seven prevalent AudioLLMs on FinAudio. Our evaluation reveals the limitations of existing AudioLLMs in the financial domain and offers insights for improving AudioLLMs. All datasets and codes will be released.
AI Competitions and Benchmarks: Dataset Development
Machine learning is now used in many applications thanks to its ability to predict, generate, or discover patterns from large quantities of data. However, the process of collecting and transforming data for practical use is intricate. Even in today's digital era, where substantial data is generated daily, it is uncommon for it to be readily usable; most often, it necessitates meticulous manual data preparation. The haste in developing new models can frequently result in various shortcomings, potentially posing risks when deployed in real-world scenarios (eg social discrimination, critical failures), leading to the failure or substantial escalation of costs in AI-based projects. This chapter provides a comprehensive overview of established methodological tools, enriched by our practical experience, in the development of datasets for machine learning. Initially, we develop the tasks involved in dataset development and offer insights into their effective management (including requirements, design, implementation, evaluation, distribution, and maintenance). Then, we provide more details about the implementation process which includes data collection, transformation, and quality evaluation. Finally, we address practical considerations regarding dataset distribution and maintenance.
Data-Prep-Kit: getting your data ready for LLM application development
Data preparation is the first and a very important step towards any Large Language Model (LLM) development. This paper introduces an easy-to-use, extensible, and scale-flexible open-source data preparation toolkit called Data Prep Kit (DPK). DPK is architected and designed to enable users to scale their data preparation to their needs. With DPK they can prepare data on a local machine or effortlessly scale to run on a cluster with thousands of CPU Cores. DPK comes with a highly scalable, yet extensible set of modules that transform natural language and code data. If the user needs additional transforms, they can be easily developed using extensive DPK support for transform creation. These modules can be used independently or pipelined to perform a series of operations. In this paper, we describe DPK architecture and show its performance from a small scale to a very large number of CPUs. The modules from DPK have been used for the preparation of Granite Models [1] [2]. We believe DPK is a valuable contribution to the AI community to easily prepare data to enhance the performance of their LLM models or to fine-tune models with Retrieval-Augmented Generation (RAG).
Documenting Geographically and Contextually Diverse Data Sources: The BigScience Catalogue of Language Data and Resources
In recent years, large-scale data collection efforts have prioritized the amount of data collected in order to improve the modeling capabilities of large language models. This prioritization, however, has resulted in concerns with respect to the rights of data subjects represented in data collections, particularly when considering the difficulty in interrogating these collections due to insufficient documentation and tools for analysis. Mindful of these pitfalls, we present our methodology for a documentation-first, human-centered data collection project as part of the BigScience initiative. We identified a geographically diverse set of target language groups (Arabic, Basque, Chinese, Catalan, English, French, Indic languages, Indonesian, Niger-Congo languages, Portuguese, Spanish, and Vietnamese, as well as programming languages) for which to collect metadata on potential data sources. To structure this effort, we developed our online catalogue as a supporting tool for gathering metadata through organized public hackathons. We present our development process; analyses of the resulting resource metadata, including distributions over languages, regions, and resource types; and our lessons learned in this endeavor.
FAIR Jupyter: a knowledge graph approach to semantic sharing and granular exploration of a computational notebook reproducibility dataset
The way in which data are shared can affect their utility and reusability. Here, we demonstrate how data that we had previously shared in bulk can be mobilized further through a knowledge graph that allows for much more granular exploration and interrogation. The original dataset is about the computational reproducibility of GitHub-hosted Jupyter notebooks associated with biomedical publications. It contains rich metadata about the publications, associated GitHub repositories and Jupyter notebooks, and the notebooks' reproducibility. We took this dataset, converted it into semantic triples and loaded these into a triple store to create a knowledge graph, FAIR Jupyter, that we made accessible via a web service. This enables granular data exploration and analysis through queries that can be tailored to specific use cases. Such queries may provide details about any of the variables from the original dataset, highlight relationships between them or combine some of the graph's content with materials from corresponding external resources. We provide a collection of example queries addressing a range of use cases in research and education. We also outline how sets of such queries can be used to profile specific content types, either individually or by class. We conclude by discussing how such a semantically enhanced sharing of complex datasets can both enhance their FAIRness, i.e., their findability, accessibility, interoperability, and reusability, and help identify and communicate best practices, particularly with regards to data quality, standardization, automation and reproducibility.
Using Data Analytics to Derive Business Intelligence: A Case Study
The data revolution experienced in recent times has thrown up new challenges and opportunities for businesses of all sizes in diverse industries. Big data analytics is already at the forefront of innovations to help make meaningful business decisions from the abundance of raw data available today. Business intelligence and analytics has become a huge trend in todays IT world as companies of all sizes are looking to improve their business processes and scale up using data driven solutions. This paper aims to demonstrate the data analytical process of deriving business intelligence via the historical data of a fictional bike share company seeking to find innovative ways to convert their casual riders to annual paying registered members. The dataset used is freely available as Chicago Divvy Bicycle Sharing Data on Kaggle. The authors used the RTidyverse library in RStudio to analyse the data and followed the six data analysis steps of ask, prepare, process, analyse, share, and act to recommend some actionable approaches the company could adopt to convert casual riders to paying annual members. The findings from this research serve as a valuable case example, of a real world deployment of BIA technologies in the industry, and a demonstration of the data analysis cycle for data practitioners, researchers, and other potential users.
Data Processing for the OpenGPT-X Model Family
This paper presents a comprehensive overview of the data preparation pipeline developed for the OpenGPT-X project, a large-scale initiative aimed at creating open and high-performance multilingual large language models (LLMs). The project goal is to deliver models that cover all major European languages, with a particular focus on real-world applications within the European Union. We explain all data processing steps, starting with the data selection and requirement definition to the preparation of the final datasets for model training. We distinguish between curated data and web data, as each of these categories is handled by distinct pipelines, with curated data undergoing minimal filtering and web data requiring extensive filtering and deduplication. This distinction guided the development of specialized algorithmic solutions for both pipelines. In addition to describing the processing methodologies, we provide an in-depth analysis of the datasets, increasing transparency and alignment with European data regulations. Finally, we share key insights and challenges faced during the project, offering recommendations for future endeavors in large-scale multilingual data preparation for LLMs.
unarXive 2022: All arXiv Publications Pre-Processed for NLP, Including Structured Full-Text and Citation Network
Large-scale data sets on scholarly publications are the basis for a variety of bibliometric analyses and natural language processing (NLP) applications. Especially data sets derived from publication's full-text have recently gained attention. While several such data sets already exist, we see key shortcomings in terms of their domain and time coverage, citation network completeness, and representation of full-text content. To address these points, we propose a new version of the data set unarXive. We base our data processing pipeline and output format on two existing data sets, and improve on each of them. Our resulting data set comprises 1.9 M publications spanning multiple disciplines and 32 years. It furthermore has a more complete citation network than its predecessors and retains a richer representation of document structure as well as non-textual publication content such as mathematical notation. In addition to the data set, we provide ready-to-use training/test data for citation recommendation and IMRaD classification. All data and source code is publicly available at https://github.com/IllDepence/unarXive.
NESTLE: a No-Code Tool for Statistical Analysis of Legal Corpus
The statistical analysis of large scale legal corpus can provide valuable legal insights. For such analysis one needs to (1) select a subset of the corpus using document retrieval tools, (2) structuralize text using information extraction (IE) systems, and (3) visualize the data for the statistical analysis. Each process demands either specialized tools or programming skills whereas no comprehensive unified "no-code" tools have been available. Especially for IE, if the target information is not predefined in the ontology of the IE system, one needs to build their own system. Here we provide NESTLE, a no code tool for large-scale statistical analysis of legal corpus. With NESTLE, users can search target documents, extract information, and visualize the structured data all via the chat interface with accompanying auxiliary GUI for the fine-level control. NESTLE consists of three main components: a search engine, an end-to-end IE system, and a Large Language Model (LLM) that glues the whole components together and provides the chat interface. Powered by LLM and the end-to-end IE system, NESTLE can extract any type of information that has not been predefined in the IE system opening up the possibility of unlimited customizable statistical analysis of the corpus without writing a single line of code. The use of the custom end-to-end IE system also enables faster and low-cost IE on large scale corpus. We validate our system on 15 Korean precedent IE tasks and 3 legal text classification tasks from LEXGLUE. The comprehensive experiments reveal NESTLE can achieve GPT-4 comparable performance by training the internal IE module with 4 human-labeled, and 192 LLM-labeled examples. The detailed analysis provides the insight on the trade-off between accuracy, time, and cost in building such system.
Like an Open Book? Read Neural Network Architecture with Simple Power Analysis on 32-bit Microcontrollers
Model extraction is a growing concern for the security of AI systems. For deep neural network models, the architecture is the most important information an adversary aims to recover. Being a sequence of repeated computation blocks, neural network models deployed on edge-devices will generate distinctive side-channel leakages. The latter can be exploited to extract critical information when targeted platforms are physically accessible. By combining theoretical knowledge about deep learning practices and analysis of a widespread implementation library (ARM CMSIS-NN), our purpose is to answer this critical question: how far can we extract architecture information by simply examining an EM side-channel trace? For the first time, we propose an extraction methodology for traditional MLP and CNN models running on a high-end 32-bit microcontroller (Cortex-M7) that relies only on simple pattern recognition analysis. Despite few challenging cases, we claim that, contrary to parameters extraction, the complexity of the attack is relatively low and we highlight the urgent need for practicable protections that could fit the strong memory and latency requirements of such platforms.
Generative models for wearables data
Data scarcity is a common obstacle in medical research due to the high costs associated with data collection and the complexity of gaining access to and utilizing data. Synthesizing health data may provide an efficient and cost-effective solution to this shortage, enabling researchers to explore distributions and populations that are not represented in existing observations or difficult to access due to privacy considerations. To that end, we have developed a multi-task self-attention model that produces realistic wearable activity data. We examine the characteristics of the generated data and quantify its similarity to genuine samples with both quantitative and qualitative approaches.
CleanAgent: Automating Data Standardization with LLM-based Agents
Data standardization is a crucial part of the data science life cycle. While tools like Pandas offer robust functionalities, their complexity and the manual effort required for customizing code to diverse column types pose significant challenges. Although large language models (LLMs) like ChatGPT have shown promise in automating this process through natural language understanding and code generation, it still demands expert-level programming knowledge and continuous interaction for prompt refinement. To solve these challenges, our key idea is to propose a Python library with declarative, unified APIs for standardizing different column types, simplifying the LLM's code generation with concise API calls. We first propose Dataprep.Clean, a component of the Dataprep Python Library, significantly reduces the coding complexity by enabling the standardization of specific column types with a single line of code. Then, we introduce the CleanAgent framework integrating Dataprep.Clean and LLM-based agents to automate the data standardization process. With CleanAgent, data scientists only need to provide their requirements once, allowing for a hands-free process. To demonstrate the practical utility of CleanAgent, we developed a user-friendly web application, allowing attendees to interact with it using real-world datasets.
A Survey on Data Selection for Language Models
A major factor in the recent success of large language models is the use of enormous and ever-growing text datasets for unsupervised pre-training. However, naively training a model on all available data may not be optimal (or feasible), as the quality of available text data can vary. Filtering out data can also decrease the carbon footprint and financial costs of training models by reducing the amount of training required. Data selection methods aim to determine which candidate data points to include in the training dataset and how to appropriately sample from the selected data points. The promise of improved data selection methods has caused the volume of research in the area to rapidly expand. However, because deep learning is mostly driven by empirical evidence and experimentation on large-scale data is expensive, few organizations have the resources for extensive data selection research. Consequently, knowledge of effective data selection practices has become concentrated within a few organizations, many of which do not openly share their findings and methodologies. To narrow this gap in knowledge, we present a comprehensive review of existing literature on data selection methods and related research areas, providing a taxonomy of existing approaches. By describing the current landscape of research, this work aims to accelerate progress in data selection by establishing an entry point for new and established researchers. Additionally, throughout this review we draw attention to noticeable holes in the literature and conclude the paper by proposing promising avenues for future research.
OpenDataLab: Empowering General Artificial Intelligence with Open Datasets
The advancement of artificial intelligence (AI) hinges on the quality and accessibility of data, yet the current fragmentation and variability of data sources hinder efficient data utilization. The dispersion of data sources and diversity of data formats often lead to inefficiencies in data retrieval and processing, significantly impeding the progress of AI research and applications. To address these challenges, this paper introduces OpenDataLab, a platform designed to bridge the gap between diverse data sources and the need for unified data processing. OpenDataLab integrates a wide range of open-source AI datasets and enhances data acquisition efficiency through intelligent querying and high-speed downloading services. The platform employs a next-generation AI Data Set Description Language (DSDL), which standardizes the representation of multimodal and multi-format data, improving interoperability and reusability. Additionally, OpenDataLab optimizes data processing through tools that complement DSDL. By integrating data with unified data descriptions and smart data toolchains, OpenDataLab can improve data preparation efficiency by 30\%. We anticipate that OpenDataLab will significantly boost artificial general intelligence (AGI) research and facilitate advancements in related AI fields. For more detailed information, please visit the platform's official website: https://opendatalab.com.
Data-centric Artificial Intelligence: A Survey
Artificial Intelligence (AI) is making a profound impact in almost every domain. A vital enabler of its great success is the availability of abundant and high-quality data for building machine learning models. Recently, the role of data in AI has been significantly magnified, giving rise to the emerging concept of data-centric AI. The attention of researchers and practitioners has gradually shifted from advancing model design to enhancing the quality and quantity of the data. In this survey, we discuss the necessity of data-centric AI, followed by a holistic view of three general data-centric goals (training data development, inference data development, and data maintenance) and the representative methods. We also organize the existing literature from automation and collaboration perspectives, discuss the challenges, and tabulate the benchmarks for various tasks. We believe this is the first comprehensive survey that provides a global view of a spectrum of tasks across various stages of the data lifecycle. We hope it can help the readers efficiently grasp a broad picture of this field, and equip them with the techniques and further research ideas to systematically engineer data for building AI systems. A companion list of data-centric AI resources will be regularly updated on https://github.com/daochenzha/data-centric-AI
Data Formulator 2: Iteratively Creating Rich Visualizations with AI
To create rich visualizations, data analysts often need to iterate back and forth among data processing and chart specification to achieve their goals. To achieve this, analysts need not only proficiency in data transformation and visualization tools but also efforts to manage the branching history consisting of many different versions of data and charts. Recent LLM-powered AI systems have greatly improved visualization authoring experiences, for example by mitigating manual data transformation barriers via LLMs' code generation ability. However, these systems do not work well for iterative visualization authoring, because they often require analysts to provide, in a single turn, a text-only prompt that fully describes the complex visualization task to be performed, which is unrealistic to both users and models in many cases. In this paper, we present Data Formulator 2, an LLM-powered visualization system to address these challenges. With Data Formulator 2, users describe their visualization intent with blended UI and natural language inputs, and data transformation are delegated to AI. To support iteration, Data Formulator 2 lets users navigate their iteration history and reuse previous designs towards new ones so that they don't need to start from scratch every time. In a user study with eight participants, we observed that Data Formulator 2 allows participants to develop their own iteration strategies to complete challenging data exploration sessions.
KramaBench: A Benchmark for AI Systems on Data-to-Insight Pipelines over Data Lakes
Constructing real-world data-to-insight pipelines often involves data extraction from data lakes, data integration across heterogeneous data sources, and diverse operations from data cleaning to analysis. The design and implementation of data science pipelines require domain knowledge, technical expertise, and even project-specific insights. AI systems have shown remarkable reasoning, coding, and understanding capabilities. However, it remains unclear to what extent these capabilities translate into successful design and execution of such complex pipelines. We introduce KRAMABENCH: a benchmark composed of 104 manually-curated real-world data science pipelines spanning 1700 data files from 24 data sources in 6 different domains. We show that these pipelines test the end-to-end capabilities of AI systems on data processing, requiring data discovery, wrangling and cleaning, efficient processing, statistical reasoning, and orchestrating data processing steps given a high-level task. Our evaluation tests 5 general models and 3 code generation models using our reference framework, DS-GURU, which instructs the AI model to decompose a question into a sequence of subtasks, reason through each step, and synthesize Python code that implements the proposed design. Our results on KRAMABENCH show that, although the models are sufficiently capable of solving well-specified data science code generation tasks, when extensive data processing and domain knowledge are required to construct real-world data science pipelines, existing out-of-box models fall short. Progress on KramaBench represents crucial steps towards developing autonomous data science agents for real-world applications. Our code, reference framework, and data are available at https://github.com/mitdbg/KramaBench.
Are distributional representations ready for the real world? Evaluating word vectors for grounded perceptual meaning
Distributional word representation methods exploit word co-occurrences to build compact vector encodings of words. While these representations enjoy widespread use in modern natural language processing, it is unclear whether they accurately encode all necessary facets of conceptual meaning. In this paper, we evaluate how well these representations can predict perceptual and conceptual features of concrete concepts, drawing on two semantic norm datasets sourced from human participants. We find that several standard word representations fail to encode many salient perceptual features of concepts, and show that these deficits correlate with word-word similarity prediction errors. Our analyses provide motivation for grounded and embodied language learning approaches, which may help to remedy these deficits.
Did You Read the Instructions? Rethinking the Effectiveness of Task Definitions in Instruction Learning
Large language models (LLMs) have shown impressive performance in following natural language instructions to solve unseen tasks. However, it remains unclear whether models truly understand task definitions and whether the human-written definitions are optimal. In this paper, we systematically study the role of task definitions in instruction learning. We first conduct an ablation analysis informed by human annotations to understand which parts of a task definition are most important, and find that model performance only drops substantially when removing contents describing the task output, in particular label information. Next, we propose an automatic algorithm to compress task definitions to a minimal supporting set of tokens, and find that 60\% of tokens can be removed while maintaining or even improving model performance. Based on these results, we propose two strategies to help models better leverage task instructions: (1) providing only key information for tasks in a common structured format, and (2) adding a meta-tuning stage to help the model better understand the definitions. With these two strategies, we achieve a 4.2 Rouge-L improvement over 119 unseen test tasks.
LLaVA-Read: Enhancing Reading Ability of Multimodal Language Models
Large multimodal language models have demonstrated impressive capabilities in understanding and manipulating images. However, many of these models struggle with comprehending intensive textual contents embedded within the images, primarily due to the limited text recognition and layout understanding ability. To understand the sources of these limitations, we perform an exploratory analysis showing the drawbacks of classical visual encoders on visual text understanding. Hence, we present LLaVA-Read, a multimodal large language model that utilizes dual visual encoders along with a visual text encoder. Our model surpasses existing state-of-the-art models in various text-rich image understanding tasks, showcasing enhanced comprehension of textual content within images. Together, our research suggests visual text understanding remains an open challenge and an efficient visual text encoder is crucial for future successful multimodal systems.
A Retrieve-and-Read Framework for Knowledge Graph Link Prediction
Knowledge graph (KG) link prediction aims to infer new facts based on existing facts in the KG. Recent studies have shown that using the graph neighborhood of a node via graph neural networks (GNNs) provides more useful information compared to just using the query information. Conventional GNNs for KG link prediction follow the standard message-passing paradigm on the entire KG, which leads to superfluous computation, over-smoothing of node representations, and also limits their expressive power. On a large scale, it becomes computationally expensive to aggregate useful information from the entire KG for inference. To address the limitations of existing KG link prediction frameworks, we propose a novel retrieve-and-read framework, which first retrieves a relevant subgraph context for the query and then jointly reasons over the context and the query with a high-capacity reader. As part of our exemplar instantiation for the new framework, we propose a novel Transformer-based GNN as the reader, which incorporates graph-based attention structure and cross-attention between query and context for deep fusion. This simple yet effective design enables the model to focus on salient context information relevant to the query. Empirical results on two standard KG link prediction datasets demonstrate the competitive performance of the proposed method. Furthermore, our analysis yields valuable insights for designing improved retrievers within the framework.
