Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeMergeMix: A Unified Augmentation Paradigm for Visual and Multi-Modal Understanding
Vision-language alignment in multi-modal large language models (MLLMs) typically relies on supervised fine-tuning (SFT) or reinforcement learning (RL). SFT is stable and efficient but requires large-scale human annotations and cannot capture subtle preferences, while RL brings in a reward signal for training, but suffers from overhead and instability. These limitations highlight a trade-off between scalability, robustness, and alignment quality. To address this, we propose MergeMix, a training-time augmentation paradigm that bridges SFT and RL. It first applies an attention-aware image mixing via token merge with more cluster representation and spatial context, and then presents a preference-driven training paradigm for MLLMs by building preference pairs with mixed images and raw images, and optimizing via SimPO loss. As a mixup augmentation, MergeMix enhances attention consistency and efficiency, surpassing other heuristic-based methods in classification. Extensive experiments demonstrate that MergeMix achieves competitive accuracy with improved efficiency, providing a scalable approach to preference alignment in classification and MLLMs.
MixPro: Data Augmentation with MaskMix and Progressive Attention Labeling for Vision Transformer
The recently proposed data augmentation TransMix employs attention labels to help visual transformers (ViT) achieve better robustness and performance. However, TransMix is deficient in two aspects: 1) The image cropping method of TransMix may not be suitable for ViTs. 2) At the early stage of training, the model produces unreliable attention maps. TransMix uses unreliable attention maps to compute mixed attention labels that can affect the model. To address the aforementioned issues, we propose MaskMix and Progressive Attention Labeling (PAL) in image and label space, respectively. In detail, from the perspective of image space, we design MaskMix, which mixes two images based on a patch-like grid mask. In particular, the size of each mask patch is adjustable and is a multiple of the image patch size, which ensures each image patch comes from only one image and contains more global contents. From the perspective of label space, we design PAL, which utilizes a progressive factor to dynamically re-weight the attention weights of the mixed attention label. Finally, we combine MaskMix and Progressive Attention Labeling as our new data augmentation method, named MixPro. The experimental results show that our method can improve various ViT-based models at scales on ImageNet classification (73.8\% top-1 accuracy based on DeiT-T for 300 epochs). After being pre-trained with MixPro on ImageNet, the ViT-based models also demonstrate better transferability to semantic segmentation, object detection, and instance segmentation. Furthermore, compared to TransMix, MixPro also shows stronger robustness on several benchmarks. The code is available at https://github.com/fistyee/MixPro.
Attention as a Guide for Simultaneous Speech Translation
The study of the attention mechanism has sparked interest in many fields, such as language modeling and machine translation. Although its patterns have been exploited to perform different tasks, from neural network understanding to textual alignment, no previous work has analysed the encoder-decoder attention behavior in speech translation (ST) nor used it to improve ST on a specific task. In this paper, we fill this gap by proposing an attention-based policy (EDAtt) for simultaneous ST (SimulST) that is motivated by an analysis of the existing attention relations between audio input and textual output. Its goal is to leverage the encoder-decoder attention scores to guide inference in real time. Results on en->{de, es} show that the EDAtt policy achieves overall better results compared to the SimulST state of the art, especially in terms of computational-aware latency.
TriangleMix: A Lossless and Efficient Attention Pattern for Long Context Prefilling
Large Language Models (LLMs) rely on attention mechanisms whose time complexity grows quadratically with input sequence length, creating significant computational bottlenecks during the prefilling stage. Existing static sparse attention methods typically degrade accuracy, while dynamic sparsity methods introduce additional computational overhead due to runtime sparse index estimation. To address these limitations, we propose TriangleMix, a novel training-free static attention pattern. TriangleMix employs dense attention in shallow layers and switches to a triangle-shaped sparse pattern in deeper layers. Extensive experiments demonstrate that TriangleMix reduces attention overhead by 3.7x to 15.3x in deep layers, and decreases overall Time-to-First-Token (TTFT) by 12% to 32% for sequence lengths ranging from 32K to 128K, without sacrificing model accuracy. Moreover, TriangleMix can be seamlessly integrated with dynamic sparsity methods to achieve further speedup, e.g. accelerating MInference by 19% at 128K, highlighting its potential to enhance LLM inference efficiency.
All-In-One Metrical And Functional Structure Analysis With Neighborhood Attentions on Demixed Audio
Music is characterized by complex hierarchical structures. Developing a comprehensive model to capture these structures has been a significant challenge in the field of Music Information Retrieval (MIR). Prior research has mainly focused on addressing individual tasks for specific hierarchical levels, rather than providing a unified approach. In this paper, we introduce a versatile, all-in-one model that jointly performs beat and downbeat tracking as well as functional structure segmentation and labeling. The model leverages source-separated spectrograms as inputs and employs dilated neighborhood attentions to capture temporal long-term dependencies, along with non-dilated attentions for local instrumental dependencies. Consequently, the proposed model achieves state-of-the-art performance in all four tasks on the Harmonix Set while maintaining a relatively lower number of parameters compared to recent state-of-the-art models. Furthermore, our ablation study demonstrates that the concurrent learning of beats, downbeats, and segments can lead to enhanced performance, with each task mutually benefiting from the others.
Joint Music and Language Attention Models for Zero-shot Music Tagging
Music tagging is a task to predict the tags of music recordings. However, previous music tagging research primarily focuses on close-set music tagging tasks which can not be generalized to new tags. In this work, we propose a zero-shot music tagging system modeled by a joint music and language attention (JMLA) model to address the open-set music tagging problem. The JMLA model consists of an audio encoder modeled by a pretrained masked autoencoder and a decoder modeled by a Falcon7B. We introduce preceiver resampler to convert arbitrary length audio into fixed length embeddings. We introduce dense attention connections between encoder and decoder layers to improve the information flow between the encoder and decoder layers. We collect a large-scale music and description dataset from the internet. We propose to use ChatGPT to convert the raw descriptions into formalized and diverse descriptions to train the JMLA models. Our proposed JMLA system achieves a zero-shot audio tagging accuracy of 64.82% on the GTZAN dataset, outperforming previous zero-shot systems and achieves comparable results to previous systems on the FMA and the MagnaTagATune datasets.
MoH: Multi-Head Attention as Mixture-of-Head Attention
In this work, we upgrade the multi-head attention mechanism, the core of the Transformer model, to improve efficiency while maintaining or surpassing the previous accuracy level. We show that multi-head attention can be expressed in the summation form. Drawing on the insight that not all attention heads hold equal significance, we propose Mixture-of-Head attention (MoH), a new architecture that treats attention heads as experts in the Mixture-of-Experts (MoE) mechanism. MoH has two significant advantages: First, MoH enables each token to select the appropriate attention heads, enhancing inference efficiency without compromising accuracy or increasing the number of parameters. Second, MoH replaces the standard summation in multi-head attention with a weighted summation, introducing flexibility to the attention mechanism and unlocking extra performance potential. Extensive experiments on ViT, DiT, and LLMs demonstrate that MoH outperforms multi-head attention by using only 50%-90% of the attention heads. Moreover, we demonstrate that pre-trained multi-head attention models, such as LLaMA3-8B, can be further continue-tuned into our MoH models. Notably, MoH-LLaMA3-8B achieves an average accuracy of 64.0% across 14 benchmarks, outperforming LLaMA3-8B by 2.4% by utilizing only 75% of the attention heads. We believe the proposed MoH is a promising alternative to multi-head attention and provides a strong foundation for developing advanced and efficient attention-based models.
MODA: MOdular Duplex Attention for Multimodal Perception, Cognition, and Emotion Understanding
Multimodal large language models (MLLMs) recently showed strong capacity in integrating data among multiple modalities, empowered by a generalizable attention architecture. Advanced methods predominantly focus on language-centric tuning while less exploring multimodal tokens mixed through attention, posing challenges in high-level tasks that require fine-grained cognition and emotion understanding. In this work, we identify the attention deficit disorder problem in multimodal learning, caused by inconsistent cross-modal attention and layer-by-layer decayed attention activation. To address this, we propose a novel attention mechanism, termed MOdular Duplex Attention (MODA), simultaneously conducting the inner-modal refinement and inter-modal interaction. MODA employs a correct-after-align strategy to effectively decouple modality alignment from cross-layer token mixing. In the alignment phase, tokens are mapped to duplex modality spaces based on the basis vectors, enabling the interaction between visual and language modality. Further, the correctness of attention scores is ensured through adaptive masked attention, which enhances the model's flexibility by allowing customizable masking patterns for different modalities. Extensive experiments on 21 benchmark datasets verify the effectiveness of MODA in perception, cognition, and emotion tasks. Source code and demo are available in https://zzcheng.top/MODA.
YourMT3+: Multi-instrument Music Transcription with Enhanced Transformer Architectures and Cross-dataset Stem Augmentation
Multi-instrument music transcription aims to convert polyphonic music recordings into musical scores assigned to each instrument. This task is challenging for modeling as it requires simultaneously identifying multiple instruments and transcribing their pitch and precise timing, and the lack of fully annotated data adds to the training difficulties. This paper introduces YourMT3+, a suite of models for enhanced multi-instrument music transcription based on the recent language token decoding approach of MT3. We enhance its encoder by adopting a hierarchical attention transformer in the time-frequency domain and integrating a mixture of experts. To address data limitations, we introduce a new multi-channel decoding method for training with incomplete annotations and propose intra- and cross-stem augmentation for dataset mixing. Our experiments demonstrate direct vocal transcription capabilities, eliminating the need for voice separation pre-processors. Benchmarks across ten public datasets show our models' competitiveness with, or superiority to, existing transcription models. Further testing on pop music recordings highlights the limitations of current models. Fully reproducible code and datasets are available with demos at https://github.com/mimbres/YourMT3.
ControlMLLM: Training-Free Visual Prompt Learning for Multimodal Large Language Models
In this work, we propose a training-free method to inject visual prompts into Multimodal Large Language Models (MLLMs) through test-time optimization of a learnable latent variable. We observe that attention, as the core module of MLLMs, connects text prompt tokens and visual tokens, ultimately determining the final results. Our approach involves adjusting visual tokens from the MLP output at test time, controlling the attention response to ensure text prompt tokens attend to visual tokens in referring regions. We optimize a learnable latent variable based on an energy function, enhancing the strength of referring regions in the attention map. This enables detailed region description and reasoning without the need for substantial training costs or model retraining. Our method offers a promising direction for integrating referring abilities into MLLMs, and supports referring with box, mask, scribble and point. The results demonstrate that our method exhibits out-of-domain generalization and interpretability.
Self-Attention for Audio Super-Resolution
Convolutions operate only locally, thus failing to model global interactions. Self-attention is, however, able to learn representations that capture long-range dependencies in sequences. We propose a network architecture for audio super-resolution that combines convolution and self-attention. Attention-based Feature-Wise Linear Modulation (AFiLM) uses self-attention mechanism instead of recurrent neural networks to modulate the activations of the convolutional model. Extensive experiments show that our model outperforms existing approaches on standard benchmarks. Moreover, it allows for more parallelization resulting in significantly faster training.
MMM : Exploring Conditional Multi-Track Music Generation with the Transformer
We propose the Multi-Track Music Machine (MMM), a generative system based on the Transformer architecture that is capable of generating multi-track music. In contrast to previous work, which represents musical material as a single time-ordered sequence, where the musical events corresponding to different tracks are interleaved, we create a time-ordered sequence of musical events for each track and concatenate several tracks into a single sequence. This takes advantage of the Transformer's attention-mechanism, which can adeptly handle long-term dependencies. We explore how various representations can offer the user a high degree of control at generation time, providing an interactive demo that accommodates track-level and bar-level inpainting, and offers control over track instrumentation and note density.
Revisiting the Onsets and Frames Model with Additive Attention
Recent advances in automatic music transcription (AMT) have achieved highly accurate polyphonic piano transcription results by incorporating onset and offset detection. The existing literature, however, focuses mainly on the leverage of deep and complex models to achieve state-of-the-art (SOTA) accuracy, without understanding model behaviour. In this paper, we conduct a comprehensive examination of the Onsets-and-Frames AMT model, and pinpoint the essential components contributing to a strong AMT performance. This is achieved through exploitation of a modified additive attention mechanism. The experimental results suggest that the attention mechanism beyond a moderate temporal context does not benefit the model, and that rule-based post-processing is largely responsible for the SOTA performance. We also demonstrate that the onsets are the most significant attentive feature regardless of model complexity. The findings encourage AMT research to weigh more on both a robust onset detector and an effective post-processor.
An Attentive Survey of Attention Models
Attention Model has now become an important concept in neural networks that has been researched within diverse application domains. This survey provides a structured and comprehensive overview of the developments in modeling attention. In particular, we propose a taxonomy which groups existing techniques into coherent categories. We review salient neural architectures in which attention has been incorporated, and discuss applications in which modeling attention has shown a significant impact. We also describe how attention has been used to improve the interpretability of neural networks. Finally, we discuss some future research directions in attention. We hope this survey will provide a succinct introduction to attention models and guide practitioners while developing approaches for their applications.
Bidirectional Attention Flow for Machine Comprehension
Machine comprehension (MC), answering a query about a given context paragraph, requires modeling complex interactions between the context and the query. Recently, attention mechanisms have been successfully extended to MC. Typically these methods use attention to focus on a small portion of the context and summarize it with a fixed-size vector, couple attentions temporally, and/or often form a uni-directional attention. In this paper we introduce the Bi-Directional Attention Flow (BIDAF) network, a multi-stage hierarchical process that represents the context at different levels of granularity and uses bi-directional attention flow mechanism to obtain a query-aware context representation without early summarization. Our experimental evaluations show that our model achieves the state-of-the-art results in Stanford Question Answering Dataset (SQuAD) and CNN/DailyMail cloze test.
Multi-Token Attention
Soft attention is a critical mechanism powering LLMs to locate relevant parts within a given context. However, individual attention weights are determined by the similarity of only a single query and key token vector. This "single token attention" bottlenecks the amount of information used in distinguishing a relevant part from the rest of the context. To address this issue, we propose a new attention method, Multi-Token Attention (MTA), which allows LLMs to condition their attention weights on multiple query and key vectors simultaneously. This is achieved by applying convolution operations over queries, keys and heads, allowing nearby queries and keys to affect each other's attention weights for more precise attention. As a result, our method can locate relevant context using richer, more nuanced information that can exceed a single vector's capacity. Through extensive evaluations, we demonstrate that MTA achieves enhanced performance on a range of popular benchmarks. Notably, it outperforms Transformer baseline models on standard language modeling tasks, and on tasks that require searching for information within long contexts, where our method's ability to leverage richer information proves particularly beneficial.
When Tokens Talk Too Much: A Survey of Multimodal Long-Context Token Compression across Images, Videos, and Audios
Multimodal large language models (MLLMs) have made remarkable strides, largely driven by their ability to process increasingly long and complex contexts, such as high-resolution images, extended video sequences, and lengthy audio input. While this ability significantly enhances MLLM capabilities, it introduces substantial computational challenges, primarily due to the quadratic complexity of self-attention mechanisms with numerous input tokens. To mitigate these bottlenecks, token compression has emerged as an auspicious and critical approach, efficiently reducing the number of tokens during both training and inference. In this paper, we present the first systematic survey and synthesis of the burgeoning field of multimodal long context token compression. Recognizing that effective compression strategies are deeply tied to the unique characteristics and redundancies of each modality, we categorize existing approaches by their primary data focus, enabling researchers to quickly access and learn methods tailored to their specific area of interest: (1) image-centric compression, which addresses spatial redundancy in visual data; (2) video-centric compression, which tackles spatio-temporal redundancy in dynamic sequences; and (3) audio-centric compression, which handles temporal and spectral redundancy in acoustic signals. Beyond this modality-driven categorization, we further dissect methods based on their underlying mechanisms, including transformation-based, similarity-based, attention-based, and query-based approaches. By providing a comprehensive and structured overview, this survey aims to consolidate current progress, identify key challenges, and inspire future research directions in this rapidly evolving domain. We also maintain a public repository to continuously track and update the latest advances in this promising area.
SMMix: Self-Motivated Image Mixing for Vision Transformers
CutMix is a vital augmentation strategy that determines the performance and generalization ability of vision transformers (ViTs). However, the inconsistency between the mixed images and the corresponding labels harms its efficacy. Existing CutMix variants tackle this problem by generating more consistent mixed images or more precise mixed labels, but inevitably introduce heavy training overhead or require extra information, undermining ease of use. To this end, we propose an novel and effective Self-Motivated image Mixing method (SMMix), which motivates both image and label enhancement by the model under training itself. Specifically, we propose a max-min attention region mixing approach that enriches the attention-focused objects in the mixed images. Then, we introduce a fine-grained label assignment technique that co-trains the output tokens of mixed images with fine-grained supervision. Moreover, we devise a novel feature consistency constraint to align features from mixed and unmixed images. Due to the subtle designs of the self-motivated paradigm, our SMMix is significant in its smaller training overhead and better performance than other CutMix variants. In particular, SMMix improves the accuracy of DeiT-T/S/B, CaiT-XXS-24/36, and PVT-T/S/M/L by more than +1% on ImageNet-1k. The generalization capability of our method is also demonstrated on downstream tasks and out-of-distribution datasets. Our project is anonymously available at https://github.com/ChenMnZ/SMMix.
Multimodal Attention Merging for Improved Speech Recognition and Audio Event Classification
Training large foundation models using self-supervised objectives on unlabeled data, followed by fine-tuning on downstream tasks, has emerged as a standard procedure. Unfortunately, the efficacy of this approach is often constrained by both limited fine-tuning compute and scarcity in labeled downstream data. We introduce Multimodal Attention Merging (MAM), an attempt that facilitates direct knowledge transfer from attention matrices of models rooted in high resource modalities, text and images, to those in resource-constrained domains, speech and audio, employing a zero-shot paradigm. MAM reduces the relative Word Error Rate (WER) of an Automatic Speech Recognition (ASR) model by up to 6.70%, and relative classification error of an Audio Event Classification (AEC) model by 10.63%. In cases where some data/compute is available, we present Learnable-MAM, a data-driven approach to merging attention matrices, resulting in a further 2.90% relative reduction in WER for ASR and 18.42% relative reduction in AEC compared to fine-tuning.
Video Background Music Generation with Controllable Music Transformer
In this work, we address the task of video background music generation. Some previous works achieve effective music generation but are unable to generate melodious music tailored to a particular video, and none of them considers the video-music rhythmic consistency. To generate the background music that matches the given video, we first establish the rhythmic relations between video and background music. In particular, we connect timing, motion speed, and motion saliency from video with beat, simu-note density, and simu-note strength from music, respectively. We then propose CMT, a Controllable Music Transformer that enables local control of the aforementioned rhythmic features and global control of the music genre and instruments. Objective and subjective evaluations show that the generated background music has achieved satisfactory compatibility with the input videos, and at the same time, impressive music quality. Code and models are available at https://github.com/wzk1015/video-bgm-generation.
MetaMixer Is All You Need
Transformer, composed of self-attention and Feed-Forward Network, has revolutionized the landscape of network design across various vision tasks. FFN is a versatile operator seamlessly integrated into nearly all AI models to effectively harness rich representations. Recent works also show that FFN functions like key-value memories. Thus, akin to the query-key-value mechanism within self-attention, FFN can be viewed as a memory network, where the input serves as query and the two projection weights operate as keys and values, respectively. We hypothesize that the importance lies in query-key-value framework itself rather than in self-attention. To verify this, we propose converting self-attention into a more FFN-like efficient token mixer with only convolutions while retaining query-key-value framework, namely FFNification. Specifically, FFNification replaces query-key and attention coefficient-value interactions with large kernel convolutions and adopts GELU activation function instead of softmax. The derived token mixer, FFNified attention, serves as key-value memories for detecting locally distributed spatial patterns, and operates in the opposite dimension to the ConvNeXt block within each corresponding sub-operation of the query-key-value framework. Building upon the above two modules, we present a family of Fast-Forward Networks. Our FFNet achieves remarkable performance improvements over previous state-of-the-art methods across a wide range of tasks. The strong and general performance of our proposed method validates our hypothesis and leads us to introduce MetaMixer, a general mixer architecture that does not specify sub-operations within the query-key-value framework. We show that using only simple operations like convolution and GELU in the MetaMixer can achieve superior performance.
Efficient Attention: Attention with Linear Complexities
Dot-product attention has wide applications in computer vision and natural language processing. However, its memory and computational costs grow quadratically with the input size. Such growth prohibits its application on high-resolution inputs. To remedy this drawback, this paper proposes a novel efficient attention mechanism equivalent to dot-product attention but with substantially less memory and computational costs. Its resource efficiency allows more widespread and flexible integration of attention modules into a network, which leads to better accuracies. Empirical evaluations demonstrated the effectiveness of its advantages. Efficient attention modules brought significant performance boosts to object detectors and instance segmenters on MS-COCO 2017. Further, the resource efficiency democratizes attention to complex models, where high costs prohibit the use of dot-product attention. As an exemplar, a model with efficient attention achieved state-of-the-art accuracies for stereo depth estimation on the Scene Flow dataset. Code is available at https://github.com/cmsflash/efficient-attention.
SongMASS: Automatic Song Writing with Pre-training and Alignment Constraint
Automatic song writing aims to compose a song (lyric and/or melody) by machine, which is an interesting topic in both academia and industry. In automatic song writing, lyric-to-melody generation and melody-to-lyric generation are two important tasks, both of which usually suffer from the following challenges: 1) the paired lyric and melody data are limited, which affects the generation quality of the two tasks, considering a lot of paired training data are needed due to the weak correlation between lyric and melody; 2) Strict alignments are required between lyric and melody, which relies on specific alignment modeling. In this paper, we propose SongMASS to address the above challenges, which leverages masked sequence to sequence (MASS) pre-training and attention based alignment modeling for lyric-to-melody and melody-to-lyric generation. Specifically, 1) we extend the original sentence-level MASS pre-training to song level to better capture long contextual information in music, and use a separate encoder and decoder for each modality (lyric or melody); 2) we leverage sentence-level attention mask and token-level attention constraint during training to enhance the alignment between lyric and melody. During inference, we use a dynamic programming strategy to obtain the alignment between each word/syllable in lyric and note in melody. We pre-train SongMASS on unpaired lyric and melody datasets, and both objective and subjective evaluations demonstrate that SongMASS generates lyric and melody with significantly better quality than the baseline method without pre-training or alignment constraint.
LongVQ: Long Sequence Modeling with Vector Quantization on Structured Memory
Transformer models have been successful in various sequence processing tasks, but the self-attention mechanism's computational cost limits its practicality for long sequences. Although there are existing attention variants that improve computational efficiency, they have a limited ability to abstract global information effectively based on their hand-crafted mixing strategies. On the other hand, state-space models (SSMs) are tailored for long sequences but cannot capture complicated local information. Therefore, the combination of them as a unified token mixer is a trend in recent long-sequence models. However, the linearized attention degrades performance significantly even when equipped with SSMs. To address the issue, we propose a new method called LongVQ. LongVQ uses the vector quantization (VQ) technique to compress the global abstraction as a length-fixed codebook, enabling the linear-time computation of the attention matrix. This technique effectively maintains dynamic global and local patterns, which helps to complement the lack of long-range dependency issues. Our experiments on the Long Range Arena benchmark, autoregressive language modeling, and image and speech classification demonstrate the effectiveness of LongVQ. Our model achieves significant improvements over other sequence models, including variants of Transformers, Convolutions, and recent State Space Models.
MixFormer: End-to-End Tracking with Iterative Mixed Attention
Tracking often uses a multi-stage pipeline of feature extraction, target information integration, and bounding box estimation. To simplify this pipeline and unify the process of feature extraction and target information integration, we present a compact tracking framework, termed as MixFormer, built upon transformers. Our core design is to utilize the flexibility of attention operations, and propose a Mixed Attention Module (MAM) for simultaneous feature extraction and target information integration. This synchronous modeling scheme allows to extract target-specific discriminative features and perform extensive communication between target and search area. Based on MAM, we build our MixFormer tracking framework simply by stacking multiple MAMs with progressive patch embedding and placing a localization head on top. In addition, to handle multiple target templates during online tracking, we devise an asymmetric attention scheme in MAM to reduce computational cost, and propose an effective score prediction module to select high-quality templates. Our MixFormer sets a new state-of-the-art performance on five tracking benchmarks, including LaSOT, TrackingNet, VOT2020, GOT-10k, and UAV123. In particular, our MixFormer-L achieves NP score of 79.9% on LaSOT, 88.9% on TrackingNet and EAO of 0.555 on VOT2020. We also perform in-depth ablation studies to demonstrate the effectiveness of simultaneous feature extraction and information integration. Code and trained models are publicly available at https://github.com/MCG-NJU/MixFormer.