BLADE: Benchmarking Language Model Agents for Data-Driven Science
Data-driven scientific discovery requires the iterative integration of scientific domain knowledge, statistical expertise, and an understanding of data semantics to make nuanced analytical decisions, e.g., about which variables, transformations, and statistical models to consider. LM-based agents equipped with planning, memory, and code execution capabilities have the potential to support data-driven science. However, evaluating agents on such open-ended tasks is challenging due to multiple valid approaches, partially correct steps, and different ways to express the same decisions. To address these challenges, we present BLADE, a benchmark to automatically evaluate agents' multifaceted approaches to open-ended research questions. BLADE consists of 12 datasets and research questions drawn from existing scientific literature, with ground truth collected from independent analyses by expert data scientists and researchers. To automatically evaluate agent responses, we developed corresponding computational methods to match different representations of analyses to this ground truth. Though language models possess considerable world knowledge, our evaluation shows that they are often limited to basic analyses. However, agents capable of interacting with the underlying data demonstrate improved, but still non-optimal, diversity in their analytical decision making. Our work enables the evaluation of agents for data-driven science and provides researchers deeper insights into agents' analysis approaches.
Towards Models that Can See and Read
Visual Question Answering (VQA) and Image Captioning (CAP), which are among the most popular vision-language tasks, have analogous scene-text versions that require reasoning from the text in the image. Despite their obvious resemblance, the two are treated independently and, as we show, yield task-specific methods that can either see or read, but not both. In this work, we conduct an in-depth analysis of this phenomenon and propose UniTNT, a Unified Text-Non-Text approach, which grants existing multimodal architectures scene-text understanding capabilities. Specifically, we treat scene-text information as an additional modality, fusing it with any pretrained encoder-decoder-based architecture via designated modules. Thorough experiments reveal that UniTNT leads to the first single model that successfully handles both task types. Moreover, we show that scene-text understanding capabilities can boost vision-language models' performance on general VQA and CAP by up to 2.69% and 0.6 CIDEr, respectively.
LLM-Assisted Content Analysis: Using Large Language Models to Support Deductive Coding
Deductive coding is a widely used qualitative research method for determining the prevalence of themes across documents. While useful, deductive coding is often burdensome and time consuming since it requires researchers to read, interpret, and reliably categorize a large body of unstructured text documents. Large language models (LLMs), like ChatGPT, are a class of quickly evolving AI tools that can perform a range of natural language processing and reasoning tasks. In this study, we explore the use of LLMs to reduce the time it takes for deductive coding while retaining the flexibility of a traditional content analysis. We outline the proposed approach, called LLM-assisted content analysis (LACA), along with an in-depth case study using GPT-3.5 for LACA on a publicly available deductive coding data set. Additionally, we conduct an empirical benchmark using LACA on 4 publicly available data sets to assess the broader question of how well GPT-3.5 performs across a range of deductive coding tasks. Overall, we find that GPT-3.5 can often perform deductive coding at levels of agreement comparable to human coders. Additionally, we demonstrate that LACA can help refine prompts for deductive coding, identify codes for which an LLM is randomly guessing, and help assess when to use LLMs vs. human coders for deductive coding. We conclude with several implications for future practice of deductive coding and related research methods.
SC2EGSet: StarCraft II Esport Replay and Game-state Dataset
As a relatively new form of sport, esports offers unparalleled data availability. Despite the vast amounts of data that are generated by game engines, it can be challenging to extract them and verify their integrity for the purposes of practical and scientific use. Our work aims to open esports to a broader scientific community by supplying raw and pre-processed files from StarCraft II esports tournaments. These files can be used in statistical and machine learning modeling tasks and related to various laboratory-based measurements (e.g., behavioral tests, brain imaging). We have gathered publicly available game-engine generated "replays" of tournament matches and performed data extraction and cleanup using a low-level application programming interface (API) parser library. Additionally, we open-sourced and published all the custom tools that were developed in the process of creating our dataset. These tools include PyTorch and PyTorch Lightning API abstractions to load and model the data. Our dataset contains replays from major and premiere StarCraft II tournaments since 2016. To prepare the dataset, we processed 55 tournament "replaypacks" that contained 17930 files with game-state information. Based on initial investigation of available StarCraft II datasets, we observed that our dataset is the largest publicly available source of StarCraft II esports data upon its publication. Analysis of the extracted data holds promise for further Artificial Intelligence (AI), Machine Learning (ML), psychological, Human-Computer Interaction (HCI), and sports-related studies in a variety of supervised and self-supervised tasks.
Improving Few-Shot Prompts with Relevant Static Analysis Products
Large Language Models (LLM) are a new class of computation engines, "programmed" via prompt engineering. We are still learning how to best "program" these LLMs to help developers. We start with the intuition that developers tend to consciously and unconsciously have a collection of semantics facts in mind when working on coding tasks. Mostly these are shallow, simple facts arising from a quick read. For a function, examples of facts might include parameter and local variable names, return expressions, simple pre- and post-conditions, and basic control and data flow, etc. One might assume that the powerful multi-layer architecture of transformer-style LLMs makes them inherently capable of doing this simple level of "code analysis" and extracting such information, implicitly, while processing code: but are they, really? If they aren't, could explicitly adding this information help? Our goal here is to investigate this question, using the code summarization task and evaluate whether automatically augmenting an LLM's prompt with semantic facts explicitly, actually helps. Prior work shows that LLM performance on code summarization benefits from few-shot samples drawn either from the same-project or from examples found via information retrieval methods (such as BM25). While summarization performance has steadily increased since the early days, there is still room for improvement: LLM performance on code summarization still lags its performance on natural-language tasks like translation and text summarization. We find that adding semantic facts actually does help! This approach improves performance in several different settings suggested by prior work, including for two different Large Language Models. In most cases, improvement nears or exceeds 2 BLEU; for the PHP language in the challenging CodeSearchNet dataset, this augmentation actually yields performance surpassing 30 BLEU.
STI-Bench: Are MLLMs Ready for Precise Spatial-Temporal World Understanding?
The use of Multimodal Large Language Models (MLLMs) as an end-to-end solution for Embodied AI and Autonomous Driving has become a prevailing trend. While MLLMs have been extensively studied for visual semantic understanding tasks, their ability to perform precise and quantitative spatial-temporal understanding in real-world applications remains largely unexamined, leading to uncertain prospects. To evaluate models' Spatial-Temporal Intelligence, we introduce STI-Bench, a benchmark designed to evaluate MLLMs' spatial-temporal understanding through challenging tasks such as estimating and predicting the appearance, pose, displacement, and motion of objects. Our benchmark encompasses a wide range of robot and vehicle operations across desktop, indoor, and outdoor scenarios. The extensive experiments reveals that the state-of-the-art MLLMs still struggle in real-world spatial-temporal understanding, especially in tasks requiring precise distance estimation and motion analysis.
RustMap: Towards Project-Scale C-to-Rust Migration via Program Analysis and LLM
Migrating existing C programs into Rust is increasingly desired, as Rust offers superior memory safety while maintaining C's high performance. However, vastly different features between C and Rust--e.g., distinct definitions and usages of pointers and references--pose significant challenges beyond mere syntactic translation. Existing automated translation tools, such as C2Rust, may rely too much on syntactic, template-based translation and generate unsafe Rust code that is hard for human developers to read, maintain, or even compile. More semantic-aware translation that produces safer, idiomatic, and runnable Rust code is much needed. This paper introduces a novel dependency-guided and large language model (LLM)-based C-to-Rust translation approach, RustMap, based on three key ideas: (1) Utilize LLM capabilities to produce idiomatic Rust code from given small pieces of C code, (2) Mitigate LLM limitations in handling large codebases by breaking project-scale C programs into smaller units for translation according to their usage dependencies and composing them into a runnable Rust program, and (3) Enhance the correctness of the translated Rust program by using test cases to check input/output equivalence, isolate faulty code when execution states deviate, and iteratively refine the translation using feedback from compilation and test errors. We empirically evaluate RustMap on 126 real-world programs, including 125 from Rosetta Code and a 7000+ line bzip2 implementation using GPT-4o as the LLM. RustMap shows promising results, guiding GPT-4o to produce idiomatic, readable, and functional Rust code with significantly less unsafe code than other tools, and revealing non-trivial translation patterns reusable for future research.
InfiAgent-DABench: Evaluating Agents on Data Analysis Tasks
In this paper, we introduce InfiAgent-DABench, the first benchmark specifically designed to evaluate LLM-based agents on data analysis tasks. These tasks require agents to end-to-end solving complex tasks by interacting with an execution environment. This benchmark contains DAEval, a dataset consisting of 257 data analysis questions derived from 52 CSV files, and an agent framework which incorporates LLMs to serve as data analysis agents for both serving and evaluation. Since data analysis questions are often open-ended and hard to evaluate without human supervision, we adopt a format-prompting technique to convert each question into a closed-form format so that they can be automatically evaluated. Our extensive benchmarking of 34 LLMs uncovers the current challenges encountered in data analysis tasks. In addition, building on top of our agent framework, we develop a specialized agent, DAAgent, which surpasses GPT-3.5 by 3.9% on DABench. Evaluation datasets and toolkits for InfiAgent-DABench are released at https://github.com/InfiAgent/InfiAgent .
Large Language Models(LLMs) on Tabular Data: Prediction, Generation, and Understanding -- A Survey
Recent breakthroughs in large language modeling have facilitated rigorous exploration of their application in diverse tasks related to tabular data modeling, such as prediction, tabular data synthesis, question answering, and table understanding. Each task presents unique challenges and opportunities. However, there is currently a lack of comprehensive review that summarizes and compares the key techniques, metrics, datasets, models, and optimization approaches in this research domain. This survey aims to address this gap by consolidating recent progress in these areas, offering a thorough survey and taxonomy of the datasets, metrics, and methodologies utilized. It identifies strengths, limitations, unexplored territories, and gaps in the existing literature, while providing some insights for future research directions in this vital and rapidly evolving field. It also provides relevant code and datasets references. Through this comprehensive review, we hope to provide interested readers with pertinent references and insightful perspectives, empowering them with the necessary tools and knowledge to effectively navigate and address the prevailing challenges in the field.
Hybrid LLM/Rule-based Approaches to Business Insights Generation from Structured Data
In the field of business data analysis, the ability to extract actionable insights from vast and varied datasets is essential for informed decision-making and maintaining a competitive edge. Traditional rule-based systems, while reliable, often fall short when faced with the complexity and dynamism of modern business data. Conversely, Artificial Intelligence (AI) models, particularly Large Language Models (LLMs), offer significant potential in pattern recognition and predictive analytics but can lack the precision necessary for specific business applications. This paper explores the efficacy of hybrid approaches that integrate the robustness of rule-based systems with the adaptive power of LLMs in generating actionable business insights.
Chinese MentalBERT: Domain-Adaptive Pre-training on Social Media for Chinese Mental Health Text Analysis
In the current environment, psychological issues are prevalent and widespread, with social media serving as a key outlet for individuals to share their feelings. This results in the generation of vast quantities of data daily, where negative emotions have the potential to precipitate crisis situations. There is a recognized need for models capable of efficient analysis. While pre-trained language models have demonstrated their effectiveness broadly, there's a noticeable gap in pre-trained models tailored for specialized domains like psychology. To address this, we have collected a huge dataset from Chinese social media platforms and enriched it with publicly available datasets to create a comprehensive database encompassing 3.36 million text entries. To enhance the model's applicability to psychological text analysis, we integrated psychological lexicons into the pre-training masking mechanism. Building on an existing Chinese language model, we performed adaptive training to develop a model specialized for the psychological domain. We assessed our model's effectiveness across four public benchmarks, where it not only surpassed the performance of standard pre-trained models but also showed a inclination for making psychologically relevant predictions. Due to concerns regarding data privacy, the dataset will not be made publicly available. However, we have made the pre-trained models and codes publicly accessible to the community via: https://github.com/zwzzzQAQ/Chinese-MentalBERT.
A Large-Scale Dataset of Search Interests Related to Disease X Originating from Different Geographic Regions
The World Health Organization added Disease X to their shortlist of blueprint priority diseases to represent a hypothetical, unknown pathogen that could cause a future epidemic. During different virus outbreaks of the past, such as COVID-19, Influenza, Lyme Disease, and Zika virus, researchers from various disciplines utilized Google Trends to mine multimodal components of web behavior to study, investigate, and analyze the global awareness, preparedness, and response associated with these respective virus outbreaks. As the world prepares for Disease X, a dataset on web behavior related to Disease X would be crucial to contribute towards the timely advancement of research in this field. Furthermore, none of the prior works in this field have focused on the development of a dataset to compile relevant web behavior data, which would help to prepare for Disease X. To address these research challenges, this work presents a dataset of web behavior related to Disease X, which emerged from different geographic regions of the world, between February 2018 and August 2023. Specifically, this dataset presents the search interests related to Disease X from 94 geographic regions. The dataset was developed by collecting data using Google Trends. The relevant search interests for all these regions for each month in this time range are available in this dataset. This paper also discusses the compliance of this dataset with the FAIR principles of scientific data management. Finally, an analysis of this dataset is presented to uphold the applicability, relevance, and usefulness of this dataset for the investigation of different research questions in the interrelated fields of Big Data, Data Mining, Healthcare, Epidemiology, and Data Analysis with a specific focus on Disease X.
IndicLLMSuite: A Blueprint for Creating Pre-training and Fine-Tuning Datasets for Indian Languages
Despite the considerable advancements in English LLMs, the progress in building comparable models for other languages has been hindered due to the scarcity of tailored resources. Our work aims to bridge this divide by introducing an expansive suite of resources specifically designed for the development of Indic LLMs, covering 22 languages, containing a total of 251B tokens and 74.8M instruction-response pairs. Recognizing the importance of both data quality and quantity, our approach combines highly curated manually verified data, unverified yet valuable data, and synthetic data. We build a clean, open-source pipeline for curating pre-training data from diverse sources, including websites, PDFs, and videos, incorporating best practices for crawling, cleaning, flagging, and deduplication. For instruction-fine tuning, we amalgamate existing Indic datasets, translate/transliterate English datasets into Indian languages, and utilize LLaMa2 and Mixtral models to create conversations grounded in articles from Indian Wikipedia and Wikihow. Additionally, we address toxicity alignment by generating toxic prompts for multiple scenarios and then generate non-toxic responses by feeding these toxic prompts to an aligned LLaMa2 model. We hope that the datasets, tools, and resources released as a part of this work will not only propel the research and development of Indic LLMs but also establish an open-source blueprint for extending such efforts to other languages. The data and other artifacts created as part of this work are released with permissive licenses.
Leveraging Large Language Models to Democratize Access to Costly Financial Datasets for Academic Research
Unequal access to costly datasets essential for empirical research has long hindered researchers from disadvantaged institutions, limiting their ability to contribute to their fields and advance their careers. Recent breakthroughs in Large Language Models (LLMs) have the potential to democratize data access by automating data collection from unstructured sources. We develop and evaluate a novel methodology using GPT-4o-mini within a Retrieval-Augmented Generation (RAG) framework to collect data from corporate disclosures. Our approach achieves human-level accuracy in collecting CEO pay ratios from approximately 10,000 proxy statements and Critical Audit Matters (CAMs) from more than 12,000 10-K filings, with LLM processing times of 9 and 40 minutes respectively, each at a cost under $10. This stands in stark contrast to the hundreds of hours needed for manual collection or the thousands of dollars required for commercial database subscriptions. To foster a more inclusive research community by empowering researchers with limited resources to explore new avenues of inquiry, we share our methodology and the resulting datasets.
Multi-Task Text Classification using Graph Convolutional Networks for Large-Scale Low Resource Language
Graph Convolutional Networks (GCN) have achieved state-of-art results on single text classification tasks like sentiment analysis, emotion detection, etc. However, the performance is achieved by testing and reporting on resource-rich languages like English. Applying GCN for multi-task text classification is an unexplored area. Moreover, training a GCN or adopting an English GCN for Indian languages is often limited by data availability, rich morphological variation, syntax, and semantic differences. In this paper, we study the use of GCN for the Telugu language in single and multi-task settings for four natural language processing (NLP) tasks, viz. sentiment analysis (SA), emotion identification (EI), hate-speech (HS), and sarcasm detection (SAR). In order to evaluate the performance of GCN with one of the Indian languages, Telugu, we analyze the GCN based models with extensive experiments on four downstream tasks. In addition, we created an annotated Telugu dataset, TEL-NLP, for the four NLP tasks. Further, we propose a supervised graph reconstruction method, Multi-Task Text GCN (MT-Text GCN) on the Telugu that leverages to simultaneously (i) learn the low-dimensional word and sentence graph embeddings from word-sentence graph reconstruction using graph autoencoder (GAE) and (ii) perform multi-task text classification using these latent sentence graph embeddings. We argue that our proposed MT-Text GCN achieves significant improvements on TEL-NLP over existing Telugu pretrained word embeddings, and multilingual pretrained Transformer models: mBERT, and XLM-R. On TEL-NLP, we achieve a high F1-score for four NLP tasks: SA (0.84), EI (0.55), HS (0.83) and SAR (0.66). Finally, we show our model's quantitative and qualitative analysis on the four NLP tasks in Telugu.
Seeing the Forest for the Trees: A Large Scale, Continuously Updating Meta-Analysis of Frontier LLMs
The surge of LLM studies makes synthesizing their findings challenging. Meta-analysis can uncover important trends across studies, but its use is limited by the time-consuming nature of manual data extraction. Our study presents a semi-automated approach for meta-analysis that accelerates data extraction using LLMs. It automatically identifies relevant arXiv papers, extracts experimental results and related attributes, and organizes them into a structured dataset. We conduct a comprehensive meta-analysis of frontier LLMs using an automatically extracted dataset, reducing the effort of paper surveying and data extraction by more than 93\% compared to manual approaches. We validate our dataset by showing that it reproduces key findings from a recent manual meta-analysis about Chain-of-Thought (CoT), and also uncovers new insights that go beyond it, showing for example that in-context examples benefit multimodal tasks but offer limited gains in mathematical tasks compared to CoT. Our automatically updatable dataset enables continuous tracking of target models by extracting evaluation studies as new data becomes available. Through our scientific artifacts and empirical analysis, we provide novel insights into LLMs while facilitating ongoing meta-analyses of their behavior.
VDGD: Mitigating LVLM Hallucinations in Cognitive Prompts by Bridging the Visual Perception Gap
Recent interest in Large Vision-Language Models (LVLMs) for practical applications is moderated by the significant challenge of hallucination or the inconsistency between the factual information and the generated text. In this paper, we first perform an in-depth analysis of hallucinations and discover several novel insights about how and when LVLMs hallucinate. From our analysis, we show that: (1) The community's efforts have been primarily targeted towards reducing hallucinations related to visual recognition (VR) prompts (e.g., prompts that only require describing the image), thereby ignoring hallucinations for cognitive prompts (e.g., prompts that require additional skills like reasoning on contents of the image). (2) LVLMs lack visual perception, i.e., they can see but not necessarily understand or perceive the input image. We analyze responses to cognitive prompts and show that LVLMs hallucinate due to a perception gap: although LVLMs accurately recognize visual elements in the input image and possess sufficient cognitive skills, they struggle to respond accurately and hallucinate. To overcome this shortcoming, we propose Visual Description Grounded Decoding (VDGD), a simple, robust, and training-free method for alleviating hallucinations. Specifically, we first describe the image and add it as a prefix to the instruction. Next, during auto-regressive decoding, we sample from the plausible candidates according to their KL-Divergence (KLD) to the description, where lower KLD is given higher preference. Experimental results on several benchmarks and LVLMs show that VDGD improves significantly over other baselines in reducing hallucinations. We also propose VaLLu, a benchmark for the comprehensive evaluation of the cognitive capabilities of LVLMs.