EE-MLLM: A Data-Efficient and Compute-Efficient Multimodal Large Language Model
In the realm of multimodal research, numerous studies leverage substantial image-text pairs to conduct modal alignment learning, transforming Large Language Models (LLMs) into Multimodal LLMs and excelling in a variety of visual-language tasks. The prevailing methodologies primarily fall into two categories: self-attention-based and cross-attention-based methods. While self-attention-based methods offer superior data efficiency due to their simple MLP architecture, they often suffer from lower computational efficiency due to concatenating visual and textual tokens as input for LLM. Conversely, cross-attention-based methods, although less data-efficient due to additional learnable parameters, exhibit higher computational efficiency by avoiding long sequence input for LLM. To address these trade-offs, we introduce the Data-Efficient and Compute-Efficient Multimodal Large Language Model (EE-MLLM). Without introducing additional modules or learnable parameters, EE-MLLM achieves both data and compute efficiency. Specifically, we modify the original self-attention mechanism in MLLM to a composite attention mechanism. This mechanism has two key characteristics: 1) Eliminating the computational overhead of self-attention within visual tokens to achieve compute efficiency, and 2) Reusing the weights on each layer of LLM to facilitate effective modality alignment between vision and language for data efficiency. Experimental results demonstrate the effectiveness of EE-MLLM across a range of benchmarks, including general-purpose datasets like MMBench and SeedBench, as well as fine-grained tasks such as TextVQA and DocVQA.
Attention Strategies for Multi-Source Sequence-to-Sequence Learning
Modeling attention in neural multi-source sequence-to-sequence learning remains a relatively unexplored area, despite its usefulness in tasks that incorporate multiple source languages or modalities. We propose two novel approaches to combine the outputs of attention mechanisms over each source sequence, flat and hierarchical. We compare the proposed methods with existing techniques and present results of systematic evaluation of those methods on the WMT16 Multimodal Translation and Automatic Post-editing tasks. We show that the proposed methods achieve competitive results on both tasks.
Hear The Flow: Optical Flow-Based Self-Supervised Visual Sound Source Localization
Learning to localize the sound source in videos without explicit annotations is a novel area of audio-visual research. Existing work in this area focuses on creating attention maps to capture the correlation between the two modalities to localize the source of the sound. In a video, oftentimes, the objects exhibiting movement are the ones generating the sound. In this work, we capture this characteristic by modeling the optical flow in a video as a prior to better aid in localizing the sound source. We further demonstrate that the addition of flow-based attention substantially improves visual sound source localization. Finally, we benchmark our method on standard sound source localization datasets and achieve state-of-the-art performance on the Soundnet Flickr and VGG Sound Source datasets. Code: https://github.com/denfed/heartheflow.
RCMHA: Relative Convolutional Multi-Head Attention for Natural Language Modelling
The Attention module finds common usage in language modeling, presenting distinct challenges within the broader scope of Natural Language Processing. Multi-Head Attention (MHA) employs an absolute positional encoding, which imposes limitations on token length and entails substantial memory consumption during the processing of embedded inputs. The current remedy proposed by researchers involves the utilization of relative positional encoding, similar to the approach adopted in Transformer-XL or Relative Multi-Head Attention (RMHA), albeit the employed architecture consumes considerable memory resources. To address these challenges, this study endeavors to refine MHA, leveraging relative positional encoding in conjunction with the Depth-Wise Convolutional Layer architecture, which promises heightened accuracy coupled with minimized memory usage. The proposed RCMHA framework entails the modification of two integral components: firstly, the application of the Depth-Wise Convolutional Layer to the input embedding, encompassing Query, Key, and Value parameters; secondly, the incorporation of Relative Positional Encoding into the attention scoring phase, harmoniously integrated with Scaled Dot-Product Attention. Empirical experiments underscore the advantages of RCMHA, wherein it exhibits superior accuracy, boasting a score of 0.572 in comparison to alternative attention modules such as MHA, Multi-DConv-Head Attention (MDHA), and RMHA. Concerning memory utilization, RMHA emerges as the most frugal, demonstrating an average consumption of 2.98 GB, surpassing RMHA which necessitates 3.5 GB.
Audio-Sync Video Generation with Multi-Stream Temporal Control
Audio is inherently temporal and closely synchronized with the visual world, making it a naturally aligned and expressive control signal for controllable video generation (e.g., movies). Beyond control, directly translating audio into video is essential for understanding and visualizing rich audio narratives (e.g., Podcasts or historical recordings). However, existing approaches fall short in generating high-quality videos with precise audio-visual synchronization, especially across diverse and complex audio types. In this work, we introduce MTV, a versatile framework for audio-sync video generation. MTV explicitly separates audios into speech, effects, and music tracks, enabling disentangled control over lip motion, event timing, and visual mood, respectively -- resulting in fine-grained and semantically aligned video generation. To support the framework, we additionally present DEMIX, a dataset comprising high-quality cinematic videos and demixed audio tracks. DEMIX is structured into five overlapped subsets, enabling scalable multi-stage training for diverse generation scenarios. Extensive experiments demonstrate that MTV achieves state-of-the-art performance across six standard metrics spanning video quality, text-video consistency, and audio-video alignment. Project page: https://hjzheng.net/projects/MTV/.
Toward Interpretable Music Tagging with Self-Attention
Self-attention is an attention mechanism that learns a representation by relating different positions in the sequence. The transformer, which is a sequence model solely based on self-attention, and its variants achieved state-of-the-art results in many natural language processing tasks. Since music composes its semantics based on the relations between components in sparse positions, adopting the self-attention mechanism to solve music information retrieval (MIR) problems can be beneficial. Hence, we propose a self-attention based deep sequence model for music tagging. The proposed architecture consists of shallow convolutional layers followed by stacked Transformer encoders. Compared to conventional approaches using fully convolutional or recurrent neural networks, our model is more interpretable while reporting competitive results. We validate the performance of our model with the MagnaTagATune and the Million Song Dataset. In addition, we demonstrate the interpretability of the proposed architecture with a heat map visualization.
Mix and Localize: Localizing Sound Sources in Mixtures
We present a method for simultaneously localizing multiple sound sources within a visual scene. This task requires a model to both group a sound mixture into individual sources, and to associate them with a visual signal. Our method jointly solves both tasks at once, using a formulation inspired by the contrastive random walk of Jabri et al. We create a graph in which images and separated sounds correspond to nodes, and train a random walker to transition between nodes from different modalities with high return probability. The transition probabilities for this walk are determined by an audio-visual similarity metric that is learned by our model. We show through experiments with musical instruments and human speech that our model can successfully localize multiple sounds, outperforming other self-supervised methods. Project site: https://hxixixh.github.io/mix-and-localize
Inference-Friendly Models With MixAttention
The size of the key-value (KV) cache plays a critical role in determining both the maximum context length and the number of concurrent requests supported during inference in modern language models. The KV cache size grows proportionally with the number of attention heads and the tokens processed, leading to increased memory consumption and slower inference for long inputs. In this work, we explore the use of MixAttention, a model architecture modification closely related to a blog published by Character.AI. MixAttention combines sliding window attention, where only a small subset of recent tokens is stored in the KV cache, with KV cache sharing across layers. Our experiments demonstrate that MixAttention significantly reduces memory usage and improves inference speed without sacrificing model performance in both short and long-context tasks. We also explore various configurations of this architecture, identifying those that maintain quality across evaluation metrics while optimizing resource efficiency.
MoA: Mixture of Sparse Attention for Automatic Large Language Model Compression
Sparse attention can effectively mitigate the significant memory and throughput demands of Large Language Models (LLMs) in long contexts. Existing methods typically employ a uniform sparse attention mask, applying the same sparse pattern across different attention heads and input lengths. However, this uniform approach fails to capture the diverse attention patterns inherent in LLMs, ignoring their distinct accuracy-latency trade-offs. To address this challenge, we propose the Mixture of Attention (MoA), which automatically tailors distinct sparse attention configurations to different heads and layers. MoA constructs and navigates a search space of various attention patterns and their scaling rules relative to input sequence lengths. It profiles the model, evaluates potential configurations, and pinpoints the optimal sparse attention compression plan. MoA adapts to varying input sizes, revealing that some attention heads expand their focus to accommodate longer sequences, while other heads consistently concentrate on fixed-length local contexts. Experiments show that MoA increases the effective context length by 3.9times with the same average attention span, boosting retrieval accuracy by 1.5-7.1times over the uniform-attention baseline across Vicuna-7B, Vicuna-13B, and Llama3-8B models. Moreover, MoA narrows the capability gaps between sparse and dense models, reducing the maximum relative performance drop from 9%-36% to within 5% across two long-context understanding benchmarks. MoA achieves a 1.2-1.4times GPU memory reduction and boosts decode throughput by 5.5-6.7 times for 7B and 13B dense models on a single GPU, with minimal impact on performance.
Sounding that Object: Interactive Object-Aware Image to Audio Generation
Generating accurate sounds for complex audio-visual scenes is challenging, especially in the presence of multiple objects and sound sources. In this paper, we propose an {\em interactive object-aware audio generation} model that grounds sound generation in user-selected visual objects within images. Our method integrates object-centric learning into a conditional latent diffusion model, which learns to associate image regions with their corresponding sounds through multi-modal attention. At test time, our model employs image segmentation to allow users to interactively generate sounds at the {\em object} level. We theoretically validate that our attention mechanism functionally approximates test-time segmentation masks, ensuring the generated audio aligns with selected objects. Quantitative and qualitative evaluations show that our model outperforms baselines, achieving better alignment between objects and their associated sounds. Project page: https://tinglok.netlify.app/files/avobject/
Musical Audio Similarity with Self-supervised Convolutional Neural Networks
We have built a music similarity search engine that lets video producers search by listenable music excerpts, as a complement to traditional full-text search. Our system suggests similar sounding track segments in a large music catalog by training a self-supervised convolutional neural network with triplet loss terms and musical transformations. Semi-structured user interviews demonstrate that we can successfully impress professional video producers with the quality of the search experience, and perceived similarities to query tracks averaged 7.8/10 in user testing. We believe this search tool will make for a more natural search experience that is easier to find music to soundtrack videos with.
MoA: Mixture-of-Attention for Subject-Context Disentanglement in Personalized Image Generation
We introduce a new architecture for personalization of text-to-image diffusion models, coined Mixture-of-Attention (MoA). Inspired by the Mixture-of-Experts mechanism utilized in large language models (LLMs), MoA distributes the generation workload between two attention pathways: a personalized branch and a non-personalized prior branch. MoA is designed to retain the original model's prior by fixing its attention layers in the prior branch, while minimally intervening in the generation process with the personalized branch that learns to embed subjects in the layout and context generated by the prior branch. A novel routing mechanism manages the distribution of pixels in each layer across these branches to optimize the blend of personalized and generic content creation. Once trained, MoA facilitates the creation of high-quality, personalized images featuring multiple subjects with compositions and interactions as diverse as those generated by the original model. Crucially, MoA enhances the distinction between the model's pre-existing capability and the newly augmented personalized intervention, thereby offering a more disentangled subject-context control that was previously unattainable. Project page: https://snap-research.github.io/mixture-of-attention
Improving Music Genre Classification from Multi-Modal Properties of Music and Genre Correlations Perspective
Music genre classification has been widely studied in past few years for its various applications in music information retrieval. Previous works tend to perform unsatisfactorily, since those methods only use audio content or jointly use audio content and lyrics content inefficiently. In addition, as genres normally co-occur in a music track, it is desirable to capture and model the genre correlations to improve the performance of multi-label music genre classification. To solve these issues, we present a novel multi-modal method leveraging audio-lyrics contrastive loss and two symmetric cross-modal attention, to align and fuse features from audio and lyrics. Furthermore, based on the nature of the multi-label classification, a genre correlations extraction module is presented to capture and model potential genre correlations. Extensive experiments demonstrate that our proposed method significantly surpasses other multi-label music genre classification methods and achieves state-of-the-art result on Music4All dataset.
Echotune: A Modular Extractor Leveraging the Variable-Length Nature of Speech in ASR Tasks
The Transformer architecture has proven to be highly effective for Automatic Speech Recognition (ASR) tasks, becoming a foundational component for a plethora of research in the domain. Historically, many approaches have leaned on fixed-length attention windows, which becomes problematic for varied speech samples in duration and complexity, leading to data over-smoothing and neglect of essential long-term connectivity. Addressing this limitation, we introduce Echo-MSA, a nimble module equipped with a variable-length attention mechanism that accommodates a range of speech sample complexities and durations. This module offers the flexibility to extract speech features across various granularities, spanning from frames and phonemes to words and discourse. The proposed design captures the variable length feature of speech and addresses the limitations of fixed-length attention. Our evaluation leverages a parallel attention architecture complemented by a dynamic gating mechanism that amalgamates traditional attention with the Echo-MSA module output. Empirical evidence from our study reveals that integrating Echo-MSA into the primary model's training regime significantly enhances the word error rate (WER) performance, all while preserving the intrinsic stability of the original model.
MoBA: Mixture of Block Attention for Long-Context LLMs
Scaling the effective context length is essential for advancing large language models (LLMs) toward artificial general intelligence (AGI). However, the quadratic increase in computational complexity inherent in traditional attention mechanisms presents a prohibitive overhead. Existing approaches either impose strongly biased structures, such as sink or window attention which are task-specific, or radically modify the attention mechanism into linear approximations, whose performance in complex reasoning tasks remains inadequately explored. In this work, we propose a solution that adheres to the ``less structure'' principle, allowing the model to determine where to attend autonomously, rather than introducing predefined biases. We introduce Mixture of Block Attention (MoBA), an innovative approach that applies the principles of Mixture of Experts (MoE) to the attention mechanism. This novel architecture demonstrates superior performance on long-context tasks while offering a key advantage: the ability to seamlessly transition between full and sparse attention, enhancing efficiency without the risk of compromising performance. MoBA has already been deployed to support Kimi's long-context requests and demonstrates significant advancements in efficient attention computation for LLMs. Our code is available at https://github.com/MoonshotAI/MoBA.
A Novel Multimodal Music Genre Classifier using Hierarchical Attention and Convolutional Neural Network
Music genre classification is one of the trending topics in regards to the current Music Information Retrieval (MIR) Research. Since, the dependency of genre is not only limited to the audio profile, we also make use of textual content provided as lyrics of the corresponding song. We implemented a CNN based feature extractor for spectrograms in order to incorporate the acoustic features and a Hierarchical Attention Network based feature extractor for lyrics. We then go on to classify the music track based upon the resulting fused feature vector.
Seeing is Understanding: Unlocking Causal Attention into Modality-Mutual Attention for Multimodal LLMs
Recent Multimodal Large Language Models (MLLMs) have demonstrated significant progress in perceiving and reasoning over multimodal inquiries, ushering in a new research era for foundation models. However, vision-language misalignment in MLLMs has emerged as a critical challenge, where the textual responses generated by these models are not factually aligned with the given text-image inputs. Existing efforts to address vision-language misalignment have focused on developing specialized vision-language connectors or leveraging visual instruction tuning from diverse domains. In this paper, we tackle this issue from a fundamental yet unexplored perspective by revisiting the core architecture of MLLMs. Most MLLMs are typically built on decoder-only LLMs consisting of a causal attention mechanism, which limits the ability of earlier modalities (e.g., images) to incorporate information from later modalities (e.g., text). To address this problem, we propose AKI, a novel MLLM that unlocks causal attention into modality-mutual attention (MMA) to enable image tokens to attend to text tokens. This simple yet effective design allows AKI to achieve superior performance in 12 multimodal understanding benchmarks (+7.2% on average) without introducing additional parameters and increasing training time. Our MMA design is intended to be generic, allowing for application across various modalities, and scalable to accommodate diverse multimodal scenarios. The code is publicly available at https://github.com/sony/aki, and we will release our AKI-4B model to encourage further advancements in MLLMs across various directions.
Attention Entropy is a Key Factor: An Analysis of Parallel Context Encoding with Full-attention-based Pre-trained Language Models
Large language models have shown remarkable performance across a wide range of language tasks, owing to their exceptional capabilities in context modeling. The most commonly used method of context modeling is full self-attention, as seen in standard decoder-only Transformers. Although powerful, this method can be inefficient for long sequences and may overlook inherent input structures. To address these problems, an alternative approach is parallel context encoding, which splits the context into sub-pieces and encodes them parallelly. Because parallel patterns are not encountered during training, naively applying parallel encoding leads to performance degradation. However, the underlying reasons and potential mitigations are unclear. In this work, we provide a detailed analysis of this issue and identify that unusually high attention entropy can be a key factor. Furthermore, we adopt two straightforward methods to reduce attention entropy by incorporating attention sinks and selective mechanisms. Experiments on various tasks reveal that these methods effectively lower irregular attention entropy and narrow performance gaps. We hope this study can illuminate ways to enhance context modeling mechanisms.
Multitrack Music Transformer
Existing approaches for generating multitrack music with transformer models have been limited in terms of the number of instruments, the length of the music segments and slow inference. This is partly due to the memory requirements of the lengthy input sequences necessitated by existing representations. In this work, we propose a new multitrack music representation that allows a diverse set of instruments while keeping a short sequence length. Our proposed Multitrack Music Transformer (MMT) achieves comparable performance with state-of-the-art systems, landing in between two recently proposed models in a subjective listening test, while achieving substantial speedups and memory reductions over both, making the method attractive for real time improvisation or near real time creative applications. Further, we propose a new measure for analyzing musical self-attention and show that the trained model attends more to notes that form a consonant interval with the current note and to notes that are 4N beats away from the current step.
Pervasive Attention: 2D Convolutional Neural Networks for Sequence-to-Sequence Prediction
Current state-of-the-art machine translation systems are based on encoder-decoder architectures, that first encode the input sequence, and then generate an output sequence based on the input encoding. Both are interfaced with an attention mechanism that recombines a fixed encoding of the source tokens based on the decoder state. We propose an alternative approach which instead relies on a single 2D convolutional neural network across both sequences. Each layer of our network re-codes source tokens on the basis of the output sequence produced so far. Attention-like properties are therefore pervasive throughout the network. Our model yields excellent results, outperforming state-of-the-art encoder-decoder systems, while being conceptually simpler and having fewer parameters.
General Purpose Audio Effect Removal
Although the design and application of audio effects is well understood, the inverse problem of removing these effects is significantly more challenging and far less studied. Recently, deep learning has been applied to audio effect removal; however, existing approaches have focused on narrow formulations considering only one effect or source type at a time. In realistic scenarios, multiple effects are applied with varying source content. This motivates a more general task, which we refer to as general purpose audio effect removal. We developed a dataset for this task using five audio effects across four different sources and used it to train and evaluate a set of existing architectures. We found that no single model performed optimally on all effect types and sources. To address this, we introduced RemFX, an approach designed to mirror the compositionality of applied effects. We first trained a set of the best-performing effect-specific removal models and then leveraged an audio effect classification model to dynamically construct a graph of our models at inference. We found our approach to outperform single model baselines, although examples with many effects present remain challenging.
Trainable Dynamic Mask Sparse Attention
In large language models, the demand for modeling long contexts is constantly increasing, but the quadratic complexity of the standard self-attention mechanism often becomes a bottleneck. Although existing sparse attention mechanisms have improved efficiency, they may still encounter issues such as static patterns or information loss. We introduce a trainable dynamic mask sparse attention mechanism, Dynamic Mask Attention, which effectively utilizes content-aware and position-aware sparsity. DMA achieves this through two key innovations: First, it dynamically generates content-aware sparse masks from value representations, enabling the model to identify and focus on critical information adaptively. Second, it implements position-aware sparse attention computation that effectively skips unnecessary calculation regions. This dual-sparsity design allows the model to significantly reduce the computational complexity of important information while retaining complete information, achieving an excellent balance between information fidelity and computational efficiency. We have verified the performance of DMA through comprehensive experiments. Comparative studies show that DMA outperforms multi-head attention, sliding window attention, multi-head latent attention, and native sparse attention in terms of perplexity under Chinchilla Scaling Law settings. Moreover, in challenging multi-query associative recall tasks, DMA also demonstrates superior performance and efficiency compared to these methods. Crucially, in the evaluation of a 1.7B parameter model, DMA significantly outperforms multi-head attention in both standard benchmark performance and the challenging needle-in-a-haystack task. These experimental results highlight its capability to balance model efficiency and long-context modeling ability effectively.
FLUX that Plays Music
This paper explores a simple extension of diffusion-based rectified flow Transformers for text-to-music generation, termed as FluxMusic. Generally, along with design in advanced Fluxhttps://github.com/black-forest-labs/flux model, we transfers it into a latent VAE space of mel-spectrum. It involves first applying a sequence of independent attention to the double text-music stream, followed by a stacked single music stream for denoised patch prediction. We employ multiple pre-trained text encoders to sufficiently capture caption semantic information as well as inference flexibility. In between, coarse textual information, in conjunction with time step embeddings, is utilized in a modulation mechanism, while fine-grained textual details are concatenated with the music patch sequence as inputs. Through an in-depth study, we demonstrate that rectified flow training with an optimized architecture significantly outperforms established diffusion methods for the text-to-music task, as evidenced by various automatic metrics and human preference evaluations. Our experimental data, code, and model weights are made publicly available at: https://github.com/feizc/FluxMusic.
Trends, Applications, and Challenges in Human Attention Modelling
Human attention modelling has proven, in recent years, to be particularly useful not only for understanding the cognitive processes underlying visual exploration, but also for providing support to artificial intelligence models that aim to solve problems in various domains, including image and video processing, vision-and-language applications, and language modelling. This survey offers a reasoned overview of recent efforts to integrate human attention mechanisms into contemporary deep learning models and discusses future research directions and challenges. For a comprehensive overview on the ongoing research refer to our dedicated repository available at https://github.com/aimagelab/awesome-human-visual-attention.
HyperAttention: Long-context Attention in Near-Linear Time
We present an approximate attention mechanism named HyperAttention to address the computational challenges posed by the growing complexity of long contexts used in Large Language Models (LLMs). Recent work suggests that in the worst-case scenario, quadratic time is necessary unless the entries of the attention matrix are bounded or the matrix has low stable rank. We introduce two parameters which measure: (1) the max column norm in the normalized attention matrix, and (2) the ratio of row norms in the unnormalized attention matrix after detecting and removing large entries. We use these fine-grained parameters to capture the hardness of the problem. Despite previous lower bounds, we are able to achieve a linear time sampling algorithm even when the matrix has unbounded entries or a large stable rank, provided the above parameters are small. HyperAttention features a modular design that easily accommodates integration of other fast low-level implementations, particularly FlashAttention. Empirically, employing Locality Sensitive Hashing (LSH) to identify large entries, HyperAttention outperforms existing methods, giving significant speed improvements compared to state-of-the-art solutions like FlashAttention. We validate the empirical performance of HyperAttention on a variety of different long-context length datasets. For example, HyperAttention makes the inference time of ChatGLM2 50\% faster on 32k context length while perplexity increases from 5.6 to 6.3. On larger context length, e.g., 131k, with causal masking, HyperAttention offers 5-fold speedup on a single attention layer.
Draw an Audio: Leveraging Multi-Instruction for Video-to-Audio Synthesis
Foley is a term commonly used in filmmaking, referring to the addition of daily sound effects to silent films or videos to enhance the auditory experience. Video-to-Audio (V2A), as a particular type of automatic foley task, presents inherent challenges related to audio-visual synchronization. These challenges encompass maintaining the content consistency between the input video and the generated audio, as well as the alignment of temporal and loudness properties within the video. To address these issues, we construct a controllable video-to-audio synthesis model, termed Draw an Audio, which supports multiple input instructions through drawn masks and loudness signals. To ensure content consistency between the synthesized audio and target video, we introduce the Mask-Attention Module (MAM), which employs masked video instruction to enable the model to focus on regions of interest. Additionally, we implement the Time-Loudness Module (TLM), which uses an auxiliary loudness signal to ensure the synthesis of sound that aligns with the video in both loudness and temporal dimensions. Furthermore, we have extended a large-scale V2A dataset, named VGGSound-Caption, by annotating caption prompts. Extensive experiments on challenging benchmarks across two large-scale V2A datasets verify Draw an Audio achieves the state-of-the-art. Project page: https://yannqi.github.io/Draw-an-Audio/.