Is GPT-4 a Good Data Analyst?
As large language models (LLMs) have demonstrated their powerful capabilities in plenty of domains and tasks, including context understanding, code generation, language generation, data storytelling, etc., many data analysts may raise concerns if their jobs will be replaced by AI. This controversial topic has drawn a lot of attention in public. However, we are still at a stage of divergent opinions without any definitive conclusion. Motivated by this, we raise the research question of "is GPT-4 a good data analyst?" in this work and aim to answer it by conducting head-to-head comparative studies. In detail, we regard GPT-4 as a data analyst to perform end-to-end data analysis with databases from a wide range of domains. We propose a framework to tackle the problems by carefully designing the prompts for GPT-4 to conduct experiments. We also design several task-specific evaluation metrics to systematically compare the performance between several professional human data analysts and GPT-4. Experimental results show that GPT-4 can achieve comparable performance to humans. We also provide in-depth discussions about our results to shed light on further studies before we reach the conclusion that GPT-4 can replace data analysts.
Can AI Validate Science? Benchmarking LLMs for Accurate Scientific Claim $\rightarrow$ Evidence Reasoning
Large language models (LLMs) are increasingly being used for complex research tasks such as literature review, idea generation, and scientific paper analysis, yet their ability to truly understand and process the intricate relationships within complex research papers, such as the logical links between claims and supporting evidence remains largely unexplored. In this study, we present CLAIM-BENCH, a comprehensive benchmark for evaluating LLMs' capabilities in scientific claim-evidence extraction and validation, a task that reflects deeper comprehension of scientific argumentation. We systematically compare three approaches which are inspired by divide and conquer approaches, across six diverse LLMs, highlighting model-specific strengths and weaknesses in scientific comprehension. Through evaluation involving over 300 claim-evidence pairs across multiple research domains, we reveal significant limitations in LLMs' ability to process complex scientific content. Our results demonstrate that closed-source models like GPT-4 and Claude consistently outperform open-source counterparts in precision and recall across claim-evidence identification tasks. Furthermore, strategically designed three-pass and one-by-one prompting approaches significantly improve LLMs' abilities to accurately link dispersed evidence with claims, although this comes at increased computational cost. CLAIM-BENCH sets a new standard for evaluating scientific comprehension in LLMs, offering both a diagnostic tool and a path forward for building systems capable of deeper, more reliable reasoning across full-length papers.
Evaluating Correctness and Faithfulness of Instruction-Following Models for Question Answering
Retriever-augmented instruction-following models are attractive alternatives to fine-tuned approaches for information-seeking tasks such as question answering (QA). By simply prepending retrieved documents in its input along with an instruction, these models can be adapted to various information domains and tasks without additional fine-tuning. While the model responses tend to be natural and fluent, the additional verbosity makes traditional QA evaluation metrics such as exact match (EM) and F1 unreliable for accurately quantifying model performance. In this work, we investigate the performance of instruction-following models across three information-seeking QA tasks. We use both automatic and human evaluation to evaluate these models along two dimensions: 1) how well they satisfy the user's information need (correctness), and 2) whether they produce a response based on the provided knowledge (faithfulness). Guided by human evaluation and analysis, we highlight the shortcomings of traditional metrics for both correctness and faithfulness. We then propose simple token-overlap based and model-based metrics that reflect the true performance of these models. Our analysis reveals that instruction-following models are competitive, and sometimes even outperform fine-tuned models for correctness. However, these models struggle to stick to the provided knowledge and often hallucinate in their responses. We hope our work encourages a more holistic evaluation of instruction-following models for QA. Our code and data is available at https://github.com/McGill-NLP/instruct-qa
Disentangling Reasoning and Knowledge in Medical Large Language Models
Medical reasoning in large language models (LLMs) aims to emulate clinicians' diagnostic thinking, but current benchmarks such as MedQA-USMLE, MedMCQA, and PubMedQA often mix reasoning with factual recall. We address this by separating 11 biomedical QA benchmarks into reasoning- and knowledge-focused subsets using a PubMedBERT classifier that reaches 81 percent accuracy, comparable to human performance. Our analysis shows that only 32.8 percent of questions require complex reasoning. We evaluate biomedical models (HuatuoGPT-o1, MedReason, m1) and general-domain models (DeepSeek-R1, o4-mini, Qwen3), finding consistent gaps between knowledge and reasoning performance. For example, m1 scores 60.5 on knowledge but only 47.1 on reasoning. In adversarial tests where models are misled with incorrect initial reasoning, biomedical models degrade sharply, while larger or RL-trained general models show more robustness. To address this, we train BioMed-R1 using fine-tuning and reinforcement learning on reasoning-heavy examples. It achieves the strongest performance among similarly sized models. Further gains may come from incorporating clinical case reports and training with adversarial and backtracking scenarios.
No Free Labels: Limitations of LLM-as-a-Judge Without Human Grounding
LLM-as-a-Judge is a framework that uses an LLM (large language model) to evaluate the quality of natural language text - typically text that is also generated by an LLM. This framework holds great promise due to its relative low-cost, ease of use, and strong correlations with human stylistic preferences. However, LLM Judges have been shown to exhibit biases that can distort their judgments. We evaluate how well LLM Judges can grade whether a given response to a conversational question is correct, an ability crucial to soundly estimating the overall response quality. To do so, we create and publicly release a human-annotated dataset with labels of correctness for 1,200 LLM responses. We source questions from a combination of existing datasets and a novel, challenging benchmark (BFF-Bench) created for this analysis. We demonstrate a strong connection between an LLM's ability to correctly answer a question and grade responses to that question. Although aggregate level statistics might imply a judge has high agreement with human annotators, it will struggle on the subset of questions it could not answer. To address this issue, we recommend a simple solution: provide the judge with a correct, human-written reference answer. We perform an in-depth analysis on how reference quality can affect the performance of an LLM Judge. We show that providing a weaker judge (e.g. Qwen 2.5 7B) with higher quality references reaches better agreement with human annotators than a stronger judge (e.g. GPT-4o) with synthetic references.
Cause and Effect: Can Large Language Models Truly Understand Causality?
With the rise of Large Language Models(LLMs), it has become crucial to understand their capabilities and limitations in deciphering and explaining the complex web of causal relationships that language entails. Current methods use either explicit or implicit causal reasoning, yet there is a strong need for a unified approach combining both to tackle a wide array of causal relationships more effectively. This research proposes a novel architecture called Context Aware Reasoning Enhancement with Counterfactual Analysis(CARE CA) framework to enhance causal reasoning and explainability. The proposed framework incorporates an explicit causal detection module with ConceptNet and counterfactual statements, as well as implicit causal detection through LLMs. Our framework goes one step further with a layer of counterfactual explanations to accentuate LLMs understanding of causality. The knowledge from ConceptNet enhances the performance of multiple causal reasoning tasks such as causal discovery, causal identification and counterfactual reasoning. The counterfactual sentences add explicit knowledge of the not caused by scenarios. By combining these powerful modules, our model aims to provide a deeper understanding of causal relationships, enabling enhanced interpretability. Evaluation of benchmark datasets shows improved performance across all metrics, such as accuracy, precision, recall, and F1 scores. We also introduce CausalNet, a new dataset accompanied by our code, to facilitate further research in this domain.
ScholarSearch: Benchmarking Scholar Searching Ability of LLMs
Large Language Models (LLMs)' search capabilities have garnered significant attention. Existing benchmarks, such as OpenAI's BrowseComp, primarily focus on general search scenarios and fail to adequately address the specific demands of academic search. These demands include deeper literature tracing and organization, professional support for academic databases, the ability to navigate long-tail academic knowledge, and ensuring academic rigor. Here, we proposed ScholarSearch, the first dataset specifically designed to evaluate the complex information retrieval capabilities of Large Language Models (LLMs) in academic research. ScholarSearch possesses the following key characteristics: Academic Practicality, where question content closely mirrors real academic learning and research environments, avoiding deliberately misleading models; High Difficulty, with answers that are challenging for single models (e.g., Grok DeepSearch or Gemini Deep Research) to provide directly, often requiring at least three deep searches to derive; Concise Evaluation, where limiting conditions ensure answers are as unique as possible, accompanied by clear sources and brief solution explanations, greatly facilitating subsequent audit and verification, surpassing the current lack of analyzed search datasets both domestically and internationally; and Broad Coverage, as the dataset spans at least 15 different academic disciplines. Through ScholarSearch, we expect to more precisely measure and promote the performance improvement of LLMs in complex academic information retrieval tasks. The data is available at: https://huggingface.co/datasets/PKU-DS-LAB/ScholarSearch
A Closer Look at the Limitations of Instruction Tuning
Instruction Tuning (IT), the process of training large language models (LLMs) using instruction-response pairs, has emerged as the predominant method for transforming base pre-trained LLMs into open-domain conversational agents. While IT has achieved notable success and widespread adoption, its limitations and shortcomings remain underexplored. In this paper, through rigorous experiments and an in-depth analysis of the changes LLMs undergo through IT, we reveal various limitations of IT. In particular, we show that (1) IT fails to enhance knowledge or skills in LLMs. LoRA fine-tuning is limited to learning response initiation and style tokens, and full-parameter fine-tuning leads to knowledge degradation. (2) Copying response patterns from IT datasets derived from knowledgeable sources leads to a decline in response quality. (3) Full-parameter fine-tuning increases hallucination by inaccurately borrowing tokens from conceptually similar instances in the IT dataset for generating responses. (4) Popular methods to improve IT do not lead to performance improvements over a simple LoRA fine-tuned model. Our findings reveal that responses generated solely from pre-trained knowledge consistently outperform responses by models that learn any form of new knowledge from IT on open-source datasets. We hope the insights and challenges revealed inspire future work.
Model Hubs and Beyond: Analyzing Model Popularity, Performance, and Documentation
With the massive surge in ML models on platforms like Hugging Face, users often lose track and struggle to choose the best model for their downstream tasks, frequently relying on model popularity indicated by download counts, likes, or recency. We investigate whether this popularity aligns with actual model performance and how the comprehensiveness of model documentation correlates with both popularity and performance. In our study, we evaluated a comprehensive set of 500 Sentiment Analysis models on Hugging Face. This evaluation involved massive annotation efforts, with human annotators completing nearly 80,000 annotations, alongside extensive model training and evaluation. Our findings reveal that model popularity does not necessarily correlate with performance. Additionally, we identify critical inconsistencies in model card reporting: approximately 80\% of the models analyzed lack detailed information about the model, training, and evaluation processes. Furthermore, about 88\% of model authors overstate their models' performance in the model cards. Based on our findings, we provide a checklist of guidelines for users to choose good models for downstream tasks.
MOSAIC: Multi-Object Segmented Arbitrary Stylization Using CLIP
Style transfer driven by text prompts paved a new path for creatively stylizing the images without collecting an actual style image. Despite having promising results, with text-driven stylization, the user has no control over the stylization. If a user wants to create an artistic image, the user requires fine control over the stylization of various entities individually in the content image, which is not addressed by the current state-of-the-art approaches. On the other hand, diffusion style transfer methods also suffer from the same issue because the regional stylization control over the stylized output is ineffective. To address this problem, We propose a new method Multi-Object Segmented Arbitrary Stylization Using CLIP (MOSAIC), that can apply styles to different objects in the image based on the context extracted from the input prompt. Text-based segmentation and stylization modules which are based on vision transformer architecture, were used to segment and stylize the objects. Our method can extend to any arbitrary objects, styles and produce high-quality images compared to the current state of art methods. To our knowledge, this is the first attempt to perform text-guided arbitrary object-wise stylization. We demonstrate the effectiveness of our approach through qualitative and quantitative analysis, showing that it can generate visually appealing stylized images with enhanced control over stylization and the ability to generalize to unseen object classes.
CrisisTransformers: Pre-trained language models and sentence encoders for crisis-related social media texts
Social media platforms play an essential role in crisis communication, but analyzing crisis-related social media texts is challenging due to their informal nature. Transformer-based pre-trained models like BERT and RoBERTa have shown success in various NLP tasks, but they are not tailored for crisis-related texts. Furthermore, general-purpose sentence encoders are used to generate sentence embeddings, regardless of the textual complexities in crisis-related texts. Advances in applications like text classification, semantic search, and clustering contribute to effective processing of crisis-related texts, which is essential for emergency responders to gain a comprehensive view of a crisis event, whether historical or real-time. To address these gaps in crisis informatics literature, this study introduces CrisisTransformers, an ensemble of pre-trained language models and sentence encoders trained on an extensive corpus of over 15 billion word tokens from tweets associated with more than 30 crisis events, including disease outbreaks, natural disasters, conflicts, and other critical incidents. We evaluate existing models and CrisisTransformers on 18 crisis-specific public datasets. Our pre-trained models outperform strong baselines across all datasets in classification tasks, and our best-performing sentence encoder improves the state-of-the-art by 17.43% in sentence encoding tasks. Additionally, we investigate the impact of model initialization on convergence and evaluate the significance of domain-specific models in generating semantically meaningful sentence embeddings. All models are publicly released (https://huggingface.co/crisistransformers), with the anticipation that they will serve as a robust baseline for tasks involving the analysis of crisis-related social media texts.
EasyNER: A Customizable Easy-to-Use Pipeline for Deep Learning- and Dictionary-based Named Entity Recognition from Medical Text
Medical research generates a large number of publications with the PubMed database already containing >35 million research articles. Integration of the knowledge scattered across this large body of literature could provide key insights into physiological mechanisms and disease processes leading to novel medical interventions. However, it is a great challenge for researchers to utilize this information in full since the scale and complexity of the data greatly surpasses human processing abilities. This becomes especially problematic in cases of extreme urgency like the COVID-19 pandemic. Automated text mining can help extract and connect information from the large body of medical research articles. The first step in text mining is typically the identification of specific classes of keywords (e.g., all protein or disease names), so called Named Entity Recognition (NER). Here we present an end-to-end pipeline for NER of typical entities found in medical research articles, including diseases, cells, chemicals, genes/proteins, and species. The pipeline can access and process large medical research article collections (PubMed, CORD-19) or raw text and incorporates a series of deep learning models fine-tuned on the HUNER corpora collection. In addition, the pipeline can perform dictionary-based NER related to COVID-19 and other medical topics. Users can also load their own NER models and dictionaries to include additional entities. The output consists of publication-ready ranked lists and graphs of detected entities and files containing the annotated texts. An associated script allows rapid inspection of the results for specific entities of interest. As model use cases, the pipeline was deployed on two collections of autophagy-related abstracts from PubMed and on the CORD19 dataset, a collection of 764 398 research article abstracts related to COVID-19.
Quantifying Fairness in LLMs Beyond Tokens: A Semantic and Statistical Perspective
Large Language Models (LLMs) often generate responses with inherent biases, undermining their reliability in real-world applications. Existing evaluation methods often overlook biases in long-form responses and the intrinsic variability of LLM outputs. To address these challenges, we propose FiSCo(Fine-grained Semantic Computation), a novel statistical framework to evaluate group-level fairness in LLMs by detecting subtle semantic differences in long-form responses across demographic groups. Unlike prior work focusing on sentiment or token-level comparisons, FiSCo goes beyond surface-level analysis by operating at the claim level, leveraging entailment checks to assess the consistency of meaning across responses. We decompose model outputs into semantically distinct claims and apply statistical hypothesis testing to compare inter- and intra-group similarities, enabling robust detection of subtle biases. We formalize a new group counterfactual fairness definition and validate FiSCo on both synthetic and human-annotated datasets spanning gender, race, and age. Experiments show that FiSco more reliably identifies nuanced biases while reducing the impact of stochastic LLM variability, outperforming various evaluation metrics.
Exploring Vision Language Models for Facial Attribute Recognition: Emotion, Race, Gender, and Age
Technologies for recognizing facial attributes like race, gender, age, and emotion have several applications, such as surveillance, advertising content, sentiment analysis, and the study of demographic trends and social behaviors. Analyzing demographic characteristics based on images and analyzing facial expressions have several challenges due to the complexity of humans' facial attributes. Traditional approaches have employed CNNs and various other deep learning techniques, trained on extensive collections of labeled images. While these methods demonstrated effective performance, there remains potential for further enhancements. In this paper, we propose to utilize vision language models (VLMs) such as generative pre-trained transformer (GPT), GEMINI, large language and vision assistant (LLAVA), PaliGemma, and Microsoft Florence2 to recognize facial attributes such as race, gender, age, and emotion from images with human faces. Various datasets like FairFace, AffectNet, and UTKFace have been utilized to evaluate the solutions. The results show that VLMs are competitive if not superior to traditional techniques. Additionally, we propose "FaceScanPaliGemma"--a fine-tuned PaliGemma model--for race, gender, age, and emotion recognition. The results show an accuracy of 81.1%, 95.8%, 80%, and 59.4% for race, gender, age group, and emotion classification, respectively, outperforming pre-trained version of PaliGemma, other VLMs, and SotA methods. Finally, we propose "FaceScanGPT", which is a GPT-4o model to recognize the above attributes when several individuals are present in the image using a prompt engineered for a person with specific facial and/or physical attributes. The results underscore the superior multitasking capability of FaceScanGPT to detect the individual's attributes like hair cut, clothing color, postures, etc., using only a prompt to drive the detection and recognition tasks.
A new paradigm for accelerating clinical data science at Stanford Medicine
Stanford Medicine is building a new data platform for our academic research community to do better clinical data science. Hospitals have a large amount of patient data and researchers have demonstrated the ability to reuse that data and AI approaches to derive novel insights, support patient care, and improve care quality. However, the traditional data warehouse and Honest Broker approaches that are in current use, are not scalable. We are establishing a new secure Big Data platform that aims to reduce time to access and analyze data. In this platform, data is anonymized to preserve patient data privacy and made available preparatory to Institutional Review Board (IRB) submission. Furthermore, the data is standardized such that analysis done at Stanford can be replicated elsewhere using the same analytical code and clinical concepts. Finally, the analytics data warehouse integrates with a secure data science computational facility to support large scale data analytics. The ecosystem is designed to bring the modern data science community to highly sensitive clinical data in a secure and collaborative big data analytics environment with a goal to enable bigger, better and faster science.
The BrowserGym Ecosystem for Web Agent Research
The BrowserGym ecosystem addresses the growing need for efficient evaluation and benchmarking of web agents, particularly those leveraging automation and Large Language Models (LLMs) for web interaction tasks. Many existing benchmarks suffer from fragmentation and inconsistent evaluation methodologies, making it challenging to achieve reliable comparisons and reproducible results. BrowserGym aims to solve this by providing a unified, gym-like environment with well-defined observation and action spaces, facilitating standardized evaluation across diverse benchmarks. Combined with AgentLab, a complementary framework that aids in agent creation, testing, and analysis, BrowserGym offers flexibility for integrating new benchmarks while ensuring consistent evaluation and comprehensive experiment management. This standardized approach seeks to reduce the time and complexity of developing web agents, supporting more reliable comparisons and facilitating in-depth analysis of agent behaviors, and could result in more adaptable, capable agents, ultimately accelerating innovation in LLM-driven automation. As a supporting evidence, we conduct the first large-scale, multi-benchmark web agent experiment and compare the performance of 6 state-of-the-art LLMs across all benchmarks currently available in BrowserGym. Among other findings, our results highlight a large discrepancy between OpenAI and Anthropic's latests models, with Claude-3.5-Sonnet leading the way on almost all benchmarks, except on vision-related tasks where GPT-4o is superior. Despite these advancements, our results emphasize that building robust and efficient web agents remains a significant challenge, due to the inherent complexity of real-world web environments and the limitations of current models.
Pile of Law: Learning Responsible Data Filtering from the Law and a 256GB Open-Source Legal Dataset
One concern with the rise of large language models lies with their potential for significant harm, particularly from pretraining on biased, obscene, copyrighted, and private information. Emerging ethical approaches have attempted to filter pretraining material, but such approaches have been ad hoc and failed to take context into account. We offer an approach to filtering grounded in law, which has directly addressed the tradeoffs in filtering material. First, we gather and make available the Pile of Law, a 256GB (and growing) dataset of open-source English-language legal and administrative data, covering court opinions, contracts, administrative rules, and legislative records. Pretraining on the Pile of Law may help with legal tasks that have the promise to improve access to justice. Second, we distill the legal norms that governments have developed to constrain the inclusion of toxic or private content into actionable lessons for researchers and discuss how our dataset reflects these norms. Third, we show how the Pile of Law offers researchers the opportunity to learn such filtering rules directly from the data, providing an exciting new research direction in model-based processing.
Fix your Models by Fixing your Datasets
The quality of underlying training data is very crucial for building performant machine learning models with wider generalizabilty. However, current machine learning (ML) tools lack streamlined processes for improving the data quality. So, getting data quality insights and iteratively pruning the errors to obtain a dataset which is most representative of downstream use cases is still an ad-hoc manual process. Our work addresses this data tooling gap, required to build improved ML workflows purely through data-centric techniques. More specifically, we introduce a systematic framework for (1) finding noisy or mislabelled samples in the dataset and, (2) identifying the most informative samples, which when included in training would provide maximal model performance lift. We demonstrate the efficacy of our framework on public as well as private enterprise datasets of two Fortune 500 companies, and are confident this work will form the basis for ML teams to perform more intelligent data discovery and pruning.
Data Cards: Purposeful and Transparent Dataset Documentation for Responsible AI
As research and industry moves towards large-scale models capable of numerous downstream tasks, the complexity of understanding multi-modal datasets that give nuance to models rapidly increases. A clear and thorough understanding of a dataset's origins, development, intent, ethical considerations and evolution becomes a necessary step for the responsible and informed deployment of models, especially those in people-facing contexts and high-risk domains. However, the burden of this understanding often falls on the intelligibility, conciseness, and comprehensiveness of the documentation. It requires consistency and comparability across the documentation of all datasets involved, and as such documentation must be treated as a user-centric product in and of itself. In this paper, we propose Data Cards for fostering transparent, purposeful and human-centered documentation of datasets within the practical contexts of industry and research. Data Cards are structured summaries of essential facts about various aspects of ML datasets needed by stakeholders across a dataset's lifecycle for responsible AI development. These summaries provide explanations of processes and rationales that shape the data and consequently the models, such as upstream sources, data collection and annotation methods; training and evaluation methods, intended use; or decisions affecting model performance. We also present frameworks that ground Data Cards in real-world utility and human-centricity. Using two case studies, we report on desirable characteristics that support adoption across domains, organizational structures, and audience groups. Finally, we present lessons learned from deploying over 20 Data Cards.
LAMBDA: A Large Model Based Data Agent
We introduce ``LAMBDA," a novel open-source, code-free multi-agent data analysis system that that harnesses the power of large models. LAMBDA is designed to address data analysis challenges in complex data-driven applications through the use of innovatively designed data agents that operate iteratively and generatively using natural language. At the core of LAMBDA are two key agent roles: the programmer and the inspector, which are engineered to work together seamlessly. Specifically, the programmer generates code based on the user's instructions and domain-specific knowledge, enhanced by advanced models. Meanwhile, the inspector debugs the code when necessary. To ensure robustness and handle adverse scenarios, LAMBDA features a user interface that allows direct user intervention in the operational loop. Additionally, LAMBDA can flexibly integrate external models and algorithms through our knowledge integration mechanism, catering to the needs of customized data analysis. LAMBDA has demonstrated strong performance on various machine learning datasets. It has the potential to enhance data science practice and analysis paradigm by seamlessly integrating human and artificial intelligence, making it more accessible, effective, and efficient for individuals from diverse backgrounds. The strong performance of LAMBDA in solving data science problems is demonstrated in several case studies, which are presented at https://www.polyu.edu.hk/ama/cmfai/lambda.html.
Will we run out of data? An analysis of the limits of scaling datasets in Machine Learning
We analyze the growth of dataset sizes used in machine learning for natural language processing and computer vision, and extrapolate these using two methods; using the historical growth rate and estimating the compute-optimal dataset size for future predicted compute budgets. We investigate the growth in data usage by estimating the total stock of unlabeled data available on the internet over the coming decades. Our analysis indicates that the stock of high-quality language data will be exhausted soon; likely before 2026. By contrast, the stock of low-quality language data and image data will be exhausted only much later; between 2030 and 2050 (for low-quality language) and between 2030 and 2060 (for images). Our work suggests that the current trend of ever-growing ML models that rely on enormous datasets might slow down if data efficiency is not drastically improved or new sources of data become available.
Framework to Automatically Determine the Quality of Open Data Catalogs
Data catalogs play a crucial role in modern data-driven organizations by facilitating the discovery, understanding, and utilization of diverse data assets. However, ensuring their quality and reliability is complex, especially in open and large-scale data environments. This paper proposes a framework to automatically determine the quality of open data catalogs, addressing the need for efficient and reliable quality assessment mechanisms. Our framework can analyze various core quality dimensions, such as accuracy, completeness, consistency, scalability, and timeliness, offer several alternatives for the assessment of compatibility and similarity across such catalogs as well as the implementation of a set of non-core quality dimensions such as provenance, readability, and licensing. The goal is to empower data-driven organizations to make informed decisions based on trustworthy and well-curated data assets. The source code that illustrates our approach can be downloaded from https://www.github.com/jorge-martinez-gil/dataq/.
Framing the News:From Human Perception to Large Language Model Inferences
Identifying the frames of news is important to understand the articles' vision, intention, message to be conveyed, and which aspects of the news are emphasized. Framing is a widely studied concept in journalism, and has emerged as a new topic in computing, with the potential to automate processes and facilitate the work of journalism professionals. In this paper, we study this issue with articles related to the Covid-19 anti-vaccine movement. First, to understand the perspectives used to treat this theme, we developed a protocol for human labeling of frames for 1786 headlines of No-Vax movement articles of European newspapers from 5 countries. Headlines are key units in the written press, and worth of analysis as many people only read headlines (or use them to guide their decision for further reading.) Second, considering advances in Natural Language Processing (NLP) with large language models, we investigated two approaches for frame inference of news headlines: first with a GPT-3.5 fine-tuning approach, and second with GPT-3.5 prompt-engineering. Our work contributes to the study and analysis of the performance that these models have to facilitate journalistic tasks like classification of frames, while understanding whether the models are able to replicate human perception in the identification of these frames.
Shapley Based Residual Decomposition for Instance Analysis
In this paper, we introduce the idea of decomposing the residuals of regression with respect to the data instances instead of features. This allows us to determine the effects of each individual instance on the model and each other, and in doing so makes for a model-agnostic method of identifying instances of interest. In doing so, we can also determine the appropriateness of the model and data in the wider context of a given study. The paper focuses on the possible applications that such a framework brings to the relatively unexplored field of instance analysis in the context of Explainable AI tasks.
Large Language Models and Synthetic Data for Monitoring Dataset Mentions in Research Papers
Tracking how data is mentioned and used in research papers provides critical insights for improving data discoverability, quality, and production. However, manually identifying and classifying dataset mentions across vast academic literature is resource-intensive and not scalable. This paper presents a machine learning framework that automates dataset mention detection across research domains by leveraging large language models (LLMs), synthetic data, and a two-stage fine-tuning process. We employ zero-shot extraction from research papers, an LLM-as-a-Judge for quality assessment, and a reasoning agent for refinement to generate a weakly supervised synthetic dataset. The Phi-3.5-mini instruct model is pre-fine-tuned on this dataset, followed by fine-tuning on a manually annotated subset. At inference, a ModernBERT-based classifier efficiently filters dataset mentions, reducing computational overhead while maintaining high recall. Evaluated on a held-out manually annotated sample, our fine-tuned model outperforms NuExtract-v1.5 and GLiNER-large-v2.1 in dataset extraction accuracy. Our results highlight how LLM-generated synthetic data can effectively address training data scarcity, improving generalization in low-resource settings. This framework offers a pathway toward scalable monitoring of dataset usage, enhancing transparency, and supporting researchers, funders, and policymakers in identifying data gaps and strengthening data accessibility for informed decision-making.
WanJuan-CC: A Safe and High-Quality Open-sourced English Webtext Dataset
This paper presents WanJuan-CC, a safe and high-quality open-sourced English webtext dataset derived from Common Crawl data. The study addresses the challenges of constructing large-scale pre-training datasets for language models, which require vast amounts of high-quality data. A comprehensive process was designed to handle Common Crawl data, including extraction, heuristic rule filtering, fuzzy deduplication, content safety filtering, and data quality filtering. From approximately 68 billion original English documents, we obtained 2.22T Tokens of safe data and selected 1.0T Tokens of high-quality data as part of WanJuan-CC. We have open-sourced 300B Tokens from this dataset. The paper also provides statistical information related to data quality, enabling users to select appropriate data according to their needs. To evaluate the quality and utility of the dataset, we trained 1B-parameter and 3B-parameter models using WanJuan-CC and another dataset, RefinedWeb. Results show that WanJuan-CC performs better on validation datasets and downstream tasks.
On Computational Limits and Provably Efficient Criteria of Visual Autoregressive Models: A Fine-Grained Complexity Analysis
Recently, Visual Autoregressive (VAR) Models introduced a groundbreaking advancement in the field of image generation, offering a scalable approach through a coarse-to-fine "next-scale prediction" paradigm. However, the state-of-the-art algorithm of VAR models in [Tian, Jiang, Yuan, Peng and Wang, NeurIPS 2024] takes O(n^4) time, which is computationally inefficient. In this work, we analyze the computational limits and efficiency criteria of VAR Models through a fine-grained complexity lens. Our key contribution is identifying the conditions under which VAR computations can achieve sub-quadratic time complexity. Specifically, we establish a critical threshold for the norm of input matrices used in VAR attention mechanisms. Above this threshold, assuming the Strong Exponential Time Hypothesis (SETH) from fine-grained complexity theory, a sub-quartic time algorithm for VAR models is impossible. To substantiate our theoretical findings, we present efficient constructions leveraging low-rank approximations that align with the derived criteria. This work initiates the study of the computational efficiency of the VAR model from a theoretical perspective. Our technique will shed light on advancing scalable and efficient image generation in VAR frameworks.
An Analysis of Hyper-Parameter Optimization Methods for Retrieval Augmented Generation
Finding the optimal Retrieval-Augmented Generation (RAG) configuration for a given use case can be complex and expensive. Motivated by this challenge, frameworks for RAG hyper-parameter optimization (HPO) have recently emerged, yet their effectiveness has not been rigorously benchmarked. To address this gap, we present a comprehensive study involving 5 HPO algorithms over 5 datasets from diverse domains, including a new one collected for this work on real-world product documentation. Our study explores the largest HPO search space considered to date, with two optimized evaluation metrics. Analysis of the results shows that RAG HPO can be done efficiently, either greedily or with iterative random search, and that it significantly boosts RAG performance for all datasets. For greedy HPO approaches, we show that optimizing models first is preferable to the prevalent practice of optimizing sequentially according to the RAG pipeline order.
Analysis of the Evolution of Advanced Transformer-Based Language Models: Experiments on Opinion Mining
Opinion mining, also known as sentiment analysis, is a subfield of natural language processing (NLP) that focuses on identifying and extracting subjective information in textual material. This can include determining the overall sentiment of a piece of text (e.g., positive or negative), as well as identifying specific emotions or opinions expressed in the text, that involves the use of advanced machine and deep learning techniques. Recently, transformer-based language models make this task of human emotion analysis intuitive, thanks to the attention mechanism and parallel computation. These advantages make such models very powerful on linguistic tasks, unlike recurrent neural networks that spend a lot of time on sequential processing, making them prone to fail when it comes to processing long text. The scope of our paper aims to study the behaviour of the cutting-edge Transformer-based language models on opinion mining and provide a high-level comparison between them to highlight their key particularities. Additionally, our comparative study shows leads and paves the way for production engineers regarding the approach to focus on and is useful for researchers as it provides guidelines for future research subjects.
Navigating Dataset Documentations in AI: A Large-Scale Analysis of Dataset Cards on Hugging Face
Advances in machine learning are closely tied to the creation of datasets. While data documentation is widely recognized as essential to the reliability, reproducibility, and transparency of ML, we lack a systematic empirical understanding of current dataset documentation practices. To shed light on this question, here we take Hugging Face -- one of the largest platforms for sharing and collaborating on ML models and datasets -- as a prominent case study. By analyzing all 7,433 dataset documentation on Hugging Face, our investigation provides an overview of the Hugging Face dataset ecosystem and insights into dataset documentation practices, yielding 5 main findings: (1) The dataset card completion rate shows marked heterogeneity correlated with dataset popularity. (2) A granular examination of each section within the dataset card reveals that the practitioners seem to prioritize Dataset Description and Dataset Structure sections, while the Considerations for Using the Data section receives the lowest proportion of content. (3) By analyzing the subsections within each section and utilizing topic modeling to identify key topics, we uncover what is discussed in each section, and underscore significant themes encompassing both technical and social impacts, as well as limitations within the Considerations for Using the Data section. (4) Our findings also highlight the need for improved accessibility and reproducibility of datasets in the Usage sections. (5) In addition, our human annotation evaluation emphasizes the pivotal role of comprehensive dataset content in shaping individuals' perceptions of a dataset card's overall quality. Overall, our study offers a unique perspective on analyzing dataset documentation through large-scale data science analysis and underlines the need for more thorough dataset documentation in machine learning research.
Analysis and Applications of Deep Learning with Finite Samples in Full Life-Cycle Intelligence of Nuclear Power Generation
The advent of Industry 4.0 has precipitated the incorporation of Artificial Intelligence (AI) methods within industrial contexts, aiming to realize intelligent manufacturing, operation as well as maintenance, also known as industrial intelligence. However, intricate industrial milieus, particularly those relating to energy exploration and production, frequently encompass data characterized by long-tailed class distribution, sample imbalance, and domain shift. These attributes pose noteworthy challenges to data-centric Deep Learning (DL) techniques, crucial for the realization of industrial intelligence. The present study centers on the intricate and distinctive industrial scenarios of Nuclear Power Generation (NPG), meticulously scrutinizing the application of DL techniques under the constraints of finite data samples. Initially, the paper expounds on potential employment scenarios for AI across the full life-cycle of NPG. Subsequently, we delve into an evaluative exposition of DL's advancement, grounded in the finite sample perspective. This encompasses aspects such as small-sample learning, few-shot learning, zero-shot learning, and open-set recognition, also referring to the unique data characteristics of NPG. The paper then proceeds to present two specific case studies. The first revolves around the automatic recognition of zirconium alloy metallography, while the second pertains to open-set recognition for signal diagnosis of machinery sensors. These cases, spanning the entirety of NPG's life-cycle, are accompanied by constructive outcomes and insightful deliberations. By exploring and applying DL methodologies within the constraints of finite sample availability, this paper not only furnishes a robust technical foundation but also introduces a fresh perspective toward the secure and efficient advancement and exploitation of this advanced energy source.
A Comprehensive Capability Analysis of GPT-3 and GPT-3.5 Series Models
GPT series models, such as GPT-3, CodeX, InstructGPT, ChatGPT, and so on, have gained considerable attention due to their exceptional natural language processing capabilities. However, despite the abundance of research on the difference in capabilities between GPT series models and fine-tuned models, there has been limited attention given to the evolution of GPT series models' capabilities over time. To conduct a comprehensive analysis of the capabilities of GPT series models, we select six representative models, comprising two GPT-3 series models (i.e., davinci and text-davinci-001) and four GPT-3.5 series models (i.e., code-davinci-002, text-davinci-002, text-davinci-003, and gpt-3.5-turbo). We evaluate their performance on nine natural language understanding (NLU) tasks using 21 datasets. In particular, we compare the performance and robustness of different models for each task under zero-shot and few-shot scenarios. Our extensive experiments reveal that the overall ability of GPT series models on NLU tasks does not increase gradually as the models evolve, especially with the introduction of the RLHF training strategy. While this strategy enhances the models' ability to generate human-like responses, it also compromises their ability to solve some tasks. Furthermore, our findings indicate that there is still room for improvement in areas such as model robustness.
Analysis of Data Augmentation Methods for Low-Resource Maltese ASR
Recent years have seen an increased interest in the computational speech processing of Maltese, but resources remain sparse. In this paper, we consider data augmentation techniques for improving speech recognition for low-resource languages, focusing on Maltese as a test case. We consider three different types of data augmentation: unsupervised training, multilingual training and the use of synthesized speech as training data. The goal is to determine which of these techniques, or combination of them, is the most effective to improve speech recognition for languages where the starting point is a small corpus of approximately 7 hours of transcribed speech. Our results show that combining the data augmentation techniques studied here lead us to an absolute WER improvement of 15% without the use of a language model.
Analysis of Two Models for the Angular Structure of the Outflows Producing the Swift/XRT "Larger-Angle Emission" of Gamma-Ray Bursts
The instantaneous emission from a relativistic surface endowed with a Lorentz factor Gamma that decreases away from the outflow symmetry axis can naturally explain the three phases observed by Swift/XRT in GRBs and their afterglows (GRB tail, afterglow plateau and post-plateau). We expand the analytical formalism of the "Larger-Angle Emission" model previously developed for "Power-Law" outflows to "n-Exponential" outflows (e.g. exponential with n=1 and Gaussian with n=2) and compare their abilities to account for the X-ray emission of XRT afterglows. We assume power-law Gamma-dependences of two spectral characteristics (peak-energy and peak intensity) and find that, unlike Power-Law outflows, n-Exponential outflows cannot account for plateaus with a temporal dynamical range larger than 100. To include all information existing in the Swift/XRT measurements of X-ray aferglows (0.3-10 keV unabsorbed flux and effective spectral slope), we calculate 0.3 keV and 10 keV light-curves using a broken power-law emission spectrum of peak-energy and low-and high-energy slopes that are derived from the effective slope measured by XRT. This economical peak-energy determination is found to be consistent with more expensive spectral fits. The angular distributions of the Lorentz factor, comoving frame peak-energy, and peak-intensity (Gamma (theta), E'_p (theta), i'_p(theta)) constrain the (yet-to-be determined) convolution of various features of the production of relativistic jets by solar-mass black-holes and of their propagation through the progenitor/circumburst medium, while the E'_p (Gamma) and i'_p (Gamma) dependences may constrain the GRB dissipation mechanism and the GRB emission process.
Analysis on Riemann Hypothesis with Cross Entropy Optimization and Reasoning
In this paper, we present a novel framework for the analysis of Riemann Hypothesis [27], which is composed of three key components: a) probabilistic modeling with cross entropy optimization and reasoning; b) the application of the law of large numbers; c) the application of mathematical inductions. The analysis is mainly conducted by virtue of probabilistic modeling of cross entropy optimization and reasoning with rare event simulation techniques. The application of the law of large numbers [2, 3, 6] and the application of mathematical inductions make the analysis of Riemann Hypothesis self-contained and complete to make sure that the whole complex plane is covered as conjectured in Riemann Hypothesis. We also discuss the method of enhanced top-p sampling with large language models (LLMs) for reasoning, where next token prediction is not just based on the estimated probabilities of each possible token in the current round but also based on accumulated path probabilities among multiple top-k chain of thoughts (CoTs) paths. The probabilistic modeling of cross entropy optimization and reasoning may suit well with the analysis of Riemann Hypothesis as Riemann Zeta functions are inherently dealing with the sums of infinite components of a complex number series. We hope that our analysis in this paper could shed some light on some of the insights of Riemann Hypothesis. The framework and techniques presented in this paper, coupled with recent developments with chain of thought (CoT) or diagram of thought (DoT) reasoning in large language models (LLMs) with reinforcement learning (RL) [1, 7, 18, 21, 24, 34, 39-41], could pave the way for eventual proof of Riemann Hypothesis [27].