SLAP: Siamese Language-Audio Pretraining Without Negative Samples for Music Understanding
Joint embedding spaces have significantly advanced music understanding and generation by linking text and audio through multimodal contrastive learning. However, these approaches face large memory requirement limitations due to relying on large batch sizes to effectively utilize negative samples. Further, multimodal joint embedding spaces suffer from a modality gap wherein embeddings from different modalities lie in different manifolds of the embedding space. To address these challenges, we propose Siamese Language-Audio Pretraining (SLAP), a novel multimodal pretraining framework that allows learning powerful representations without negative samples. SLAP adapts the Bootstrap Your Own Latent (BYOL) paradigm for multimodal audio-text training, promoting scalability in training multimodal embedding spaces. We illustrate the ability of our model to learn meaningful relationships between music and text -- specifically, we show that SLAP outperforms CLAP on tasks such as text-music retrieval and zero-shot classification. We also observe competitive downstream performance on several MIR tasks, including with larger or supervised models (genre and instrument classification, auto-tagging). Additionally, our approach has attractive properties, such as a quantifiably reduced modality gap and improved robustness to batch size variations on retrieval performance. Finally, its novel formulation unlocks large-scale training on a single GPU through gradient accumulation.
Monotonic segmental attention for automatic speech recognition
We introduce a novel segmental-attention model for automatic speech recognition. We restrict the decoder attention to segments to avoid quadratic runtime of global attention, better generalize to long sequences, and eventually enable streaming. We directly compare global-attention and different segmental-attention modeling variants. We develop and compare two separate time-synchronous decoders, one specifically taking the segmental nature into account, yielding further improvements. Using time-synchronous decoding for segmental models is novel and a step towards streaming applications. Our experiments show the importance of a length model to predict the segment boundaries. The final best segmental-attention model using segmental decoding performs better than global-attention, in contrast to other monotonic attention approaches in the literature. Further, we observe that the segmental model generalizes much better to long sequences of up to several minutes.
Once is Enough: A Light-Weight Cross-Attention for Fast Sentence Pair Modeling
Transformer-based models have achieved great success on sentence pair modeling tasks, such as answer selection and natural language inference (NLI). These models generally perform cross-attention over input pairs, leading to prohibitive computational costs. Recent studies propose dual-encoder and late interaction architectures for faster computation. However, the balance between the expressive of cross-attention and computation speedup still needs better coordinated. To this end, this paper introduces a novel paradigm MixEncoder for efficient sentence pair modeling. MixEncoder involves a light-weight cross-attention mechanism. It conducts query encoding only once while modeling the query-candidate interaction in parallel. Extensive experiments conducted on four tasks demonstrate that our MixEncoder can speed up sentence pairing by over 113x while achieving comparable performance as the more expensive cross-attention models.
Hydra: Bidirectional State Space Models Through Generalized Matrix Mixers
A wide array of sequence models are built on a framework modeled after Transformers, comprising alternating sequence mixer and channel mixer layers. This paper studies a unifying matrix mixer view of sequence mixers that can be conceptualized as a linear map on the input sequence. This framework encompasses a broad range of well-known sequence models, including the self-attention of Transformers as well as recent strong alternatives such as structured state space models (SSMs), and allows understanding downstream characteristics such as efficiency and expressivity through properties of their structured matrix class. We identify a key axis of matrix parameterizations termed sequence alignment, which increases the flexibility and performance of matrix mixers, providing insights into the strong performance of Transformers and recent SSMs such as Mamba. Furthermore, the matrix mixer framework offers a systematic approach to developing sequence mixers with desired properties, allowing us to develop several new sub-quadratic sequence models. In particular, we propose a natural bidirectional extension of the Mamba model (Hydra), parameterized as a quasiseparable matrix mixer, which demonstrates superior performance over other sequence models including Transformers on non-causal tasks. As a drop-in replacement for attention layers, Hydra outperforms BERT by 0.8 points on the GLUE benchmark and ViT by 2% Top-1 accuracy on ImageNet.
CoLLAP: Contrastive Long-form Language-Audio Pretraining with Musical Temporal Structure Augmentation
Modeling temporal characteristics plays a significant role in the representation learning of audio waveform. We propose Contrastive Long-form Language-Audio Pretraining (CoLLAP) to significantly extend the perception window for both the input audio (up to 5 minutes) and the language descriptions (exceeding 250 words), while enabling contrastive learning across modalities and temporal dynamics. Leveraging recent Music-LLMs to generate long-form music captions for full-length songs, augmented with musical temporal structures, we collect 51.3K audio-text pairs derived from the large-scale AudioSet training dataset, where the average audio length reaches 288 seconds. We propose a novel contrastive learning architecture that fuses language representations with structured audio representations by segmenting each song into clips and extracting their embeddings. With an attention mechanism, we capture multimodal temporal correlations, allowing the model to automatically weigh and enhance the final fusion score for improved contrastive alignment. Finally, we develop two variants of the CoLLAP model with different types of backbone language models. Through comprehensive experiments on multiple long-form music-text retrieval datasets, we demonstrate consistent performance improvement in retrieval accuracy compared with baselines. We also show the pretrained CoLLAP models can be transferred to various music information retrieval tasks, with heterogeneous long-form multimodal contexts.
Masked Mixers for Language Generation and Retrieval
Attention mechanisms that confer selective focus on a strict subset of input elements are nearly ubiquitous in language models today. We posit there to be downside to the use of attention: most information present in the input is necessarily lost. In support of this idea we observe poor input representation accuracy in transformers, but find more accurate representation in what we term masked mixers which replace self-attention with masked convolutions. Applied to TinyStories the masked mixer learns causal language tasks more efficiently than early transformer implementations and somewhat less efficiently than optimized, current implementations. The most efficient learning algorithm observed for this dataset is a transformer-masked mixer hybrid, suggesting that these models learn in an orthogonal manner. We hypothesized that the information loss exhibited by transformers would be much more detrimental to retrieval than generation, and to test this we introduce an efficient training approach for retrieval models based on existing generative model embeddings. With this method, embeddings from masked mixers are found to result in far better summary-to-story retrieval compared to embeddings from transformers.
Deconstructing Attention: Investigating Design Principles for Effective Language Modeling
The success of Transformer language models is widely credited to their dot-product attention mechanism, which interweaves a set of key design principles: mixing information across positions (enabling multi-token interactions), sequence-dependent activations (where attention weights adapt to each input), a specific mathematical form (dot-product similarities plus softmax weighting), and coupling of queries and keys to evolving hidden states (grounding attention in the current layer). However, the necessity of each of these principles remains largely untested. In this work, we systematically deconstruct attention by designing controlled variants that selectively relax these principles, applied both uniformly across all layers and in hybrid architectures where only some layers retain standard attention. Our empirical analysis reveals that mechanisms for mixing tokens are indispensable, as their absence collapses models to near-random behavior, while the exact mathematical form and sequence dependency can be substantially relaxed, especially when preserved in just a subset of layers. Surprisingly, even variants that fail in isolation can achieve robust performance when interleaved with standard attention, highlighting a cooperative effect. These findings deepen our understanding of what truly underpins attention's effectiveness and open new avenues for simplifying language models without sacrificing performance.
MagicMix: Semantic Mixing with Diffusion Models
Have you ever imagined what a corgi-alike coffee machine or a tiger-alike rabbit would look like? In this work, we attempt to answer these questions by exploring a new task called semantic mixing, aiming at blending two different semantics to create a new concept (e.g., corgi + coffee machine -- > corgi-alike coffee machine). Unlike style transfer, where an image is stylized according to the reference style without changing the image content, semantic blending mixes two different concepts in a semantic manner to synthesize a novel concept while preserving the spatial layout and geometry. To this end, we present MagicMix, a simple yet effective solution based on pre-trained text-conditioned diffusion models. Motivated by the progressive generation property of diffusion models where layout/shape emerges at early denoising steps while semantically meaningful details appear at later steps during the denoising process, our method first obtains a coarse layout (either by corrupting an image or denoising from a pure Gaussian noise given a text prompt), followed by injection of conditional prompt for semantic mixing. Our method does not require any spatial mask or re-training, yet is able to synthesize novel objects with high fidelity. To improve the mixing quality, we further devise two simple strategies to provide better control and flexibility over the synthesized content. With our method, we present our results over diverse downstream applications, including semantic style transfer, novel object synthesis, breed mixing, and concept removal, demonstrating the flexibility of our method. More results can be found on the project page https://magicmix.github.io
Play It Back: Iterative Attention for Audio Recognition
A key function of auditory cognition is the association of characteristic sounds with their corresponding semantics over time. Humans attempting to discriminate between fine-grained audio categories, often replay the same discriminative sounds to increase their prediction confidence. We propose an end-to-end attention-based architecture that through selective repetition attends over the most discriminative sounds across the audio sequence. Our model initially uses the full audio sequence and iteratively refines the temporal segments replayed based on slot attention. At each playback, the selected segments are replayed using a smaller hop length which represents higher resolution features within these segments. We show that our method can consistently achieve state-of-the-art performance across three audio-classification benchmarks: AudioSet, VGG-Sound, and EPIC-KITCHENS-100.
You Need to Pay Better Attention
We introduce three new attention mechanisms that outperform standard multi-head attention in terms of efficiency and learning capabilities, thereby improving the performance and broader deployability of Transformer models. Our first contribution is Optimised Attention, which performs similarly to standard attention, but has 3/4 as many parameters and one matrix multiplication fewer per head. Next, we introduce Efficient Attention, which performs on par with standard attention with only 1/2 as many parameters as many parameters and two matrix multiplications fewer per head and is up to twice as fast as standard attention. Lastly, we introduce Super Attention, which surpasses standard attention by a significant margin in both vision and natural language processing tasks while having fewer parameters and matrix multiplications. In addition to providing rigorous mathematical comparisons, we evaluate the presented attention mechanisms on MNIST, CIFAR100, IMDB Movie Reviews, and Amazon Reviews datasets.
Taming Multimodal Joint Training for High-Quality Video-to-Audio Synthesis
We propose to synthesize high-quality and synchronized audio, given video and optional text conditions, using a novel multimodal joint training framework MMAudio. In contrast to single-modality training conditioned on (limited) video data only, MMAudio is jointly trained with larger-scale, readily available text-audio data to learn to generate semantically aligned high-quality audio samples. Additionally, we improve audio-visual synchrony with a conditional synchronization module that aligns video conditions with audio latents at the frame level. Trained with a flow matching objective, MMAudio achieves new video-to-audio state-of-the-art among public models in terms of audio quality, semantic alignment, and audio-visual synchronization, while having a low inference time (1.23s to generate an 8s clip) and just 157M parameters. MMAudio also achieves surprisingly competitive performance in text-to-audio generation, showing that joint training does not hinder single-modality performance. Code and demo are available at: https://hkchengrex.github.io/MMAudio
Masked Autoencoders with Multi-Window Local-Global Attention Are Better Audio Learners
In this work, we propose a Multi-Window Masked Autoencoder (MW-MAE) fitted with a novel Multi-Window Multi-Head Attention (MW-MHA) module that facilitates the modelling of local-global interactions in every decoder transformer block through attention heads of several distinct local and global windows. Empirical results on ten downstream audio tasks show that MW-MAEs consistently outperform standard MAEs in overall performance and learn better general-purpose audio representations, along with demonstrating considerably better scaling characteristics. Investigating attention distances and entropies reveals that MW-MAE encoders learn heads with broader local and global attention. Analyzing attention head feature representations through Projection Weighted Canonical Correlation Analysis (PWCCA) shows that attention heads with the same window sizes across the decoder layers of the MW-MAE learn correlated feature representations which enables each block to independently capture local and global information, leading to a decoupled decoder feature hierarchy. Code for feature extraction and downstream experiments along with pre-trained models will be released publically.
GVMGen: A General Video-to-Music Generation Model with Hierarchical Attentions
Composing music for video is essential yet challenging, leading to a growing interest in automating music generation for video applications. Existing approaches often struggle to achieve robust music-video correspondence and generative diversity, primarily due to inadequate feature alignment methods and insufficient datasets. In this study, we present General Video-to-Music Generation model (GVMGen), designed for generating high-related music to the video input. Our model employs hierarchical attentions to extract and align video features with music in both spatial and temporal dimensions, ensuring the preservation of pertinent features while minimizing redundancy. Remarkably, our method is versatile, capable of generating multi-style music from different video inputs, even in zero-shot scenarios. We also propose an evaluation model along with two novel objective metrics for assessing video-music alignment. Additionally, we have compiled a large-scale dataset comprising diverse types of video-music pairs. Experimental results demonstrate that GVMGen surpasses previous models in terms of music-video correspondence, generative diversity, and application universality.