Analysis of the JWST spectra of the kilonova AT 2023vfi accompanying GRB 230307A
Kilonovae are key to advancing our understanding of r-process nucleosynthesis. To date, only two kilonovae have been spectroscopically observed, AT 2017gfo and AT 2023vfi. Here, we present an analysis of the James Webb Space Telescope (JWST) spectra obtained +29 and +61 days post-merger for AT 2023vfi (the kilonova associated with GRB 230307A). After re-reducing and photometrically flux-calibrating the data, we empirically model the observed X-ray to mid-infrared continua with a power law and a blackbody, to replicate the non-thermal afterglow and apparent thermal continuum gtrsim 2 , mum. We fit Gaussians to the apparent emission features, obtaining line centroids of 20218_{-38}^{+37}, 21874 pm 89 and 44168_{-152}^{+153}\,\AA, and velocity widths spanning 0.057 - 0.110\,c. These line centroid constraints facilitated a detailed forbidden line identification search, from which we shortlist a number of r-process species spanning all three r-process peaks. We rule out Ba II and Ra II as candidates and propose Te I-III, Er I-III and W III as the most promising ions for further investigation, as they plausibly produce multiple emission features from one (W III) or multiple (Te I-III, Er I-III) ion stages. We compare to the spectra of AT 2017gfo, which also exhibit prominent emission at sim 2.1 , mum, and conclude that [Te III] lambda21050 remains the most plausible cause of the observed sim 2.1 , mum emission in both kilonovae. However, the observed line centroids are not consistent between both objects, and they are significantly offset from [Te III] lambda21050. The next strongest [Te III] transition at 29290\,\AA\ is not observed, and we quantify its detectability. Further study is required, with particular emphasis on expanding the available atomic data to enable quantitative non-LTE spectral modelling.
Aggregated Attributions for Explanatory Analysis of 3D Segmentation Models
Analysis of 3D segmentation models, especially in the context of medical imaging, is often limited to segmentation performance metrics that overlook the crucial aspect of explainability and bias. Currently, effectively explaining these models with saliency maps is challenging due to the high dimensions of input images multiplied by the ever-growing number of segmented class labels. To this end, we introduce Agg^2Exp, a methodology for aggregating fine-grained voxel attributions of the segmentation model's predictions. Unlike classical explanation methods that primarily focus on the local feature attribution, Agg^2Exp enables a more comprehensive global view on the importance of predicted segments in 3D images. Our benchmarking experiments show that gradient-based voxel attributions are more faithful to the model's predictions than perturbation-based explanations. As a concrete use-case, we apply Agg^2Exp to discover knowledge acquired by the Swin UNEt TRansformer model trained on the TotalSegmentator v2 dataset for segmenting anatomical structures in computed tomography medical images. Agg^2Exp facilitates the explanatory analysis of large segmentation models beyond their predictive performance.
Analysis of Classifier-Free Guidance Weight Schedulers
Classifier-Free Guidance (CFG) enhances the quality and condition adherence of text-to-image diffusion models. It operates by combining the conditional and unconditional predictions using a fixed weight. However, recent works vary the weights throughout the diffusion process, reporting superior results but without providing any rationale or analysis. By conducting comprehensive experiments, this paper provides insights into CFG weight schedulers. Our findings suggest that simple, monotonically increasing weight schedulers consistently lead to improved performances, requiring merely a single line of code. In addition, more complex parametrized schedulers can be optimized for further improvement, but do not generalize across different models and tasks.
Analysis of Self-Supervised Speech Models on Children's Speech and Infant Vocalizations
To understand why self-supervised learning (SSL) models have empirically achieved strong performances on several speech-processing downstream tasks, numerous studies have focused on analyzing the encoded information of the SSL layer representations in adult speech. Limited work has investigated how pre-training and fine-tuning affect SSL models encoding children's speech and vocalizations. In this study, we aim to bridge this gap by probing SSL models on two relevant downstream tasks: (1) phoneme recognition (PR) on the speech of adults, older children (8-10 years old), and younger children (1-4 years old), and (2) vocalization classification (VC) distinguishing cry, fuss, and babble for infants under 14 months old. For younger children's PR, the superiority of fine-tuned SSL models is largely due to their ability to learn features that represent older children's speech and then adapt those features to the speech of younger children. For infant VC, SSL models pre-trained on large-scale home recordings learn to leverage phonetic representations at middle layers, and thereby enhance the performance of this task.
Analysis of Linear Mode Connectivity via Permutation-Based Weight Matching
Recently, Ainsworth et al. showed that using weight matching (WM) to minimize the L_2 distance in a permutation search of model parameters effectively identifies permutations that satisfy linear mode connectivity (LMC), in which the loss along a linear path between two independently trained models with different seeds remains nearly constant. This paper provides a theoretical analysis of LMC using WM, which is crucial for understanding stochastic gradient descent's effectiveness and its application in areas like model merging. We first experimentally and theoretically show that permutations found by WM do not significantly reduce the L_2 distance between two models and the occurrence of LMC is not merely due to distance reduction by WM in itself. We then provide theoretical insights showing that permutations can change the directions of the singular vectors, but not the singular values, of the weight matrices in each layer. This finding shows that permutations found by WM mainly align the directions of singular vectors associated with large singular values across models. This alignment brings the singular vectors with large singular values, which determine the model functionality, closer between pre-merged and post-merged models, so that the post-merged model retains functionality similar to the pre-merged models, making it easy to satisfy LMC. Finally, we analyze the difference between WM and straight-through estimator (STE), a dataset-dependent permutation search method, and show that WM outperforms STE, especially when merging three or more models.
Analysis of learning a flow-based generative model from limited sample complexity
We study the problem of training a flow-based generative model, parametrized by a two-layer autoencoder, to sample from a high-dimensional Gaussian mixture. We provide a sharp end-to-end analysis of the problem. First, we provide a tight closed-form characterization of the learnt velocity field, when parametrized by a shallow denoising auto-encoder trained on a finite number n of samples from the target distribution. Building on this analysis, we provide a sharp description of the corresponding generative flow, which pushes the base Gaussian density forward to an approximation of the target density. In particular, we provide closed-form formulae for the distance between the mean of the generated mixture and the mean of the target mixture, which we show decays as Theta_n(1{n}). Finally, this rate is shown to be in fact Bayes-optimal.
Analysis of the Memorization and Generalization Capabilities of AI Agents: Are Continual Learners Robust?
In continual learning (CL), an AI agent (e.g., autonomous vehicles or robotics) learns from non-stationary data streams under dynamic environments. For the practical deployment of such applications, it is important to guarantee robustness to unseen environments while maintaining past experiences. In this paper, a novel CL framework is proposed to achieve robust generalization to dynamic environments while retaining past knowledge. The considered CL agent uses a capacity-limited memory to save previously observed environmental information to mitigate forgetting issues. Then, data points are sampled from the memory to estimate the distribution of risks over environmental change so as to obtain predictors that are robust with unseen changes. The generalization and memorization performance of the proposed framework are theoretically analyzed. This analysis showcases the tradeoff between memorization and generalization with the memory size. Experiments show that the proposed algorithm outperforms memory-based CL baselines across all environments while significantly improving the generalization performance on unseen target environments.
Analysis of Disinformation and Fake News Detection Using Fine-Tuned Large Language Model
The paper considers the possibility of fine-tuning Llama 2 large language model (LLM) for the disinformation analysis and fake news detection. For fine-tuning, the PEFT/LoRA based approach was used. In the study, the model was fine-tuned for the following tasks: analysing a text on revealing disinformation and propaganda narratives, fact checking, fake news detection, manipulation analytics, extracting named entities with their sentiments. The obtained results show that the fine-tuned Llama 2 model can perform a deep analysis of texts and reveal complex styles and narratives. Extracted sentiments for named entities can be considered as predictive features in supervised machine learning models.
Analysis of Failures and Risks in Deep Learning Model Converters: A Case Study in the ONNX Ecosystem
Software engineers develop, fine-tune, and deploy deep learning (DL) models. They use and re-use models in a variety of development frameworks and deploy them on a range of runtime environments. In this diverse ecosystem, engineers use DL model converters to move models from frameworks to runtime environments. However, errors in converters can compromise model quality and disrupt deployment. The failure frequency and failure modes of DL model converters are unknown. In this paper, we conduct the first failure analysis on DL model converters. Specifically, we characterize failures in model converters associated with ONNX (Open Neural Network eXchange). We analyze past failures in the ONNX converters in two major DL frameworks, PyTorch and TensorFlow. The symptoms, causes, and locations of failures (for N=200 issues), and trends over time are also reported. We also evaluate present-day failures by converting 8,797 models, both real-world and synthetically generated instances. The consistent result from both parts of the study is that DL model converters commonly fail by producing models that exhibit incorrect behavior: 33% of past failures and 8% of converted models fell into this category. Our results motivate future research on making DL software simpler to maintain, extend, and validate.
Capacity Analysis of Vector Symbolic Architectures
Hyperdimensional computing (HDC) is a biologically-inspired framework which represents symbols with high-dimensional vectors, and uses vector operations to manipulate them. The ensemble of a particular vector space and a prescribed set of vector operations (including one addition-like for "bundling" and one outer-product-like for "binding") form a *vector symbolic architecture* (VSA). While VSAs have been employed in numerous applications and have been studied empirically, many theoretical questions about VSAs remain open. We analyze the *representation capacities* of four common VSAs: MAP-I, MAP-B, and two VSAs based on sparse binary vectors. "Representation capacity' here refers to bounds on the dimensions of the VSA vectors required to perform certain symbolic tasks, such as testing for set membership i in S and estimating set intersection sizes |X cap Y| for two sets of symbols X and Y, to a given degree of accuracy. We also analyze the ability of a novel variant of a Hopfield network (a simple model of associative memory) to perform some of the same tasks that are typically asked of VSAs. In addition to providing new bounds on VSA capacities, our analyses establish and leverage connections between VSAs, "sketching" (dimensionality reduction) algorithms, and Bloom filters.
Twitter Data Analysis: Izmir Earthquake Case
T\"urkiye is located on a fault line; earthquakes often occur on a large and small scale. There is a need for effective solutions for gathering current information during disasters. We can use social media to get insight into public opinion. This insight can be used in public relations and disaster management. In this study, Twitter posts on Izmir Earthquake that took place on October 2020 are analyzed. We question if this analysis can be used to make social inferences on time. Data mining and natural language processing (NLP) methods are used for this analysis. NLP is used for sentiment analysis and topic modelling. The latent Dirichlet Allocation (LDA) algorithm is used for topic modelling. We used the Bidirectional Encoder Representations from Transformers (BERT) model working with Transformers architecture for sentiment analysis. It is shown that the users shared their goodwill wishes and aimed to contribute to the initiated aid activities after the earthquake. The users desired to make their voices heard by competent institutions and organizations. The proposed methods work effectively. Future studies are also discussed.
Analysis of Sectoral Profitability of the Indian Stock Market Using an LSTM Regression Model
Predictive model design for accurately predicting future stock prices has always been considered an interesting and challenging research problem. The task becomes complex due to the volatile and stochastic nature of the stock prices in the real world which is affected by numerous controllable and uncontrollable variables. This paper presents an optimized predictive model built on long-and-short-term memory (LSTM) architecture for automatically extracting past stock prices from the web over a specified time interval and predicting their future prices for a specified forecast horizon, and forecasts the future stock prices. The model is deployed for making buy and sell transactions based on its predicted results for 70 important stocks from seven different sectors listed in the National Stock Exchange (NSE) of India. The profitability of each sector is derived based on the total profit yielded by the stocks in that sector over a period from Jan 1, 2010 to Aug 26, 2021. The sectors are compared based on their profitability values. The prediction accuracy of the model is also evaluated for each sector. The results indicate that the model is highly accurate in predicting future stock prices.
Layer-wise Analysis of a Self-supervised Speech Representation Model
Recently proposed self-supervised learning approaches have been successful for pre-training speech representation models. The utility of these learned representations has been observed empirically, but not much has been studied about the type or extent of information encoded in the pre-trained representations themselves. Developing such insights can help understand the capabilities and limits of these models and enable the research community to more efficiently develop their usage for downstream applications. In this work, we begin to fill this gap by examining one recent and successful pre-trained model (wav2vec 2.0), via its intermediate representation vectors, using a suite of analysis tools. We use the metrics of canonical correlation, mutual information, and performance on simple downstream tasks with non-parametric probes, in order to (i) query for acoustic and linguistic information content, (ii) characterize the evolution of information across model layers, and (iii) understand how fine-tuning the model for automatic speech recognition (ASR) affects these observations. Our findings motivate modifying the fine-tuning protocol for ASR, which produces improved word error rates in a low-resource setting.
Why Do Pretrained Language Models Help in Downstream Tasks? An Analysis of Head and Prompt Tuning
Pretrained language models have achieved state-of-the-art performance when adapted to a downstream NLP task. However, theoretical analysis of these models is scarce and challenging since the pretraining and downstream tasks can be very different. We propose an analysis framework that links the pretraining and downstream tasks with an underlying latent variable generative model of text -- the downstream classifier must recover a function of the posterior distribution over the latent variables. We analyze head tuning (learning a classifier on top of the frozen pretrained model) and prompt tuning in this setting. The generative model in our analysis is either a Hidden Markov Model (HMM) or an HMM augmented with a latent memory component, motivated by long-term dependencies in natural language. We show that 1) under certain non-degeneracy conditions on the HMM, simple classification heads can solve the downstream task, 2) prompt tuning obtains downstream guarantees with weaker non-degeneracy conditions, and 3) our recovery guarantees for the memory-augmented HMM are stronger than for the vanilla HMM because task-relevant information is easier to recover from the long-term memory. Experiments on synthetically generated data from HMMs back our theoretical findings.
What Gives the Answer Away? Question Answering Bias Analysis on Video QA Datasets
Question answering biases in video QA datasets can mislead multimodal model to overfit to QA artifacts and jeopardize the model's ability to generalize. Understanding how strong these QA biases are and where they come from helps the community measure progress more accurately and provide researchers insights to debug their models. In this paper, we analyze QA biases in popular video question answering datasets and discover pretrained language models can answer 37-48% questions correctly without using any multimodal context information, far exceeding the 20% random guess baseline for 5-choose-1 multiple-choice questions. Our ablation study shows biases can come from annotators and type of questions. Specifically, annotators that have been seen during training are better predicted by the model and reasoning, abstract questions incur more biases than factual, direct questions. We also show empirically that using annotator-non-overlapping train-test splits can reduce QA biases for video QA datasets.
IMDb data from Two Generations, from 1979 to 2019; Part one, Dataset Introduction and Preliminary Analysis
"IMDb" as a user-regulating and one the most-visited portal has provided an opportunity to create an enormous database. Analysis of the information on Internet Movie Database - IMDb, either those related to the movie or provided by users would help to reveal the determinative factors in the route of success for each movie. As the lack of a comprehensive dataset was felt, we determined to do create a compendious dataset for the later analysis using the statistical methods and machine learning models; It comprises of various information provided on IMDb such as rating data, genre, cast and crew, MPAA rating certificate, parental guide details, related movie information, posters, etc, for over 79k titles which is the largest dataset by this date. The present paper is the first paper in a series of papers aiming at the mentioned goals, by a description of the created dataset and a preliminary analysis including some trend in data, demographic analysis of IMDb scores and their relation of genre MPAA rating certificate has been investigated.
Analysis of Social Media Data using Multimodal Deep Learning for Disaster Response
Multimedia content in social media platforms provides significant information during disaster events. The types of information shared include reports of injured or deceased people, infrastructure damage, and missing or found people, among others. Although many studies have shown the usefulness of both text and image content for disaster response purposes, the research has been mostly focused on analyzing only the text modality in the past. In this paper, we propose to use both text and image modalities of social media data to learn a joint representation using state-of-the-art deep learning techniques. Specifically, we utilize convolutional neural networks to define a multimodal deep learning architecture with a modality-agnostic shared representation. Extensive experiments on real-world disaster datasets show that the proposed multimodal architecture yields better performance than models trained using a single modality (e.g., either text or image).
A Framework for Predictive Analysis of Stock Market Indices : A Study of the Indian Auto Sector
Analysis and prediction of stock market time series data has attracted considerable interest from the research community over the last decade. Rapid development and evolution of sophisticated algorithms for statistical analysis of time series data, and availability of high-performance hardware has made it possible to process and analyze high volume stock market time series data effectively, in real-time. Among many other important characteristics and behavior of such data, forecasting is an area which has witnessed considerable focus. In this work, we have used time series of the index values of the Auto sector in India during January 2010 to December 2015 for a deeper understanding of the behavior of its three constituent components, e.g., the trend, the seasonal component, and the random component. Based on this structural analysis, we have also designed five approaches for forecasting and also computed their accuracy in prediction using suitably chosen training and test data sets. Extensive results are presented to demonstrate the effectiveness of our proposed decomposition approaches of time series and the efficiency of our forecasting techniques, even in presence of a random component and a sharply changing trend component in the time-series.
Analysis of a Modern Voice Morphing Approach using Gaussian Mixture Models for Laryngectomees
This paper proposes a voice morphing system for people suffering from Laryngectomy, which is the surgical removal of all or part of the larynx or the voice box, particularly performed in cases of laryngeal cancer. A primitive method of achieving voice morphing is by extracting the source's vocal coefficients and then converting them into the target speaker's vocal parameters. In this paper, we deploy Gaussian Mixture Models (GMM) for mapping the coefficients from source to destination. However, the use of the traditional/conventional GMM-based mapping approach results in the problem of over-smoothening of the converted voice. Thus, we hereby propose a unique method to perform efficient voice morphing and conversion based on GMM,which overcomes the traditional-method effects of over-smoothening. It uses a technique of glottal waveform separation and prediction of excitations and hence the result shows that not only over-smoothening is eliminated but also the transformed vocal tract parameters match with the target. Moreover, the synthesized speech thus obtained is found to be of a sufficiently high quality. Thus, voice morphing based on a unique GMM approach has been proposed and also critically evaluated based on various subjective and objective evaluation parameters. Further, an application of voice morphing for Laryngectomees which deploys this unique approach has been recommended by this paper.
Datasheets for Datasets
The machine learning community currently has no standardized process for documenting datasets, which can lead to severe consequences in high-stakes domains. To address this gap, we propose datasheets for datasets. In the electronics industry, every component, no matter how simple or complex, is accompanied with a datasheet that describes its operating characteristics, test results, recommended uses, and other information. By analogy, we propose that every dataset be accompanied with a datasheet that documents its motivation, composition, collection process, recommended uses, and so on. Datasheets for datasets will facilitate better communication between dataset creators and dataset consumers, and encourage the machine learning community to prioritize transparency and accountability.
RedPajama: an Open Dataset for Training Large Language Models
Large language models are increasingly becoming a cornerstone technology in artificial intelligence, the sciences, and society as a whole, yet the optimal strategies for dataset composition and filtering remain largely elusive. Many of the top-performing models lack transparency in their dataset curation and model development processes, posing an obstacle to the development of fully open language models. In this paper, we identify three core data-related challenges that must be addressed to advance open-source language models. These include (1) transparency in model development, including the data curation process, (2) access to large quantities of high-quality data, and (3) availability of artifacts and metadata for dataset curation and analysis. To address these challenges, we release RedPajama-V1, an open reproduction of the LLaMA training dataset. In addition, we release RedPajama-V2, a massive web-only dataset consisting of raw, unfiltered text data together with quality signals and metadata. Together, the RedPajama datasets comprise over 100 trillion tokens spanning multiple domains and with their quality signals facilitate the filtering of data, aiming to inspire the development of numerous new datasets. To date, these datasets have already been used in the training of strong language models used in production, such as Snowflake Arctic, Salesforce's XGen and AI2's OLMo. To provide insight into the quality of RedPajama, we present a series of analyses and ablation studies with decoder-only language models with up to 1.6B parameters. Our findings demonstrate how quality signals for web data can be effectively leveraged to curate high-quality subsets of the dataset, underscoring the potential of RedPajama to advance the development of transparent and high-performing language models at scale.
FinanceQA: A Benchmark for Evaluating Financial Analysis Capabilities of Large Language Models
FinanceQA is a testing suite that evaluates LLMs' performance on complex numerical financial analysis tasks that mirror real-world investment work. Despite recent advances, current LLMs fail to meet the strict accuracy requirements of financial institutions, with models failing approximately 60% of realistic tasks that mimic on-the-job analyses at hedge funds, private equity firms, investment banks, and other financial institutions. The primary challenges include hand-spreading metrics, adhering to standard accounting and corporate valuation conventions, and performing analysis under incomplete information - particularly in multi-step tasks requiring assumption generation. This performance gap highlights the disconnect between existing LLM capabilities and the demands of professional financial analysis that are inadequately tested by current testing architectures. Results show that higher-quality training data is needed to support such tasks, which we experiment with using OpenAI's fine-tuning API. FinanceQA is publicly released at [this https URL](https://huggingface.co/datasets/AfterQuery/FinanceQA).
A Large-scale Industrial and Professional Occupation Dataset
There has been growing interest in utilizing occupational data mining and analysis. In today's job market, occupational data mining and analysis is growing in importance as it enables companies to predict employee turnover, model career trajectories, screen through resumes and perform other human resource tasks. A key requirement to facilitate these tasks is the need for an occupation-related dataset. However, most research use proprietary datasets or do not make their dataset publicly available, thus impeding development in this area. To solve this issue, we present the Industrial and Professional Occupation Dataset (IPOD), which comprises 192k job titles belonging to 56k LinkedIn users. In addition to making IPOD publicly available, we also: (i) manually annotate each job title with its associated level of seniority, domain of work and location; and (ii) provide embedding for job titles and discuss various use cases. This dataset is publicly available at https://github.com/junhua/ipod.
Does Circuit Analysis Interpretability Scale? Evidence from Multiple Choice Capabilities in Chinchilla
Circuit analysis is a promising technique for understanding the internal mechanisms of language models. However, existing analyses are done in small models far from the state of the art. To address this, we present a case study of circuit analysis in the 70B Chinchilla model, aiming to test the scalability of circuit analysis. In particular, we study multiple-choice question answering, and investigate Chinchilla's capability to identify the correct answer label given knowledge of the correct answer text. We find that the existing techniques of logit attribution, attention pattern visualization, and activation patching naturally scale to Chinchilla, allowing us to identify and categorize a small set of `output nodes' (attention heads and MLPs). We further study the `correct letter' category of attention heads aiming to understand the semantics of their features, with mixed results. For normal multiple-choice question answers, we significantly compress the query, key and value subspaces of the head without loss of performance when operating on the answer labels for multiple-choice questions, and we show that the query and key subspaces represent an `Nth item in an enumeration' feature to at least some extent. However, when we attempt to use this explanation to understand the heads' behaviour on a more general distribution including randomized answer labels, we find that it is only a partial explanation, suggesting there is more to learn about the operation of `correct letter' heads on multiple choice question answering.
PeaTMOSS: A Dataset and Initial Analysis of Pre-Trained Models in Open-Source Software
The development and training of deep learning models have become increasingly costly and complex. Consequently, software engineers are adopting pre-trained models (PTMs) for their downstream applications. The dynamics of the PTM supply chain remain largely unexplored, signaling a clear need for structured datasets that document not only the metadata but also the subsequent applications of these models. Without such data, the MSR community cannot comprehensively understand the impact of PTM adoption and reuse. This paper presents the PeaTMOSS dataset, which comprises metadata for 281,638 PTMs and detailed snapshots for all PTMs with over 50 monthly downloads (14,296 PTMs), along with 28,575 open-source software repositories from GitHub that utilize these models. Additionally, the dataset includes 44,337 mappings from 15,129 downstream GitHub repositories to the 2,530 PTMs they use. To enhance the dataset's comprehensiveness, we developed prompts for a large language model to automatically extract model metadata, including the model's training datasets, parameters, and evaluation metrics. Our analysis of this dataset provides the first summary statistics for the PTM supply chain, showing the trend of PTM development and common shortcomings of PTM package documentation. Our example application reveals inconsistencies in software licenses across PTMs and their dependent projects. PeaTMOSS lays the foundation for future research, offering rich opportunities to investigate the PTM supply chain. We outline mining opportunities on PTMs, their downstream usage, and cross-cutting questions.
Vulnerability Analysis of Transformer-based Optical Character Recognition to Adversarial Attacks
Recent advancements in Optical Character Recognition (OCR) have been driven by transformer-based models. OCR systems are critical in numerous high-stakes domains, yet their vulnerability to adversarial attack remains largely uncharted territory, raising concerns about security and compliance with emerging AI regulations. In this work we present a novel framework to assess the resilience of Transformer-based OCR (TrOCR) models. We develop and assess algorithms for both targeted and untargeted attacks. For the untargeted case, we measure the Character Error Rate (CER), while for the targeted case we use the success ratio. We find that TrOCR is highly vulnerable to untargeted attacks and somewhat less vulnerable to targeted attacks. On a benchmark handwriting data set, untargeted attacks can cause a CER of more than 1 without being noticeable to the eye. With a similar perturbation size, targeted attacks can lead to success rates of around 25% -- here we attacked single tokens, requiring TrOCR to output the tenth most likely token from a large vocabulary.
Insightful analysis of historical sources at scales beyond human capabilities using unsupervised Machine Learning and XAI
Historical materials are abundant. Yet, piecing together how human knowledge has evolved and spread both diachronically and synchronically remains a challenge that can so far only be very selectively addressed. The vast volume of materials precludes comprehensive studies, given the restricted number of human specialists. However, as large amounts of historical materials are now available in digital form there is a promising opportunity for AI-assisted historical analysis. In this work, we take a pivotal step towards analyzing vast historical corpora by employing innovative machine learning (ML) techniques, enabling in-depth historical insights on a grand scale. Our study centers on the evolution of knowledge within the `Sacrobosco Collection' -- a digitized collection of 359 early modern printed editions of textbooks on astronomy used at European universities between 1472 and 1650 -- roughly 76,000 pages, many of which contain astronomic, computational tables. An ML based analysis of these tables helps to unveil important facets of the spatio-temporal evolution of knowledge and innovation in the field of mathematical astronomy in the period, as taught at European universities.
Empirical Analysis of the Strengths and Weaknesses of PEFT Techniques for LLMs
As foundation models continue to exponentially scale in size, efficient methods of adaptation become increasingly critical. Parameter-efficient fine-tuning (PEFT), a recent class of techniques that require only modifying a small percentage of the model parameters, is currently the most popular method for adapting large language models (LLMs). Several PEFT techniques have recently been proposed with varying tradeoffs. We provide a comprehensive and uniform benchmark of various PEFT techniques across a representative LLM, the FLAN-T5 model, and evaluate model performance across different data scales of classification and generation datasets. Based on this, we provide a framework for choosing the optimal fine-tuning techniques given the task type and data availability. Contrary to popular belief, we also empirically prove that PEFT techniques converge slower than full tuning in low data scenarios, and posit the amount of data required for PEFT methods to both perform well and converge efficiently. Lastly, we further optimize these PEFT techniques by selectively choosing which parts of the model to train, and find that these techniques can be applied with significantly fewer parameters while maintaining and even improving performance.
ERA-CoT: Improving Chain-of-Thought through Entity Relationship Analysis
Large language models (LLMs) have achieved commendable accomplishments in various natural language processing tasks. However, LLMs still encounter significant challenges when dealing with complex scenarios involving multiple entities. These challenges arise from the presence of implicit relationships that demand multi-step reasoning. In this paper, we propose a novel approach ERA-CoT, which aids LLMs in understanding context by capturing relationships between entities and supports the reasoning of diverse tasks through Chain-of-Thoughts (CoT). Experimental results show that ERA-CoT demonstrates the superior performance of our proposed method compared to current CoT prompting methods, achieving a significant improvement of an average of 5.1\% on GPT3.5 compared to previous SOTA baselines. Our analysis indicates that ERA-CoT increases the LLM's understanding of entity relationships, significantly improves the accuracy of question answering, and enhances the reasoning ability of LLMs.
Emotion Classification In Software Engineering Texts: A Comparative Analysis of Pre-trained Transformers Language Models
Emotion recognition in software engineering texts is critical for understanding developer expressions and improving collaboration. This paper presents a comparative analysis of state-of-the-art Pre-trained Language Models (PTMs) for fine-grained emotion classification on two benchmark datasets from GitHub and Stack Overflow. We evaluate six transformer models - BERT, RoBERTa, ALBERT, DeBERTa, CodeBERT and GraphCodeBERT against the current best-performing tool SEntiMoji. Our analysis reveals consistent improvements ranging from 1.17\% to 16.79\% in terms of macro-averaged and micro-averaged F1 scores, with general domain models outperforming specialized ones. To further enhance PTMs, we incorporate polarity features in attention layer during training, demonstrating additional average gains of 1.0\% to 10.23\% over baseline PTMs approaches. Our work provides strong evidence for the advancements afforded by PTMs in recognizing nuanced emotions like Anger, Love, Fear, Joy, Sadness, and Surprise in software engineering contexts. Through comprehensive benchmarking and error analysis, we also outline scope for improvements to address contextual gaps.
EmoLLMs: A Series of Emotional Large Language Models and Annotation Tools for Comprehensive Affective Analysis
Sentiment analysis and emotion detection are important research topics in natural language processing (NLP) and benefit many downstream tasks. With the widespread application of LLMs, researchers have started exploring the application of LLMs based on instruction-tuning in the field of sentiment analysis. However, these models only focus on single aspects of affective classification tasks (e.g. sentimental polarity or categorical emotions), and overlook the regression tasks (e.g. sentiment strength or emotion intensity), which leads to poor performance in downstream tasks. The main reason is the lack of comprehensive affective instruction tuning datasets and evaluation benchmarks, which cover various affective classification and regression tasks. Moreover, although emotional information is useful for downstream tasks, existing downstream datasets lack high-quality and comprehensive affective annotations. In this paper, we propose EmoLLMs, the first series of open-sourced instruction-following LLMs for comprehensive affective analysis based on fine-tuning various LLMs with instruction data, the first multi-task affective analysis instruction dataset (AAID) with 234K data samples based on various classification and regression tasks to support LLM instruction tuning, and a comprehensive affective evaluation benchmark (AEB) with 14 tasks from various sources and domains to test the generalization ability of LLMs. We propose a series of EmoLLMs by fine-tuning LLMs with AAID to solve various affective instruction tasks. We compare our model with a variety of LLMs on AEB, where our models outperform all other open-sourced LLMs, and surpass ChatGPT and GPT-4 in most tasks, which shows that the series of EmoLLMs achieve the ChatGPT-level and GPT-4-level generalization capabilities on affective analysis tasks, and demonstrates our models can be used as affective annotation tools.
Intention Analysis Prompting Makes Large Language Models A Good Jailbreak Defender
Aligning large language models (LLMs) with human values, particularly in the face of stealthy and complex jailbreaks, presents a formidable challenge. In this study, we present a simple yet highly effective defense strategy, i.e., Intention Analysis Prompting (IAPrompt). The principle behind is to trigger LLMs' inherent self-correct and improve ability through a two-stage process: 1) essential intention analysis, and 2) policy-aligned response. Notably, IAPrompt is an inference-only method, thus could enhance the safety of LLMs without compromising their helpfulness. Extensive experiments on SAP200 and DAN benchmarks across Vicuna, ChatGLM, MPT, DeepSeek, and GPT-3.5 show that IAPrompt could consistently and significantly reduce the harmfulness in response (averagely -46.5% attack success rate) and maintain the general helpfulness. Further analyses present some insights into how our method works. To facilitate reproducibility, We release our code and scripts at: https://github.com/alphadl/SafeLLM_with_IntentionAnalysis
UniSA: Unified Generative Framework for Sentiment Analysis
Sentiment analysis is a crucial task that aims to understand people's emotional states and predict emotional categories based on multimodal information. It consists of several subtasks, such as emotion recognition in conversation (ERC), aspect-based sentiment analysis (ABSA), and multimodal sentiment analysis (MSA). However, unifying all subtasks in sentiment analysis presents numerous challenges, including modality alignment, unified input/output forms, and dataset bias. To address these challenges, we propose a Task-Specific Prompt method to jointly model subtasks and introduce a multimodal generative framework called UniSA. Additionally, we organize the benchmark datasets of main subtasks into a new Sentiment Analysis Evaluation benchmark, SAEval. We design novel pre-training tasks and training methods to enable the model to learn generic sentiment knowledge among subtasks to improve the model's multimodal sentiment perception ability. Our experimental results show that UniSA performs comparably to the state-of-the-art on all subtasks and generalizes well to various subtasks in sentiment analysis.
Instruct-FinGPT: Financial Sentiment Analysis by Instruction Tuning of General-Purpose Large Language Models
Sentiment analysis is a vital tool for uncovering insights from financial articles, news, and social media, shaping our understanding of market movements. Despite the impressive capabilities of large language models (LLMs) in financial natural language processing (NLP), they still struggle with accurately interpreting numerical values and grasping financial context, limiting their effectiveness in predicting financial sentiment. In this paper, we introduce a simple yet effective instruction tuning approach to address these issues. By transforming a small portion of supervised financial sentiment analysis data into instruction data and fine-tuning a general-purpose LLM with this method, we achieve remarkable advancements in financial sentiment analysis. In the experiment, our approach outperforms state-of-the-art supervised sentiment analysis models, as well as widely used LLMs like ChatGPT and LLaMAs, particularly in scenarios where numerical understanding and contextual comprehension are vital.
Causal Analysis for Robust Interpretability of Neural Networks
Interpreting the inner function of neural networks is crucial for the trustworthy development and deployment of these black-box models. Prior interpretability methods focus on correlation-based measures to attribute model decisions to individual examples. However, these measures are susceptible to noise and spurious correlations encoded in the model during the training phase (e.g., biased inputs, model overfitting, or misspecification). Moreover, this process has proven to result in noisy and unstable attributions that prevent any transparent understanding of the model's behavior. In this paper, we develop a robust interventional-based method grounded by causal analysis to capture cause-effect mechanisms in pre-trained neural networks and their relation to the prediction. Our novel approach relies on path interventions to infer the causal mechanisms within hidden layers and isolate relevant and necessary information (to model prediction), avoiding noisy ones. The result is task-specific causal explanatory graphs that can audit model behavior and express the actual causes underlying its performance. We apply our method to vision models trained on classification tasks. On image classification tasks, we provide extensive quantitative experiments to show that our approach can capture more stable and faithful explanations than standard attribution-based methods. Furthermore, the underlying causal graphs reveal the neural interactions in the model, making it a valuable tool in other applications (e.g., model repair).
Cross-Entropy Loss Functions: Theoretical Analysis and Applications
Cross-entropy is a widely used loss function in applications. It coincides with the logistic loss applied to the outputs of a neural network, when the softmax is used. But, what guarantees can we rely on when using cross-entropy as a surrogate loss? We present a theoretical analysis of a broad family of loss functions, comp-sum losses, that includes cross-entropy (or logistic loss), generalized cross-entropy, the mean absolute error and other cross-entropy-like loss functions. We give the first H-consistency bounds for these loss functions. These are non-asymptotic guarantees that upper bound the zero-one loss estimation error in terms of the estimation error of a surrogate loss, for the specific hypothesis set H used. We further show that our bounds are tight. These bounds depend on quantities called minimizability gaps. To make them more explicit, we give a specific analysis of these gaps for comp-sum losses. We also introduce a new family of loss functions, smooth adversarial comp-sum losses, that are derived from their comp-sum counterparts by adding in a related smooth term. We show that these loss functions are beneficial in the adversarial setting by proving that they admit H-consistency bounds. This leads to new adversarial robustness algorithms that consist of minimizing a regularized smooth adversarial comp-sum loss. While our main purpose is a theoretical analysis, we also present an extensive empirical analysis comparing comp-sum losses. We further report the results of a series of experiments demonstrating that our adversarial robustness algorithms outperform the current state-of-the-art, while also achieving a superior non-adversarial accuracy.
Transfer Learning for Low-Resource Sentiment Analysis
Sentiment analysis is the process of identifying and extracting subjective information from text. Despite the advances to employ cross-lingual approaches in an automatic way, the implementation and evaluation of sentiment analysis systems require language-specific data to consider various sociocultural and linguistic peculiarities. In this paper, the collection and annotation of a dataset are described for sentiment analysis of Central Kurdish. We explore a few classical machine learning and neural network-based techniques for this task. Additionally, we employ an approach in transfer learning to leverage pretrained models for data augmentation. We demonstrate that data augmentation achieves a high F_1 score and accuracy despite the difficulty of the task.
An Analysis of Social Biases Present in BERT Variants Across Multiple Languages
Although large pre-trained language models have achieved great success in many NLP tasks, it has been shown that they reflect human biases from their pre-training corpora. This bias may lead to undesirable outcomes when these models are applied in real-world settings. In this paper, we investigate the bias present in monolingual BERT models across a diverse set of languages (English, Greek, and Persian). While recent research has mostly focused on gender-related biases, we analyze religious and ethnic biases as well and propose a template-based method to measure any kind of bias, based on sentence pseudo-likelihood, that can handle morphologically complex languages with gender-based adjective declensions. We analyze each monolingual model via this method and visualize cultural similarities and differences across different dimensions of bias. Ultimately, we conclude that current methods of probing for bias are highly language-dependent, necessitating cultural insights regarding the unique ways bias is expressed in each language and culture (e.g. through coded language, synecdoche, and other similar linguistic concepts). We also hypothesize that higher measured social biases in the non-English BERT models correlate with user-generated content in their training.
A Hazard Analysis Framework for Code Synthesis Large Language Models
Codex, a large language model (LLM) trained on a variety of codebases, exceeds the previous state of the art in its capacity to synthesize and generate code. Although Codex provides a plethora of benefits, models that may generate code on such scale have significant limitations, alignment problems, the potential to be misused, and the possibility to increase the rate of progress in technical fields that may themselves have destabilizing impacts or have misuse potential. Yet such safety impacts are not yet known or remain to be explored. In this paper, we outline a hazard analysis framework constructed at OpenAI to uncover hazards or safety risks that the deployment of models like Codex may impose technically, socially, politically, and economically. The analysis is informed by a novel evaluation framework that determines the capacity of advanced code generation techniques against the complexity and expressivity of specification prompts, and their capability to understand and execute them relative to human ability.
Topic Analysis of Superconductivity Literature by Semantic Non-negative Matrix Factorization
We utilize a recently developed topic modeling method called SeNMFk, extending the standard Non-negative Matrix Factorization (NMF) methods by incorporating the semantic structure of the text, and adding a robust system for determining the number of topics. With SeNMFk, we were able to extract coherent topics validated by human experts. From these topics, a few are relatively general and cover broad concepts, while the majority can be precisely mapped to specific scientific effects or measurement techniques. The topics also differ by ubiquity, with only three topics prevalent in almost 40 percent of the abstract, while each specific topic tends to dominate a small subset of the abstracts. These results demonstrate the ability of SeNMFk to produce a layered and nuanced analysis of large scientific corpora.