ConsistEdit: Highly Consistent and Precise Training-free Visual Editing
Recent advances in training-free attention control methods have enabled flexible and efficient text-guided editing capabilities for existing generation models. However, current approaches struggle to simultaneously deliver strong editing strength while preserving consistency with the source. This limitation becomes particularly critical in multi-round and video editing, where visual errors can accumulate over time. Moreover, most existing methods enforce global consistency, which limits their ability to modify individual attributes such as texture while preserving others, thereby hindering fine-grained editing. Recently, the architectural shift from U-Net to MM-DiT has brought significant improvements in generative performance and introduced a novel mechanism for integrating text and vision modalities. These advancements pave the way for overcoming challenges that previous methods failed to resolve. Through an in-depth analysis of MM-DiT, we identify three key insights into its attention mechanisms. Building on these, we propose ConsistEdit, a novel attention control method specifically tailored for MM-DiT. ConsistEdit incorporates vision-only attention control, mask-guided pre-attention fusion, and differentiated manipulation of the query, key, and value tokens to produce consistent, prompt-aligned edits. Extensive experiments demonstrate that ConsistEdit achieves state-of-the-art performance across a wide range of image and video editing tasks, including both structure-consistent and structure-inconsistent scenarios. Unlike prior methods, it is the first approach to perform editing across all inference steps and attention layers without handcraft, significantly enhancing reliability and consistency, which enables robust multi-round and multi-region editing. Furthermore, it supports progressive adjustment of structural consistency, enabling finer control.
BAM! Just Like That: Simple and Efficient Parameter Upcycling for Mixture of Experts
The Mixture of Experts (MoE) framework has become a popular architecture for large language models due to its superior performance over dense models. However, training MoEs from scratch in a large-scale regime is prohibitively expensive. Existing methods mitigate this by pre-training multiple dense expert models independently and using them to initialize an MoE. This is done by using experts' feed-forward network (FFN) to initialize the MoE's experts while merging other parameters. However, this method limits the reuse of dense model parameters to only the FFN layers, thereby constraining the advantages when "upcycling" these models into MoEs. We propose BAM (Branch-Attend-Mix), a simple yet effective method that addresses this shortcoming. BAM makes full use of specialized dense models by not only using their FFN to initialize the MoE layers but also leveraging experts' attention parameters fully by initializing them into a soft-variant of Mixture of Attention (MoA) layers. We explore two methods for upcycling attention parameters: 1) initializing separate attention experts from dense models including all attention parameters for the best model performance; and 2) sharing key and value parameters across all experts to facilitate for better inference efficiency. To further improve efficiency, we adopt a parallel attention transformer architecture to MoEs, which allows the attention experts and FFN experts to be computed concurrently. Our experiments on seed models ranging from 590 million to 2 billion parameters demonstrate that BAM surpasses baselines in both perplexity and downstream task performance, within the same computational and data constraints.
Mixture of Sparse Attention: Content-Based Learnable Sparse Attention via Expert-Choice Routing
Recent advances in large language models highlighted the excessive quadratic cost of self-attention. Despite the significant research efforts, subquadratic attention methods still suffer from inferior performance in practice. We hypothesize that dynamic, learned content-based sparsity can lead to more efficient attention mechanisms. We present Mixture of Sparse Attention (MoSA), a novel approach inspired by Mixture of Experts (MoE) with expert choice routing. MoSA dynamically selects tokens for each attention head, allowing arbitrary sparse attention patterns. By selecting k tokens from a sequence of length T, MoSA reduces the computational complexity of each attention head from O(T^2) to O(k^2 + T). This enables using more heads within the same computational budget, allowing higher specialization. We show that among the tested sparse attention variants, MoSA is the only one that can outperform the dense baseline, sometimes with up to 27% better perplexity for an identical compute budget. MoSA can also reduce the resource usage compared to dense self-attention. Despite using torch implementation without an optimized kernel, perplexity-matched MoSA models are simultaneously faster in wall-clock time, require less memory for training, and drastically reduce the size of the KV-cache compared to the dense transformer baselines.
Modality Agnostic Efficient Long Range Encoder
The long-context capability of recent large transformer models can be surmised to rely on techniques such as attention/model parallelism, as well as hardware-level optimizations. While these strategies allow input lengths to scale to millions of tokens, they do not fundamentally mitigate the quadratic computational and memory complexity of the core attention mechanism. In this paper, we address the challenge of long-context processing on a single device using generic implementations by reducing the quadratic memory footprint and inference cost. Existing approaches to extend the context length for generic single device implementations -- such as token merging and modified attentions -- are often modality specific and attain a suboptimal tradeoff between accuracy and efficiency. To overcome these limitations, we propose MAELRE (Modality Agnostic Efficient Long Range Encoder), a unified and efficient transformer architecture designed for long-range encoding across diverse modalities. MAELRE integrates token merging with attention approximation, progressively merging tokens at different stages of internal computational blocks. It employs a lightweight attention approximation when the number of tokens is large, and switches to standard dot-product attention as the sequence becomes shorter through successive aggregation. We demonstrate that MAELRE achieves superior accuracy while reducing computational cost compared to existing long-context models on classification tasks spanning multiple modalities, including text, time series, audio, and vision.
Knocking-Heads Attention
Multi-head attention (MHA) has become the cornerstone of modern large language models, enhancing representational capacity through parallel attention heads. However, increasing the number of heads inherently weakens individual head capacity, and existing attention mechanisms - whether standard MHA or its variants like grouped-query attention (GQA) and grouped-tied attention (GTA) - simply concatenate outputs from isolated heads without strong interaction. To address this limitation, we propose knocking-heads attention (KHA), which enables attention heads to "knock" on each other - facilitating cross-head feature-level interactions before the scaled dot-product attention. This is achieved by applying a shared, diagonally-initialized projection matrix across all heads. The diagonal initialization preserves head-specific specialization at the start of training while allowing the model to progressively learn integrated cross-head representations. KHA adds only minimal parameters and FLOPs and can be seamlessly integrated into MHA, GQA, GTA, and other attention variants. We validate KHA by training a 6.1B parameter MoE model (1.01B activated) on 1T high-quality tokens. Compared to baseline attention mechanisms, KHA brings superior and more stable training dynamics, achieving better performance across downstream tasks.
Audio Mamba: Pretrained Audio State Space Model For Audio Tagging
Audio tagging is an important task of mapping audio samples to their corresponding categories. Recently endeavours that exploit transformer models in this field have achieved great success. However, the quadratic self-attention cost limits the scaling of audio transformer models and further constrains the development of more universal audio models. In this paper, we attempt to solve this problem by proposing Audio Mamba, a self-attention-free approach that captures long audio spectrogram dependency with state space models. Our experimental results on two audio-tagging datasets demonstrate the parameter efficiency of Audio Mamba, it achieves comparable results to SOTA audio spectrogram transformers with one third parameters.
X-Pool: Cross-Modal Language-Video Attention for Text-Video Retrieval
In text-video retrieval, the objective is to learn a cross-modal similarity function between a text and a video that ranks relevant text-video pairs higher than irrelevant pairs. However, videos inherently express a much wider gamut of information than texts. Instead, texts often capture sub-regions of entire videos and are most semantically similar to certain frames within videos. Therefore, for a given text, a retrieval model should focus on the text's most semantically similar video sub-regions to make a more relevant comparison. Yet, most existing works aggregate entire videos without directly considering text. Common text-agnostic aggregations schemes include mean-pooling or self-attention over the frames, but these are likely to encode misleading visual information not described in the given text. To address this, we propose a cross-modal attention model called X-Pool that reasons between a text and the frames of a video. Our core mechanism is a scaled dot product attention for a text to attend to its most semantically similar frames. We then generate an aggregated video representation conditioned on the text's attention weights over the frames. We evaluate our method on three benchmark datasets of MSR-VTT, MSVD and LSMDC, achieving new state-of-the-art results by up to 12% in relative improvement in Recall@1. Our findings thereby highlight the importance of joint text-video reasoning to extract important visual cues according to text. Full code and demo can be found at: https://layer6ai-labs.github.io/xpool/
Language-based Audio Moment Retrieval
In this paper, we propose and design a new task called audio moment retrieval (AMR). Unlike conventional language-based audio retrieval tasks that search for short audio clips from an audio database, AMR aims to predict relevant moments in untrimmed long audio based on a text query. Given the lack of prior work in AMR, we first build a dedicated dataset, Clotho-Moment, consisting of large-scale simulated audio recordings with moment annotations. We then propose a DETR-based model, named Audio Moment DETR (AM-DETR), as a fundamental framework for AMR tasks. This model captures temporal dependencies within audio features, inspired by similar video moment retrieval tasks, thus surpassing conventional clip-level audio retrieval methods. Additionally, we provide manually annotated datasets to properly measure the effectiveness and robustness of our methods on real data. Experimental results show that AM-DETR, trained with Clotho-Moment, outperforms a baseline model that applies a clip-level audio retrieval method with a sliding window on all metrics, particularly improving [email protected] by 9.00 points. Our datasets and code are publicly available in https://h-munakata.github.io/Language-based-Audio-Moment-Retrieval.
Music Transformer
Music relies heavily on repetition to build structure and meaning. Self-reference occurs on multiple timescales, from motifs to phrases to reusing of entire sections of music, such as in pieces with ABA structure. The Transformer (Vaswani et al., 2017), a sequence model based on self-attention, has achieved compelling results in many generation tasks that require maintaining long-range coherence. This suggests that self-attention might also be well-suited to modeling music. In musical composition and performance, however, relative timing is critically important. Existing approaches for representing relative positional information in the Transformer modulate attention based on pairwise distance (Shaw et al., 2018). This is impractical for long sequences such as musical compositions since their memory complexity for intermediate relative information is quadratic in the sequence length. We propose an algorithm that reduces their intermediate memory requirement to linear in the sequence length. This enables us to demonstrate that a Transformer with our modified relative attention mechanism can generate minute-long compositions (thousands of steps, four times the length modeled in Oore et al., 2018) with compelling structure, generate continuations that coherently elaborate on a given motif, and in a seq2seq setup generate accompaniments conditioned on melodies. We evaluate the Transformer with our relative attention mechanism on two datasets, JSB Chorales and Piano-e-Competition, and obtain state-of-the-art results on the latter.
MuVi: Video-to-Music Generation with Semantic Alignment and Rhythmic Synchronization
Generating music that aligns with the visual content of a video has been a challenging task, as it requires a deep understanding of visual semantics and involves generating music whose melody, rhythm, and dynamics harmonize with the visual narratives. This paper presents MuVi, a novel framework that effectively addresses these challenges to enhance the cohesion and immersive experience of audio-visual content. MuVi analyzes video content through a specially designed visual adaptor to extract contextually and temporally relevant features. These features are used to generate music that not only matches the video's mood and theme but also its rhythm and pacing. We also introduce a contrastive music-visual pre-training scheme to ensure synchronization, based on the periodicity nature of music phrases. In addition, we demonstrate that our flow-matching-based music generator has in-context learning ability, allowing us to control the style and genre of the generated music. Experimental results show that MuVi demonstrates superior performance in both audio quality and temporal synchronization. The generated music video samples are available at https://muvi-v2m.github.io.
Location-Relative Attention Mechanisms For Robust Long-Form Speech Synthesis
Despite the ability to produce human-level speech for in-domain text, attention-based end-to-end text-to-speech (TTS) systems suffer from text alignment failures that increase in frequency for out-of-domain text. We show that these failures can be addressed using simple location-relative attention mechanisms that do away with content-based query/key comparisons. We compare two families of attention mechanisms: location-relative GMM-based mechanisms and additive energy-based mechanisms. We suggest simple modifications to GMM-based attention that allow it to align quickly and consistently during training, and introduce a new location-relative attention mechanism to the additive energy-based family, called Dynamic Convolution Attention (DCA). We compare the various mechanisms in terms of alignment speed and consistency during training, naturalness, and ability to generalize to long utterances, and conclude that GMM attention and DCA can generalize to very long utterances, while preserving naturalness for shorter, in-domain utterances.
Ltri-LLM: Streaming Long Context Inference for LLMs with Training-Free Dynamic Triangular Attention Pattern
The quadratic computational complexity of the attention mechanism in current Large Language Models (LLMs) renders inference with long contexts prohibitively expensive. To address this challenge, various approaches aim to retain critical portions of the context to optimally approximate Full Attention (FA) through Key-Value (KV) compression or Sparse Attention (SA), enabling the processing of virtually unlimited text lengths in a streaming manner. However, these methods struggle to achieve performance levels comparable to FA, particularly in retrieval tasks. In this paper, our analysis of attention head patterns reveals that LLMs' attention distributions show strong local correlations, naturally reflecting a chunking mechanism for input context. We propose Ltri-LLM framework, which divides KVs into spans, stores them in an offline index, and retrieves the relevant KVs into memory for various queries. Experimental results on popular long text benchmarks show that Ltri-LLM can achieve performance close to FA while maintaining efficient, streaming-based inference.
AIBA: Attention-based Instrument Band Alignment for Text-to-Audio Diffusion
We present AIBA (Attention-In-Band Alignment), a lightweight, training-free pipeline to quantify where text-to-audio diffusion models attend on the time-frequency (T-F) plane. AIBA (i) hooks cross-attention at inference to record attention probabilities without modifying weights; (ii) projects them to fixed-size mel grids that are directly comparable to audio energy; and (iii) scores agreement with instrument-band ground truth via interpretable metrics (T-F IoU/AP, frequency-profile correlation, and a pointing game). On Slakh2100 with an AudioLDM2 backbone, AIBA reveals consistent instrument-dependent trends (e.g., bass favoring low bands) and achieves high precision with moderate recall.
TextMonkey: An OCR-Free Large Multimodal Model for Understanding Document
We present TextMonkey, a large multimodal model (LMM) tailored for text-centric tasks. Our approach introduces enhancement across several dimensions: By adopting Shifted Window Attention with zero-initialization, we achieve cross-window connectivity at higher input resolutions and stabilize early training; We hypothesize that images may contain redundant tokens, and by using similarity to filter out significant tokens, we can not only streamline the token length but also enhance the model's performance. Moreover, by expanding our model's capabilities to encompass text spotting and grounding, and incorporating positional information into responses, we enhance interpretability. It also learns to perform screenshot tasks through finetuning. Evaluation on 12 benchmarks shows notable improvements: 5.2% in Scene Text-Centric tasks (including STVQA, TextVQA, and OCRVQA), 6.9% in Document-Oriented tasks (such as DocVQA, InfoVQA, ChartVQA, DeepForm, Kleister Charity, and WikiTableQuestions), and 2.8% in Key Information Extraction tasks (comprising FUNSD, SROIE, and POIE). It outperforms in scene text spotting with a 10.9\% increase and sets a new standard on OCRBench, a comprehensive benchmark consisting of 29 OCR-related assessments, with a score of 561, surpassing previous open-sourced large multimodal models for document understanding. Code will be released at https://github.com/Yuliang-Liu/Monkey.
Data-Efficient Multimodal Fusion on a Single GPU
The goal of multimodal alignment is to learn a single latent space that is shared between multimodal inputs. The most powerful models in this space have been trained using massive datasets of paired inputs and large-scale computational resources, making them prohibitively expensive to train in many practical scenarios. We surmise that existing unimodal encoders pre-trained on large amounts of unimodal data should provide an effective bootstrap to create multimodal models from unimodal ones at much lower costs. We therefore propose FuseMix, a multimodal augmentation scheme that operates on the latent spaces of arbitrary pre-trained unimodal encoders. Using FuseMix for multimodal alignment, we achieve competitive performance -- and in certain cases outperform state-of-the art methods -- in both image-text and audio-text retrieval, with orders of magnitude less compute and data: for example, we outperform CLIP on the Flickr30K text-to-image retrieval task with sim ! 600times fewer GPU days and sim ! 80times fewer image-text pairs. Additionally, we show how our method can be applied to convert pre-trained text-to-image generative models into audio-to-image ones. Code is available at: https://github.com/layer6ai-labs/fusemix.
AlignAtt: Using Attention-based Audio-Translation Alignments as a Guide for Simultaneous Speech Translation
Attention is the core mechanism of today's most used architectures for natural language processing and has been analyzed from many perspectives, including its effectiveness for machine translation-related tasks. Among these studies, attention resulted to be a useful source of information to get insights about word alignment also when the input text is substituted with audio segments, as in the case of the speech translation (ST) task. In this paper, we propose AlignAtt, a novel policy for simultaneous ST (SimulST) that exploits the attention information to generate source-target alignments that guide the model during inference. Through experiments on the 8 language pairs of MuST-C v1.0, we show that AlignAtt outperforms previous state-of-the-art SimulST policies applied to offline-trained models with gains in terms of BLEU of 2 points and latency reductions ranging from 0.5s to 0.8s across the 8 languages.
MiniMax-01: Scaling Foundation Models with Lightning Attention
We introduce MiniMax-01 series, including MiniMax-Text-01 and MiniMax-VL-01, which are comparable to top-tier models while offering superior capabilities in processing longer contexts. The core lies in lightning attention and its efficient scaling. To maximize computational capacity, we integrate it with Mixture of Experts (MoE), creating a model with 32 experts and 456 billion total parameters, of which 45.9 billion are activated for each token. We develop an optimized parallel strategy and highly efficient computation-communication overlap techniques for MoE and lightning attention. This approach enables us to conduct efficient training and inference on models with hundreds of billions of parameters across contexts spanning millions of tokens. The context window of MiniMax-Text-01 can reach up to 1 million tokens during training and extrapolate to 4 million tokens during inference at an affordable cost. Our vision-language model, MiniMax-VL-01 is built through continued training with 512 billion vision-language tokens. Experiments on both standard and in-house benchmarks show that our models match the performance of state-of-the-art models like GPT-4o and Claude-3.5-Sonnet while offering 20-32 times longer context window. We publicly release MiniMax-01 at https://github.com/MiniMax-AI.
CustomVideo: Customizing Text-to-Video Generation with Multiple Subjects
Customized text-to-video generation aims to generate high-quality videos guided by text prompts and subject references. Current approaches designed for single subjects suffer from tackling multiple subjects, which is a more challenging and practical scenario. In this work, we aim to promote multi-subject guided text-to-video customization. We propose CustomVideo, a novel framework that can generate identity-preserving videos with the guidance of multiple subjects. To be specific, firstly, we encourage the co-occurrence of multiple subjects via composing them in a single image. Further, upon a basic text-to-video diffusion model, we design a simple yet effective attention control strategy to disentangle different subjects in the latent space of diffusion model. Moreover, to help the model focus on the specific object area, we segment the object from given reference images and provide a corresponding object mask for attention learning. Also, we collect a multi-subject text-to-video generation dataset as a comprehensive benchmark, with 69 individual subjects and 57 meaningful pairs. Extensive qualitative, quantitative, and user study results demonstrate the superiority of our method, compared with the previous state-of-the-art approaches.
MambAttention: Mamba with Multi-Head Attention for Generalizable Single-Channel Speech Enhancement
With the advent of new sequence models like Mamba and xLSTM, several studies have shown that these models match or outperform state-of-the-art models in single-channel speech enhancement, automatic speech recognition, and self-supervised audio representation learning. However, prior research has demonstrated that sequence models like LSTM and Mamba tend to overfit to the training set. To address this issue, previous works have shown that adding self-attention to LSTMs substantially improves generalization performance for single-channel speech enhancement. Nevertheless, neither the concept of hybrid Mamba and time-frequency attention models nor their generalization performance have been explored for speech enhancement. In this paper, we propose a novel hybrid architecture, MambAttention, which combines Mamba and shared time- and frequency-multi-head attention modules for generalizable single-channel speech enhancement. To train our model, we introduce VoiceBank+Demand Extended (VB-DemandEx), a dataset inspired by VoiceBank+Demand but with more challenging noise types and lower signal-to-noise ratios. Trained on VB-DemandEx, our proposed MambAttention model significantly outperforms existing state-of-the-art LSTM-, xLSTM-, Mamba-, and Conformer-based systems of similar complexity across all reported metrics on two out-of-domain datasets: DNS 2020 and EARS-WHAM_v2, while matching their performance on the in-domain dataset VB-DemandEx. Ablation studies highlight the role of weight sharing between the time- and frequency-multi-head attention modules for generalization performance. Finally, we explore integrating the shared time- and frequency-multi-head attention modules with LSTM and xLSTM, which yields a notable performance improvement on the out-of-domain datasets. However, our MambAttention model remains superior on both out-of-domain datasets across all reported evaluation metrics.
Fast Transformer Decoding: One Write-Head is All You Need
Multi-head attention layers, as used in the Transformer neural sequence model, are a powerful alternative to RNNs for moving information across and between sequences. While training these layers is generally fast and simple, due to parallelizability across the length of the sequence, incremental inference (where such paralleization is impossible) is often slow, due to the memory-bandwidth cost of repeatedly loading the large "keys" and "values" tensors. We propose a variant called multi-query attention, where the keys and values are shared across all of the different attention "heads", greatly reducing the size of these tensors and hence the memory bandwidth requirements of incremental decoding. We verify experimentally that the resulting models can indeed be much faster to decode, and incur only minor quality degradation from the baseline.
Automated Conversion of Music Videos into Lyric Videos
Musicians and fans often produce lyric videos, a form of music videos that showcase the song's lyrics, for their favorite songs. However, making such videos can be challenging and time-consuming as the lyrics need to be added in synchrony and visual harmony with the video. Informed by prior work and close examination of existing lyric videos, we propose a set of design guidelines to help creators make such videos. Our guidelines ensure the readability of the lyric text while maintaining a unified focus of attention. We instantiate these guidelines in a fully automated pipeline that converts an input music video into a lyric video. We demonstrate the robustness of our pipeline by generating lyric videos from a diverse range of input sources. A user study shows that lyric videos generated by our pipeline are effective in maintaining text readability and unifying the focus of attention.
Progressive Confident Masking Attention Network for Audio-Visual Segmentation
Audio and visual signals typically occur simultaneously, and humans possess an innate ability to correlate and synchronize information from these two modalities. Recently, a challenging problem known as Audio-Visual Segmentation (AVS) has emerged, intending to produce segmentation maps for sounding objects within a scene. However, the methods proposed so far have not sufficiently integrated audio and visual information, and the computational costs have been extremely high. Additionally, the outputs of different stages have not been fully utilized. To facilitate this research, we introduce a novel Progressive Confident Masking Attention Network (PMCANet). It leverages attention mechanisms to uncover the intrinsic correlations between audio signals and visual frames. Furthermore, we design an efficient and effective cross-attention module to enhance semantic perception by selecting query tokens. This selection is determined through confidence-driven units based on the network's multi-stage predictive outputs. Experiments demonstrate that our network outperforms other AVS methods while requiring less computational resources. The code is available at: https://github.com/PrettyPlate/PCMANet.
MusiXQA: Advancing Visual Music Understanding in Multimodal Large Language Models
Multimodal Large Language Models (MLLMs) have achieved remarkable visual reasoning abilities in natural images, text-rich documents, and graphic designs. However, their ability to interpret music sheets remains underexplored. To bridge this gap, we introduce MusiXQA, the first comprehensive dataset for evaluating and advancing MLLMs in music sheet understanding. MusiXQA features high-quality synthetic music sheets generated via MusiXTeX, with structured annotations covering note pitch and duration, chords, clefs, key/time signatures, and text, enabling diverse visual QA tasks. Through extensive evaluations, we reveal significant limitations of current state-of-the-art MLLMs in this domain. Beyond benchmarking, we developed Phi-3-MusiX, an MLLM fine-tuned on our dataset, achieving significant performance gains over GPT-based methods. The proposed dataset and model establish a foundation for future advances in MLLMs for music sheet understanding. Code, data, and model will be released upon acceptance.