Veni Vidi Vici, A Three-Phase Scenario For Parameter Space Analysis in Image Analysis and Visualization
Automatic analysis of the enormous sets of images is a critical task in life sciences. This faces many challenges such as: algorithms are highly parameterized, significant human input is intertwined, and lacking a standard meta-visualization approach. This paper proposes an alternative iterative approach for optimizing input parameters, saving time by minimizing the user involvement, and allowing for understanding the workflow of algorithms and discovering new ones. The main focus is on developing an interactive visualization technique that enables users to analyze the relationships between sampled input parameters and corresponding output. This technique is implemented as a prototype called Veni Vidi Vici, or "I came, I saw, I conquered." This strategy is inspired by the mathematical formulas of numbering computable functions and is developed atop ImageJ, a scientific image processing program. A case study is presented to investigate the proposed framework. Finally, the paper explores some potential future issues in the application of the proposed approach in parameter space analysis in visualization.
Event Extraction in Basque: Typologically motivated Cross-Lingual Transfer-Learning Analysis
Cross-lingual transfer-learning is widely used in Event Extraction for low-resource languages and involves a Multilingual Language Model that is trained in a source language and applied to the target language. This paper studies whether the typological similarity between source and target languages impacts the performance of cross-lingual transfer, an under-explored topic. We first focus on Basque as the target language, which is an ideal target language because it is typologically different from surrounding languages. Our experiments on three Event Extraction tasks show that the shared linguistic characteristic between source and target languages does have an impact on transfer quality. Further analysis of 72 language pairs reveals that for tasks that involve token classification such as entity and event trigger identification, common writing script and morphological features produce higher quality cross-lingual transfer. In contrast, for tasks involving structural prediction like argument extraction, common word order is the most relevant feature. In addition, we show that when increasing the training size, not all the languages scale in the same way in the cross-lingual setting. To perform the experiments we introduce EusIE, an event extraction dataset for Basque, which follows the Multilingual Event Extraction dataset (MEE). The dataset and code are publicly available.
KazSAnDRA: Kazakh Sentiment Analysis Dataset of Reviews and Attitudes
This paper presents KazSAnDRA, a dataset developed for Kazakh sentiment analysis that is the first and largest publicly available dataset of its kind. KazSAnDRA comprises an extensive collection of 180,064 reviews obtained from various sources and includes numerical ratings ranging from 1 to 5, providing a quantitative representation of customer attitudes. The study also pursued the automation of Kazakh sentiment classification through the development and evaluation of four machine learning models trained for both polarity classification and score classification. Experimental analysis included evaluation of the results considering both balanced and imbalanced scenarios. The most successful model attained an F1-score of 0.81 for polarity classification and 0.39 for score classification on the test sets. The dataset and fine-tuned models are open access and available for download under the Creative Commons Attribution 4.0 International License (CC BY 4.0) through our GitHub repository.
A Comparative Analysis of Conversational Large Language Models in Knowledge-Based Text Generation
Generating natural language text from graph-structured data is essential for conversational information seeking. Semantic triples derived from knowledge graphs can serve as a valuable source for grounding responses from conversational agents by providing a factual basis for the information they communicate. This is especially relevant in the context of large language models, which offer great potential for conversational interaction but are prone to hallucinating, omitting, or producing conflicting information. In this study, we conduct an empirical analysis of conversational large language models in generating natural language text from semantic triples. We compare four large language models of varying sizes with different prompting techniques. Through a series of benchmark experiments on the WebNLG dataset, we analyze the models' performance and identify the most common issues in the generated predictions. Our findings show that the capabilities of large language models in triple verbalization can be significantly improved through few-shot prompting, post-processing, and efficient fine-tuning techniques, particularly for smaller models that exhibit lower zero-shot performance.
Convergence Analysis for General Probability Flow ODEs of Diffusion Models in Wasserstein Distances
Score-based generative modeling with probability flow ordinary differential equations (ODEs) has achieved remarkable success in a variety of applications. While various fast ODE-based samplers have been proposed in the literature and employed in practice, the theoretical understandings about convergence properties of the probability flow ODE are still quite limited. In this paper, we provide the first non-asymptotic convergence analysis for a general class of probability flow ODE samplers in 2-Wasserstein distance, assuming accurate score estimates. We then consider various examples and establish results on the iteration complexity of the corresponding ODE-based samplers.
STREAM: Spatio-TempoRal Evaluation and Analysis Metric for Video Generative Models
Image generative models have made significant progress in generating realistic and diverse images, supported by comprehensive guidance from various evaluation metrics. However, current video generative models struggle to generate even short video clips, with limited tools that provide insights for improvements. Current video evaluation metrics are simple adaptations of image metrics by switching the embeddings with video embedding networks, which may underestimate the unique characteristics of video. Our analysis reveals that the widely used Frechet Video Distance (FVD) has a stronger emphasis on the spatial aspect than the temporal naturalness of video and is inherently constrained by the input size of the embedding networks used, limiting it to 16 frames. Additionally, it demonstrates considerable instability and diverges from human evaluations. To address the limitations, we propose STREAM, a new video evaluation metric uniquely designed to independently evaluate spatial and temporal aspects. This feature allows comprehensive analysis and evaluation of video generative models from various perspectives, unconstrained by video length. We provide analytical and experimental evidence demonstrating that STREAM provides an effective evaluation tool for both visual and temporal quality of videos, offering insights into area of improvement for video generative models. To the best of our knowledge, STREAM is the first evaluation metric that can separately assess the temporal and spatial aspects of videos. Our code is available at https://github.com/pro2nit/STREAM.
Benchmark Analysis of Various Pre-trained Deep Learning Models on ASSIRA Cats and Dogs Dataset
As the most basic application and implementation of deep learning, image classification has grown in popularity. Various datasets are provided by renowned data science communities for benchmarking machine learning algorithms and pre-trained models. The ASSIRA Cats & Dogs dataset is one of them and is being used in this research for its overall acceptance and benchmark standards. A comparison of various pre-trained models is demonstrated by using different types of optimizers and loss functions. Hyper-parameters are changed to gain the best result from a model. By applying this approach, we have got higher accuracy without major changes in the training model. To run the experiment, we used three different computer architectures: a laptop equipped with NVIDIA GeForce GTX 1070, a laptop equipped with NVIDIA GeForce RTX 3080Ti, and a desktop equipped with NVIDIA GeForce RTX 3090. The acquired results demonstrate supremacy in terms of accuracy over the previously done experiments on this dataset. From this experiment, the highest accuracy which is 99.65% is gained using the NASNet Large.
An Analysis of Embedding Layers and Similarity Scores using Siamese Neural Networks
Large Lanugage Models (LLMs) are gaining increasing popularity in a variety of use cases, from language understanding and writing to assistance in application development. One of the most important aspects for optimal funcionality of LLMs is embedding layers. Word embeddings are distributed representations of words in a continuous vector space. In the context of LLMs, words or tokens from the input text are transformed into high-dimensional vectors using unique algorithms specific to the model. Our research examines the embedding algorithms from leading companies in the industry, such as OpenAI, Google's PaLM, and BERT. Using medical data, we have analyzed similarity scores of each embedding layer, observing differences in performance among each algorithm. To enhance each model and provide an additional encoding layer, we also implemented Siamese Neural Networks. After observing changes in performance with the addition of the model, we measured the carbon footage per epoch of training. The carbon footprint associated with large language models (LLMs) is a significant concern, and should be taken into consideration when selecting algorithms for a variety of use cases. Overall, our research compared the accuracy different, leading embedding algorithms and their carbon footage, allowing for a holistic review of each embedding algorithm.
Experimental Analysis of Large-scale Learnable Vector Storage Compression
Learnable embedding vector is one of the most important applications in machine learning, and is widely used in various database-related domains. However, the high dimensionality of sparse data in recommendation tasks and the huge volume of corpus in retrieval-related tasks lead to a large memory consumption of the embedding table, which poses a great challenge to the training and deployment of models. Recent research has proposed various methods to compress the embeddings at the cost of a slight decrease in model quality or the introduction of other overheads. Nevertheless, the relative performance of these methods remains unclear. Existing experimental comparisons only cover a subset of these methods and focus on limited metrics. In this paper, we perform a comprehensive comparative analysis and experimental evaluation of embedding compression. We introduce a new taxonomy that categorizes these techniques based on their characteristics and methodologies, and further develop a modular benchmarking framework that integrates 14 representative methods. Under a uniform test environment, our benchmark fairly evaluates each approach, presents their strengths and weaknesses under different memory budgets, and recommends the best method based on the use case. In addition to providing useful guidelines, our study also uncovers the limitations of current methods and suggests potential directions for future research.
FATURA: A Multi-Layout Invoice Image Dataset for Document Analysis and Understanding
Document analysis and understanding models often require extensive annotated data to be trained. However, various document-related tasks extend beyond mere text transcription, requiring both textual content and precise bounding-box annotations to identify different document elements. Collecting such data becomes particularly challenging, especially in the context of invoices, where privacy concerns add an additional layer of complexity. In this paper, we introduce FATURA, a pivotal resource for researchers in the field of document analysis and understanding. FATURA is a highly diverse dataset featuring multi-layout, annotated invoice document images. Comprising 10,000 invoices with 50 distinct layouts, it represents the largest openly accessible image dataset of invoice documents known to date. We also provide comprehensive benchmarks for various document analysis and understanding tasks and conduct experiments under diverse training and evaluation scenarios. The dataset is freely accessible at https://zenodo.org/record/8261508, empowering researchers to advance the field of document analysis and understanding.
Intent Detection and Slot Filling for Home Assistants: Dataset and Analysis for Bangla and Sylheti
As voice assistants cement their place in our technologically advanced society, there remains a need to cater to the diverse linguistic landscape, including colloquial forms of low-resource languages. Our study introduces the first-ever comprehensive dataset for intent detection and slot filling in formal Bangla, colloquial Bangla, and Sylheti languages, totaling 984 samples across 10 unique intents. Our analysis reveals the robustness of large language models for tackling downstream tasks with inadequate data. The GPT-3.5 model achieves an impressive F1 score of 0.94 in intent detection and 0.51 in slot filling for colloquial Bangla.
Improved Analysis of Sparse Linear Regression in Local Differential Privacy Model
In this paper, we revisit the problem of sparse linear regression in the local differential privacy (LDP) model. Existing research in the non-interactive and sequentially local models has focused on obtaining the lower bounds for the case where the underlying parameter is 1-sparse, and extending such bounds to the more general k-sparse case has proven to be challenging. Moreover, it is unclear whether efficient non-interactive LDP (NLDP) algorithms exist. To address these issues, we first consider the problem in the epsilon non-interactive LDP model and provide a lower bound of Omega(sqrt{dklog d}{nepsilon}) on the ell_2-norm estimation error for sub-Gaussian data, where n is the sample size and d is the dimension of the space. We propose an innovative NLDP algorithm, the very first of its kind for the problem. As a remarkable outcome, this algorithm also yields a novel and highly efficient estimator as a valuable by-product. Our algorithm achieves an upper bound of O({dsqrt{k}{nepsilon}}) for the estimation error when the data is sub-Gaussian, which can be further improved by a factor of O(d) if the server has additional public but unlabeled data. For the sequentially interactive LDP model, we show a similar lower bound of Omega({sqrt{dk}{nepsilon}}). As for the upper bound, we rectify a previous method and show that it is possible to achieve a bound of O(ksqrt{d}{nepsilon}). Our findings reveal fundamental differences between the non-private case, central DP model, and local DP model in the sparse linear regression problem.
Theoretical Analysis of Robust Overfitting for Wide DNNs: An NTK Approach
Adversarial training (AT) is a canonical method for enhancing the robustness of deep neural networks (DNNs). However, recent studies empirically demonstrated that it suffers from robust overfitting, i.e., a long time AT can be detrimental to the robustness of DNNs. This paper presents a theoretical explanation of robust overfitting for DNNs. Specifically, we non-trivially extend the neural tangent kernel (NTK) theory to AT and prove that an adversarially trained wide DNN can be well approximated by a linearized DNN. Moreover, for squared loss, closed-form AT dynamics for the linearized DNN can be derived, which reveals a new AT degeneration phenomenon: a long-term AT will result in a wide DNN degenerates to that obtained without AT and thus cause robust overfitting. Based on our theoretical results, we further design a method namely Adv-NTK, the first AT algorithm for infinite-width DNNs. Experiments on real-world datasets show that Adv-NTK can help infinite-width DNNs enhance comparable robustness to that of their finite-width counterparts, which in turn justifies our theoretical findings. The code is available at https://github.com/fshp971/adv-ntk.
Performance Analysis of UNet and Variants for Medical Image Segmentation
Medical imaging plays a crucial role in modern healthcare by providing non-invasive visualisation of internal structures and abnormalities, enabling early disease detection, accurate diagnosis, and treatment planning. This study aims to explore the application of deep learning models, particularly focusing on the UNet architecture and its variants, in medical image segmentation. We seek to evaluate the performance of these models across various challenging medical image segmentation tasks, addressing issues such as image normalization, resizing, architecture choices, loss function design, and hyperparameter tuning. The findings reveal that the standard UNet, when extended with a deep network layer, is a proficient medical image segmentation model, while the Res-UNet and Attention Res-UNet architectures demonstrate smoother convergence and superior performance, particularly when handling fine image details. The study also addresses the challenge of high class imbalance through careful preprocessing and loss function definitions. We anticipate that the results of this study will provide useful insights for researchers seeking to apply these models to new medical imaging problems and offer guidance and best practices for their implementation.
Science and engineering for what? A large-scale analysis of students' projects in science fairs
Science and Engineering fairs offer K-12 students opportunities to engage with authentic STEM practices. Particularly, students are given the chance to experience authentic and open inquiry processes, by defining which themes, questions and approaches will guide their scientific endeavors. In this study, we analyzed data from over 5,000 projects presented at a nationwide science fair in Brazil over the past 20 years using topic modeling to identify the main topics that have driven students' inquiry and design. Our analysis identified a broad range of topics being explored, with significant variations over time, region, and school setting. We argue those results and proposed methodology can not only support further research in the context of science fairs, but also inform instruction and design of contexts-specific resources to support students in open inquiry experiences in different settings.
Stability Analysis for a Class of Heterogeneous Catalysis Models
We prove stability for a class of heterogeneous catalysis models in the L_p-setting. We consider a setting in a finite three-dimensional pore of cylinder-like geometry, with the lateral walls acting as a catalytic surface. Under a reasonable condition on the involved parameters, we show that given equilibria are normally stable, i.e. solutions are attracted at an exponential rate. The potential incidence of instability is discussed as well.
Comparative analysis of various web crawler algorithms
This presentation focuses on the importance of web crawling and page ranking algorithms in dealing with the massive amount of data present on the World Wide Web. As the web continues to grow exponentially, efficient search and retrieval methods become crucial. Web crawling is a process that converts unstructured data into structured data, enabling effective information retrieval. Additionally, page ranking algorithms play a significant role in assessing the quality and popularity of web pages. The presentation explores the background of these algorithms and evaluates five different crawling algorithms: Shark Search, Priority-Based Queue, Naive Bayes, Breadth-First, and Depth-First. The goal is to identify the most effective algorithm for crawling web pages. By understanding these algorithms, we can enhance our ability to navigate the web and extract valuable information efficiently.
Reliability Check: An Analysis of GPT-3's Response to Sensitive Topics and Prompt Wording
Large language models (LLMs) have become mainstream technology with their versatile use cases and impressive performance. Despite the countless out-of-the-box applications, LLMs are still not reliable. A lot of work is being done to improve the factual accuracy, consistency, and ethical standards of these models through fine-tuning, prompting, and Reinforcement Learning with Human Feedback (RLHF), but no systematic analysis of the responses of these models to different categories of statements, or on their potential vulnerabilities to simple prompting changes is available. In this work, we analyze what confuses GPT-3: how the model responds to certain sensitive topics and what effects the prompt wording has on the model response. We find that GPT-3 correctly disagrees with obvious Conspiracies and Stereotypes but makes mistakes with common Misconceptions and Controversies. The model responses are inconsistent across prompts and settings, highlighting GPT-3's unreliability. Dataset and code of our analysis is available in https://github.com/tanny411/GPT3-Reliability-Check.
Model Analysis & Evaluation for Ambiguous Question Answering
Ambiguous questions are a challenge for Question Answering models, as they require answers that cover multiple interpretations of the original query. To this end, these models are required to generate long-form answers that often combine conflicting pieces of information. Although recent advances in the field have shown strong capabilities in generating fluent responses, certain research questions remain unanswered. Does model/data scaling improve the answers' quality? Do automated metrics align with human judgment? To what extent do these models ground their answers in evidence? In this study, we aim to thoroughly investigate these aspects, and provide valuable insights into the limitations of the current approaches. To aid in reproducibility and further extension of our work, we open-source our code at https://github.com/din0s/ambig_lfqa.
Proper Scoring Rules for Survival Analysis
Survival analysis is the problem of estimating probability distributions for future event times, which can be seen as a problem in uncertainty quantification. Although there are fundamental theories on strictly proper scoring rules for uncertainty quantification, little is known about those for survival analysis. In this paper, we investigate extensions of four major strictly proper scoring rules for survival analysis and we prove that these extensions are proper under certain conditions, which arise from the discretization of the estimation of probability distributions. We also compare the estimation performances of these extended scoring rules by using real datasets, and the extensions of the logarithmic score and the Brier score performed the best.
Generalization Analysis for Contrastive Representation Learning
Recently, contrastive learning has found impressive success in advancing the state of the art in solving various machine learning tasks. However, the existing generalization analysis is very limited or even not meaningful. In particular, the existing generalization error bounds depend linearly on the number k of negative examples while it was widely shown in practice that choosing a large k is necessary to guarantee good generalization of contrastive learning in downstream tasks. In this paper, we establish novel generalization bounds for contrastive learning which do not depend on k, up to logarithmic terms. Our analysis uses structural results on empirical covering numbers and Rademacher complexities to exploit the Lipschitz continuity of loss functions. For self-bounding Lipschitz loss functions, we further improve our results by developing optimistic bounds which imply fast rates in a low noise condition. We apply our results to learning with both linear representation and nonlinear representation by deep neural networks, for both of which we derive Rademacher complexity bounds to get improved generalization bounds.
A Reinforcement Learning Framework for Dynamic Mediation Analysis
Mediation analysis learns the causal effect transmitted via mediator variables between treatments and outcomes and receives increasing attention in various scientific domains to elucidate causal relations. Most existing works focus on point-exposure studies where each subject only receives one treatment at a single time point. However, there are a number of applications (e.g., mobile health) where the treatments are sequentially assigned over time and the dynamic mediation effects are of primary interest. Proposing a reinforcement learning (RL) framework, we are the first to evaluate dynamic mediation effects in settings with infinite horizons. We decompose the average treatment effect into an immediate direct effect, an immediate mediation effect, a delayed direct effect, and a delayed mediation effect. Upon the identification of each effect component, we further develop robust and semi-parametrically efficient estimators under the RL framework to infer these causal effects. The superior performance of the proposed method is demonstrated through extensive numerical studies, theoretical results, and an analysis of a mobile health dataset.
An Analysis of the Automatic Bug Fixing Performance of ChatGPT
To support software developers in finding and fixing software bugs, several automated program repair techniques have been introduced. Given a test suite, standard methods usually either synthesize a repair, or navigate a search space of software edits to find test-suite passing variants. Recent program repair methods are based on deep learning approaches. One of these novel methods, which is not primarily intended for automated program repair, but is still suitable for it, is ChatGPT. The bug fixing performance of ChatGPT, however, is so far unclear. Therefore, in this paper we evaluate ChatGPT on the standard bug fixing benchmark set, QuixBugs, and compare the performance with the results of several other approaches reported in the literature. We find that ChatGPT's bug fixing performance is competitive to the common deep learning approaches CoCoNut and Codex and notably better than the results reported for the standard program repair approaches. In contrast to previous approaches, ChatGPT offers a dialogue system through which further information, e.g., the expected output for a certain input or an observed error message, can be entered. By providing such hints to ChatGPT, its success rate can be further increased, fixing 31 out of 40 bugs, outperforming state-of-the-art.
ArcAid: Analysis of Archaeological Artifacts using Drawings
Archaeology is an intriguing domain for computer vision. It suffers not only from shortage in (labeled) data, but also from highly-challenging data, which is often extremely abraded and damaged. This paper proposes a novel semi-supervised model for classification and retrieval of images of archaeological artifacts. This model utilizes unique data that exists in the domain -- manual drawings made by special artists. These are used during training to implicitly transfer the domain knowledge from the drawings to their corresponding images, improving their classification results. We show that while learning how to classify, our model also learns how to generate drawings of the artifacts, an important documentation task, which is currently performed manually. Last but not least, we collected a new dataset of stamp-seals of the Southern Levant. The dataset and the code will be released upon acceptance.
Empirical Analysis of Model Selection for Heterogeneous Causal Effect Estimation
We study the problem of model selection in causal inference, specifically for the case of conditional average treatment effect (CATE) estimation under binary treatments. Unlike model selection in machine learning, there is no perfect analogue of cross-validation as we do not observe the counterfactual potential outcome for any data point. Towards this, there have been a variety of proxy metrics proposed in the literature, that depend on auxiliary nuisance models estimated from the observed data (propensity score model, outcome regression model). However, the effectiveness of these metrics has only been studied on synthetic datasets as we can access the counterfactual data for them. We conduct an extensive empirical analysis to judge the performance of these metrics introduced in the literature, and novel ones introduced in this work, where we utilize the latest advances in generative modeling to incorporate multiple realistic datasets. Our analysis suggests novel model selection strategies based on careful hyperparameter tuning of CATE estimators and causal ensembling.
Improved Analysis of Score-based Generative Modeling: User-Friendly Bounds under Minimal Smoothness Assumptions
We give an improved theoretical analysis of score-based generative modeling. Under a score estimate with small L^2 error (averaged across timesteps), we provide efficient convergence guarantees for any data distribution with second-order moment, by either employing early stopping or assuming smoothness condition on the score function of the data distribution. Our result does not rely on any log-concavity or functional inequality assumption and has a logarithmic dependence on the smoothness. In particular, we show that under only a finite second moment condition, approximating the following in reverse KL divergence in epsilon-accuracy can be done in tilde Oleft(d log (1/delta){epsilon}right) steps: 1) the variance-delta Gaussian perturbation of any data distribution; 2) data distributions with 1/delta-smooth score functions. Our analysis also provides a quantitative comparison between different discrete approximations and may guide the choice of discretization points in practice.
Perturbation Analysis of Neural Collapse
Training deep neural networks for classification often includes minimizing the training loss beyond the zero training error point. In this phase of training, a "neural collapse" behavior has been observed: the variability of features (outputs of the penultimate layer) of within-class samples decreases and the mean features of different classes approach a certain tight frame structure. Recent works analyze this behavior via idealized unconstrained features models where all the minimizers exhibit exact collapse. However, with practical networks and datasets, the features typically do not reach exact collapse, e.g., because deep layers cannot arbitrarily modify intermediate features that are far from being collapsed. In this paper, we propose a richer model that can capture this phenomenon by forcing the features to stay in the vicinity of a predefined features matrix (e.g., intermediate features). We explore the model in the small vicinity case via perturbation analysis and establish results that cannot be obtained by the previously studied models. For example, we prove reduction in the within-class variability of the optimized features compared to the predefined input features (via analyzing gradient flow on the "central-path" with minimal assumptions), analyze the minimizers in the near-collapse regime, and provide insights on the effect of regularization hyperparameters on the closeness to collapse. We support our theory with experiments in practical deep learning settings.
Language Models Are Greedy Reasoners: A Systematic Formal Analysis of Chain-of-Thought
Large language models (LLMs) have shown remarkable reasoning capabilities given chain-of-thought prompts (examples with intermediate reasoning steps). Existing benchmarks measure reasoning ability indirectly, by evaluating accuracy on downstream tasks such as mathematical reasoning. However, it is unclear how these models obtain the answers and whether they rely on simple heuristics rather than the generated chain-of-thought. To enable systematic exploration of the reasoning ability of LLMs, we present a new synthetic question-answering dataset called PrOntoQA, where each example is generated from a synthetic world model represented in first-order logic. This allows us to parse the generated chain-of-thought into symbolic proofs for formal analysis. Our analysis on InstructGPT and GPT-3 shows that LLMs are quite capable of making correct individual deduction steps, and so are generally capable of reasoning, even in fictional contexts. However, they have difficulty with proof planning: When multiple valid deduction steps are available, they are not able to systematically explore the different options.
Counterfactual Analysis in Dynamic Latent State Models
We provide an optimization-based framework to perform counterfactual analysis in a dynamic model with hidden states. Our framework is grounded in the ``abduction, action, and prediction'' approach to answer counterfactual queries and handles two key challenges where (1) the states are hidden and (2) the model is dynamic. Recognizing the lack of knowledge on the underlying causal mechanism and the possibility of infinitely many such mechanisms, we optimize over this space and compute upper and lower bounds on the counterfactual quantity of interest. Our work brings together ideas from causality, state-space models, simulation, and optimization, and we apply it on a breast cancer case study. To the best of our knowledge, we are the first to compute lower and upper bounds on a counterfactual query in a dynamic latent-state model.
An Analysis of the Features Considerable for NFT Recommendations
This research explores the methods that NFTs can be recommended to people who interact with NFT-marketplaces to explore NFTs of preference and similarity to what they have been searching for. While exploring past methods that can be adopted for recommendations, the use of NFT traits for recommendations has been explored. The outcome of the research highlights the necessity of using multiple Recommender Systems to present the user with the best possible NFTs when interacting with decentralized systems.
iSEA: An Interactive Pipeline for Semantic Error Analysis of NLP Models
Error analysis in NLP models is essential to successful model development and deployment. One common approach for diagnosing errors is to identify subpopulations in the dataset where the model produces the most errors. However, existing approaches typically define subpopulations based on pre-defined features, which requires users to form hypotheses of errors in advance. To complement these approaches, we propose iSEA, an Interactive Pipeline for Semantic Error Analysis in NLP Models, which automatically discovers semantically-grounded subpopulations with high error rates in the context of a human-in-the-loop interactive system. iSEA enables model developers to learn more about their model errors through discovered subpopulations, validate the sources of errors through interactive analysis on the discovered subpopulations, and test hypotheses about model errors by defining custom subpopulations. The tool supports semantic descriptions of error-prone subpopulations at the token and concept level, as well as pre-defined higher-level features. Through use cases and expert interviews, we demonstrate how iSEA can assist error understanding and analysis.
Hindi/Bengali Sentiment Analysis Using Transfer Learning and Joint Dual Input Learning with Self Attention
Sentiment Analysis typically refers to using natural language processing, text analysis and computational linguistics to extract affect and emotion based information from text data. Our work explores how we can effectively use deep neural networks in transfer learning and joint dual input learning settings to effectively classify sentiments and detect hate speech in Hindi and Bengali data. We start by training Word2Vec word embeddings for Hindi HASOC dataset and Bengali hate speech and then train LSTM and subsequently, employ parameter sharing based transfer learning to Bengali sentiment classifiers by reusing and fine-tuning the trained weights of Hindi classifiers with both classifier being used as baseline in our study. Finally, we use BiLSTM with self attention in joint dual input learning setting where we train a single neural network on Hindi and Bengali dataset simultaneously using their respective embeddings.
Politics, Sentiment and Virality: A Large-Scale Multilingual Twitter Analysis in Greece, Spain and United Kingdom
Social media has become extremely influential when it comes to policy making in modern societies especially in the western world (e.g., 48% of Europeans use social media every day or almost every day). Platforms such as Twitter allow users to follow politicians, thus making citizens more involved in political discussion. In the same vein, politicians use Twitter to express their opinions, debate among others on current topics and promote their political agenda aiming to influence voter behaviour. Previous studies have shown that tweets conveying negative sentiment are likely to be retweeted more frequently. In this paper, we attempt to analyse tweets of politicians from different countries and explore whether their tweets follow the same trend. Utilising state-of-the-art pre-trained language models we performed sentiment analysis on hundreds of thousands of tweets collected from members of parliament of Greece, Spain and United Kingdom, including devolved administrations. We achieved this by systematically exploring and analysing the differences between influential and less popular tweets. Our analysis indicates that politicians' negatively charged tweets spread more widely, especially in more recent times, and highlights interesting trends in the intersection of sentiment and popularity.
NaijaSenti: A Nigerian Twitter Sentiment Corpus for Multilingual Sentiment Analysis
Sentiment analysis is one of the most widely studied applications in NLP, but most work focuses on languages with large amounts of data. We introduce the first large-scale human-annotated Twitter sentiment dataset for the four most widely spoken languages in Nigeria (Hausa, Igbo, Nigerian-Pidgin, and Yor\`ub\'a ) consisting of around 30,000 annotated tweets per language (and 14,000 for Nigerian-Pidgin), including a significant fraction of code-mixed tweets. We propose text collection, filtering, processing and labeling methods that enable us to create datasets for these low-resource languages. We evaluate a rangeof pre-trained models and transfer strategies on the dataset. We find that language-specific models and language-adaptivefine-tuning generally perform best. We release the datasets, trained models, sentiment lexicons, and code to incentivizeresearch on sentiment analysis in under-represented languages.
What's in the Box? A Preliminary Analysis of Undesirable Content in the Common Crawl Corpus
Whereas much of the success of the current generation of neural language models has been driven by increasingly large training corpora, relatively little research has been dedicated to analyzing these massive sources of textual data. In this exploratory analysis, we delve deeper into the Common Crawl, a colossal web corpus that is extensively used for training language models. We find that it contains a significant amount of undesirable content, including hate speech and sexually explicit content, even after filtering procedures. We discuss the potential impacts of this content on language models and conclude with future research directions and a more mindful approach to corpus collection and analysis.
An analysis of full-size Russian complexly NER labelled corpus of Internet user reviews on the drugs based on deep learning and language neural nets
We present the full-size Russian complexly NER-labeled corpus of Internet user reviews, along with an evaluation of accuracy levels reached on this corpus by a set of advanced deep learning neural networks to extract the pharmacologically meaningful entities from Russian texts. The corpus annotation includes mentions of the following entities: Medication (33005 mentions), Adverse Drug Reaction (1778), Disease (17403), and Note (4490). Two of them - Medication and Disease - comprise a set of attributes. A part of the corpus has the coreference annotation with 1560 coreference chains in 300 documents. Special multi-label model based on a language model and the set of features is developed, appropriate for presented corpus labeling. The influence of the choice of different modifications of the models: word vector representations, types of language models pre-trained for Russian, text normalization styles, and other preliminary processing are analyzed. The sufficient size of our corpus allows to study the effects of particularities of corpus labeling and balancing entities in the corpus. As a result, the state of the art for the pharmacological entity extraction problem for Russian is established on a full-size labeled corpus. In case of the adverse drug reaction (ADR) recognition, it is 61.1 by the F1-exact metric that, as our analysis shows, is on par with the accuracy level for other language corpora with similar characteristics and the ADR representativnes. The evaluated baseline precision of coreference relation extraction on the corpus is 71, that is higher the results reached on other Russian corpora.
L3CubeMahaSent: A Marathi Tweet-based Sentiment Analysis Dataset
Sentiment analysis is one of the most fundamental tasks in Natural Language Processing. Popular languages like English, Arabic, Russian, Mandarin, and also Indian languages such as Hindi, Bengali, Tamil have seen a significant amount of work in this area. However, the Marathi language which is the third most popular language in India still lags behind due to the absence of proper datasets. In this paper, we present the first major publicly available Marathi Sentiment Analysis Dataset - L3CubeMahaSent. It is curated using tweets extracted from various Maharashtrian personalities' Twitter accounts. Our dataset consists of ~16,000 distinct tweets classified in three broad classes viz. positive, negative, and neutral. We also present the guidelines using which we annotated the tweets. Finally, we present the statistics of our dataset and baseline classification results using CNN, LSTM, ULMFiT, and BERT-based deep learning models.
D2A: A Dataset Built for AI-Based Vulnerability Detection Methods Using Differential Analysis
Static analysis tools are widely used for vulnerability detection as they understand programs with complex behavior and millions of lines of code. Despite their popularity, static analysis tools are known to generate an excess of false positives. The recent ability of Machine Learning models to understand programming languages opens new possibilities when applied to static analysis. However, existing datasets to train models for vulnerability identification suffer from multiple limitations such as limited bug context, limited size, and synthetic and unrealistic source code. We propose D2A, a differential analysis based approach to label issues reported by static analysis tools. The D2A dataset is built by analyzing version pairs from multiple open source projects. From each project, we select bug fixing commits and we run static analysis on the versions before and after such commits. If some issues detected in a before-commit version disappear in the corresponding after-commit version, they are very likely to be real bugs that got fixed by the commit. We use D2A to generate a large labeled dataset to train models for vulnerability identification. We show that the dataset can be used to build a classifier to identify possible false alarms among the issues reported by static analysis, hence helping developers prioritize and investigate potential true positives first.
Bias Out-of-the-Box: An Empirical Analysis of Intersectional Occupational Biases in Popular Generative Language Models
The capabilities of natural language models trained on large-scale data have increased immensely over the past few years. Open source libraries such as HuggingFace have made these models easily available and accessible. While prior research has identified biases in large language models, this paper considers biases contained in the most popular versions of these models when applied `out-of-the-box' for downstream tasks. We focus on generative language models as they are well-suited for extracting biases inherited from training data. Specifically, we conduct an in-depth analysis of GPT-2, which is the most downloaded text generation model on HuggingFace, with over half a million downloads per month. We assess biases related to occupational associations for different protected categories by intersecting gender with religion, sexuality, ethnicity, political affiliation, and continental name origin. Using a template-based data collection pipeline, we collect 396K sentence completions made by GPT-2 and find: (i) The machine-predicted jobs are less diverse and more stereotypical for women than for men, especially for intersections; (ii) Intersectional interactions are highly relevant for occupational associations, which we quantify by fitting 262 logistic models; (iii) For most occupations, GPT-2 reflects the skewed gender and ethnicity distribution found in US Labor Bureau data, and even pulls the societally-skewed distribution towards gender parity in cases where its predictions deviate from real labor market observations. This raises the normative question of what language models should learn - whether they should reflect or correct for existing inequalities.
A Theoretical Analysis of Catastrophic Forgetting through the NTK Overlap Matrix
Continual learning (CL) is a setting in which an agent has to learn from an incoming stream of data during its entire lifetime. Although major advances have been made in the field, one recurring problem which remains unsolved is that of Catastrophic Forgetting (CF). While the issue has been extensively studied empirically, little attention has been paid from a theoretical angle. In this paper, we show that the impact of CF increases as two tasks increasingly align. We introduce a measure of task similarity called the NTK overlap matrix which is at the core of CF. We analyze common projected gradient algorithms and demonstrate how they mitigate forgetting. Then, we propose a variant of Orthogonal Gradient Descent (OGD) which leverages structure of the data through Principal Component Analysis (PCA). Experiments support our theoretical findings and show how our method can help reduce CF on classical CL datasets.
How to Train Your Super-Net: An Analysis of Training Heuristics in Weight-Sharing NAS
Weight sharing promises to make neural architecture search (NAS) tractable even on commodity hardware. Existing methods in this space rely on a diverse set of heuristics to design and train the shared-weight backbone network, a.k.a. the super-net. Since heuristics and hyperparameters substantially vary across different methods, a fair comparison between them can only be achieved by systematically analyzing the influence of these factors. In this paper, we therefore provide a systematic evaluation of the heuristics and hyperparameters that are frequently employed by weight-sharing NAS algorithms. Our analysis uncovers that some commonly-used heuristics for super-net training negatively impact the correlation between super-net and stand-alone performance, and evidences the strong influence of certain hyperparameters and architectural choices. Our code and experiments set a strong and reproducible baseline that future works can build on.
ArSentD-LEV: A Multi-Topic Corpus for Target-based Sentiment Analysis in Arabic Levantine Tweets
Sentiment analysis is a highly subjective and challenging task. Its complexity further increases when applied to the Arabic language, mainly because of the large variety of dialects that are unstandardized and widely used in the Web, especially in social media. While many datasets have been released to train sentiment classifiers in Arabic, most of these datasets contain shallow annotation, only marking the sentiment of the text unit, as a word, a sentence or a document. In this paper, we present the Arabic Sentiment Twitter Dataset for the Levantine dialect (ArSenTD-LEV). Based on findings from analyzing tweets from the Levant region, we created a dataset of 4,000 tweets with the following annotations: the overall sentiment of the tweet, the target to which the sentiment was expressed, how the sentiment was expressed, and the topic of the tweet. Results confirm the importance of these annotations at improving the performance of a baseline sentiment classifier. They also confirm the gap of training in a certain domain, and testing in another domain.
A Theoretical Analysis of Deep Q-Learning
Despite the great empirical success of deep reinforcement learning, its theoretical foundation is less well understood. In this work, we make the first attempt to theoretically understand the deep Q-network (DQN) algorithm (Mnih et al., 2015) from both algorithmic and statistical perspectives. In specific, we focus on a slight simplification of DQN that fully captures its key features. Under mild assumptions, we establish the algorithmic and statistical rates of convergence for the action-value functions of the iterative policy sequence obtained by DQN. In particular, the statistical error characterizes the bias and variance that arise from approximating the action-value function using deep neural network, while the algorithmic error converges to zero at a geometric rate. As a byproduct, our analysis provides justifications for the techniques of experience replay and target network, which are crucial to the empirical success of DQN. Furthermore, as a simple extension of DQN, we propose the Minimax-DQN algorithm for zero-sum Markov game with two players. Borrowing the analysis of DQN, we also quantify the difference between the policies obtained by Minimax-DQN and the Nash equilibrium of the Markov game in terms of both the algorithmic and statistical rates of convergence.
SentiPers: A Sentiment Analysis Corpus for Persian
Sentiment Analysis (SA) is a major field of study in natural language processing, computational linguistics and information retrieval. Interest in SA has been constantly growing in both academia and industry over the recent years. Moreover, there is an increasing need for generating appropriate resources and datasets in particular for low resource languages including Persian. These datasets play an important role in designing and developing appropriate opinion mining platforms using supervised, semi-supervised or unsupervised methods. In this paper, we outline the entire process of developing a manually annotated sentiment corpus, SentiPers, which covers formal and informal written contemporary Persian. To the best of our knowledge, SentiPers is a unique sentiment corpus with such a rich annotation in three different levels including document-level, sentence-level, and entity/aspect-level for Persian. The corpus contains more than 26000 sentences of users opinions from digital product domain and benefits from special characteristics such as quantifying the positiveness or negativity of an opinion through assigning a number within a specific range to any given sentence. Furthermore, we present statistics on various components of our corpus as well as studying the inter-annotator agreement among the annotators. Finally, some of the challenges that we faced during the annotation process will be discussed as well.
An Empirical Study and Analysis of Generalized Zero-Shot Learning for Object Recognition in the Wild
Zero-shot learning (ZSL) methods have been studied in the unrealistic setting where test data are assumed to come from unseen classes only. In this paper, we advocate studying the problem of generalized zero-shot learning (GZSL) where the test data's class memberships are unconstrained. We show empirically that naively using the classifiers constructed by ZSL approaches does not perform well in the generalized setting. Motivated by this, we propose a simple but effective calibration method that can be used to balance two conflicting forces: recognizing data from seen classes versus those from unseen ones. We develop a performance metric to characterize such a trade-off and examine the utility of this metric in evaluating various ZSL approaches. Our analysis further shows that there is a large gap between the performance of existing approaches and an upper bound established via idealized semantic embeddings, suggesting that improving class semantic embeddings is vital to GZSL.