SongCreator: Lyrics-based Universal Song Generation
Music is an integral part of human culture, embodying human intelligence and creativity, of which songs compose an essential part. While various aspects of song generation have been explored by previous works, such as singing voice, vocal composition and instrumental arrangement, etc., generating songs with both vocals and accompaniment given lyrics remains a significant challenge, hindering the application of music generation models in the real world. In this light, we propose SongCreator, a song-generation system designed to tackle this challenge. The model features two novel designs: a meticulously designed dual-sequence language model (DSLM) to capture the information of vocals and accompaniment for song generation, and an additional attention mask strategy for DSLM, which allows our model to understand, generate and edit songs, making it suitable for various song-related generation tasks. Extensive experiments demonstrate the effectiveness of SongCreator by achieving state-of-the-art or competitive performances on all eight tasks. Notably, it surpasses previous works by a large margin in lyrics-to-song and lyrics-to-vocals. Additionally, it is able to independently control the acoustic conditions of the vocals and accompaniment in the generated song through different prompts, exhibiting its potential applicability. Our samples are available at https://songcreator.github.io/.
MM-Pyramid: Multimodal Pyramid Attentional Network for Audio-Visual Event Localization and Video Parsing
Recognizing and localizing events in videos is a fundamental task for video understanding. Since events may occur in auditory and visual modalities, multimodal detailed perception is essential for complete scene comprehension. Most previous works attempted to analyze videos from a holistic perspective. However, they do not consider semantic information at multiple scales, which makes the model difficult to localize events in different lengths. In this paper, we present a Multimodal Pyramid Attentional Network (MM-Pyramid) for event localization. Specifically, we first propose the attentive feature pyramid module. This module captures temporal pyramid features via several stacking pyramid units, each of them is composed of a fixed-size attention block and dilated convolution block. We also design an adaptive semantic fusion module, which leverages a unit-level attention block and a selective fusion block to integrate pyramid features interactively. Extensive experiments on audio-visual event localization and weakly-supervised audio-visual video parsing tasks verify the effectiveness of our approach.
FAST: Factorizable Attention for Speeding up Transformers
Motivated by the factorization inherent in the original fast multipole method and the improved fast Gauss transform we introduce a factorable form of attention that operates efficiently in high dimensions. This approach reduces the computational and memory complexity of the attention mechanism in transformers from O(N^2) to O(N). In comparison to previous attempts, our work presents a linearly scaled attention mechanism that maintains the full representation of the attention matrix without compromising on sparsification and incorporates the all-to-all relationship between tokens. We explore the properties of our new attention metric and conduct tests in various standard settings. Results indicate that our attention mechanism has a robust performance and holds significant promise for diverse applications where self-attention is used.
AST: Audio Spectrogram Transformer
In the past decade, convolutional neural networks (CNNs) have been widely adopted as the main building block for end-to-end audio classification models, which aim to learn a direct mapping from audio spectrograms to corresponding labels. To better capture long-range global context, a recent trend is to add a self-attention mechanism on top of the CNN, forming a CNN-attention hybrid model. However, it is unclear whether the reliance on a CNN is necessary, and if neural networks purely based on attention are sufficient to obtain good performance in audio classification. In this paper, we answer the question by introducing the Audio Spectrogram Transformer (AST), the first convolution-free, purely attention-based model for audio classification. We evaluate AST on various audio classification benchmarks, where it achieves new state-of-the-art results of 0.485 mAP on AudioSet, 95.6% accuracy on ESC-50, and 98.1% accuracy on Speech Commands V2.
Cross-Attention is Half Explanation in Speech-to-Text Models
Cross-attention is a core mechanism in encoder-decoder architectures, widespread in many fields, including speech-to-text (S2T) processing. Its scores have been repurposed for various downstream applications--such as timestamp estimation and audio-text alignment--under the assumption that they reflect the dependencies between input speech representation and the generated text. While the explanatory nature of attention mechanisms has been widely debated in the broader NLP literature, this assumption remains largely unexplored within the speech domain. To address this gap, we assess the explanatory power of cross-attention in S2T models by comparing its scores to input saliency maps derived from feature attribution. Our analysis spans monolingual and multilingual, single-task and multi-task models at multiple scales, and shows that attention scores moderately to strongly align with saliency-based explanations, particularly when aggregated across heads and layers. However, it also shows that cross-attention captures only about 50% of the input relevance and, in the best case, only partially reflects how the decoder attends to the encoder's representations--accounting for just 52-75% of the saliency. These findings uncover fundamental limitations in interpreting cross-attention as an explanatory proxy, suggesting that it offers an informative yet incomplete view of the factors driving predictions in S2T models.
Audio Prompt Adapter: Unleashing Music Editing Abilities for Text-to-Music with Lightweight Finetuning
Text-to-music models allow users to generate nearly realistic musical audio with textual commands. However, editing music audios remains challenging due to the conflicting desiderata of performing fine-grained alterations on the audio while maintaining a simple user interface. To address this challenge, we propose Audio Prompt Adapter (or AP-Adapter), a lightweight addition to pretrained text-to-music models. We utilize AudioMAE to extract features from the input audio, and construct attention-based adapters to feedthese features into the internal layers of AudioLDM2, a diffusion-based text-to-music model. With 22M trainable parameters, AP-Adapter empowers users to harness both global (e.g., genre and timbre) and local (e.g., melody) aspects of music, using the original audio and a short text as inputs. Through objective and subjective studies, we evaluate AP-Adapter on three tasks: timbre transfer, genre transfer, and accompaniment generation. Additionally, we demonstrate its effectiveness on out-of-domain audios containing unseen instruments during training.
Attention-driven GUI Grounding: Leveraging Pretrained Multimodal Large Language Models without Fine-Tuning
Recent advancements in Multimodal Large Language Models (MLLMs) have generated significant interest in their ability to autonomously interact with and interpret Graphical User Interfaces (GUIs). A major challenge in these systems is grounding-accurately identifying critical GUI components such as text or icons based on a GUI image and a corresponding text query. Traditionally, this task has relied on fine-tuning MLLMs with specialized training data to predict component locations directly. However, in this paper, we propose a novel Tuning-free Attention-driven Grounding (TAG) method that leverages the inherent attention patterns in pretrained MLLMs to accomplish this task without the need for additional fine-tuning. Our method involves identifying and aggregating attention maps from specific tokens within a carefully constructed query prompt. Applied to MiniCPM-Llama3-V 2.5, a state-of-the-art MLLM, our tuning-free approach achieves performance comparable to tuning-based methods, with notable success in text localization. Additionally, we demonstrate that our attention map-based grounding technique significantly outperforms direct localization predictions from MiniCPM-Llama3-V 2.5, highlighting the potential of using attention maps from pretrained MLLMs and paving the way for future innovations in this domain.
VLANet: Video-Language Alignment Network for Weakly-Supervised Video Moment Retrieval
Video Moment Retrieval (VMR) is a task to localize the temporal moment in untrimmed video specified by natural language query. For VMR, several methods that require full supervision for training have been proposed. Unfortunately, acquiring a large number of training videos with labeled temporal boundaries for each query is a labor-intensive process. This paper explores methods for performing VMR in a weakly-supervised manner (wVMR): training is performed without temporal moment labels but only with the text query that describes a segment of the video. Existing methods on wVMR generate multi-scale proposals and apply query-guided attention mechanisms to highlight the most relevant proposal. To leverage the weak supervision, contrastive learning is used which predicts higher scores for the correct video-query pairs than for the incorrect pairs. It has been observed that a large number of candidate proposals, coarse query representation, and one-way attention mechanism lead to blurry attention maps which limit the localization performance. To handle this issue, Video-Language Alignment Network (VLANet) is proposed that learns sharper attention by pruning out spurious candidate proposals and applying a multi-directional attention mechanism with fine-grained query representation. The Surrogate Proposal Selection module selects a proposal based on the proximity to the query in the joint embedding space, and thus substantially reduces candidate proposals which leads to lower computation load and sharper attention. Next, the Cascaded Cross-modal Attention module considers dense feature interactions and multi-directional attention flow to learn the multi-modal alignment. VLANet is trained end-to-end using contrastive loss which enforces semantically similar videos and queries to gather. The experiments show that the method achieves state-of-the-art performance on Charades-STA and DiDeMo datasets.
Decomposed Attention Fusion in MLLMs for Training-Free Video Reasoning Segmentation
Multimodal large language models (MLLMs) demonstrate strong video understanding by attending to visual tokens relevant to textual queries. To directly adapt this for localization in a training-free manner, we cast video reasoning segmentation as a video QA task and extract attention maps via rollout mechanism. However, raw attention maps are noisy and poorly aligned with object regions. We propose Decomposed Attention Fusion (DecAF), which refines these maps through two mechanisms: (1) contrastive object-background fusion and (2) complementary video-frame fusion. This method suppresses irrelevant activations and enhances object-focused cues, enabling direct conversion of attention maps into coarse segmentation masks. In addition, we introduce attention-guided SAM2 prompting for obtaining fine-grained masks. Unlike existing methods that jointly train MLLMs with SAM, our method operates entirely without retraining. DecAF outperforms training-free methods and achieves performance comparable to training-based methods on both referring and reasoning VOS benchmarks. The code will be available at https://github.com/HYUNJS/DecAF.
ASTAR-NTU solution to AudioMOS Challenge 2025 Track1
Evaluation of text-to-music systems is constrained by the cost and availability of collecting experts for assessment. AudioMOS 2025 Challenge track 1 is created to automatically predict music impression (MI) as well as text alignment (TA) between the prompt and the generated musical piece. This paper reports our winning system, which uses a dual-branch architecture with pre-trained MuQ and RoBERTa models as audio and text encoders. A cross-attention mechanism fuses the audio and text representations. For training, we reframe the MI and TA prediction as a classification task. To incorporate the ordinal nature of MOS scores, one-hot labels are converted to a soft distribution using a Gaussian kernel. On the official test set, a single model trained with this method achieves a system-level Spearman's Rank Correlation Coefficient (SRCC) of 0.991 for MI and 0.952 for TA, corresponding to a relative improvement of 21.21\% in MI SRCC and 31.47\% in TA SRCC over the challenge baseline.
UMoE: Unifying Attention and FFN with Shared Experts
Sparse Mixture of Experts (MoE) architectures have emerged as a promising approach for scaling Transformer models. While initial works primarily incorporated MoE into feed-forward network (FFN) layers, recent studies have explored extending the MoE paradigm to attention layers to enhance model performance. However, existing attention-based MoE layers require specialized implementations and demonstrate suboptimal performance compared to their FFN-based counterparts. In this paper, we aim to unify the MoE designs in attention and FFN layers by introducing a novel reformulation of the attention mechanism, revealing an underlying FFN-like structure within attention modules. Our proposed architecture, UMoE, achieves superior performance through attention-based MoE layers while enabling efficient parameter sharing between FFN and attention components.
Model Composition for Multimodal Large Language Models
Recent developments in Multimodal Large Language Models (MLLMs) have shown rapid progress, moving towards the goal of creating versatile MLLMs that understand inputs from various modalities. However, existing methods typically rely on joint training with paired multimodal instruction data, which is resource-intensive and challenging to extend to new modalities. In this paper, we propose a new paradigm through the model composition of existing MLLMs to create a new model that retains the modal understanding capabilities of each original model. Our basic implementation, NaiveMC, demonstrates the effectiveness of this paradigm by reusing modality encoders and merging LLM parameters. Furthermore, we introduce DAMC to address parameter interference and mismatch issues during the merging process, thereby enhancing the model performance. To facilitate research in this area, we propose MCUB, a benchmark for assessing ability of MLLMs to understand inputs from diverse modalities. Experiments on this benchmark and four other multimodal understanding tasks show significant improvements over baselines, proving that model composition can create a versatile model capable of processing inputs from multiple modalities.
PAL: Probing Audio Encoders via LLMs -- A Study of Information Transfer from Audio Encoders to LLMs
The integration of audio perception capabilities into Large Language Models (LLMs) has enabled significant advances in Audio-LLMs. Although application-focused developments, particularly in curating training data for specific capabilities e.g., audio reasoning, have progressed rapidly, the underlying mechanisms that govern efficient transfer of rich semantic representations from audio encoders to LLMs remain under-explored. We conceptualize effective audio-LLM interaction as the LLM's ability to proficiently probe the audio encoder representations to satisfy textual queries. This paper presents a systematic investigation on how architectural design choices can affect that. Beginning with a standard Pengi/LLaVA-style audio-LLM architecture, we propose and evaluate several modifications guided by hypotheses derived from mechanistic interpretability studies and LLM operational principles. Our experiments demonstrate that: (1) delaying audio integration until the LLM's initial layers establish textual context that enhances its ability to probe the audio representations for relevant information; (2) the LLM can proficiently probe audio representations exclusively through LLM layer's attention submodule, without requiring propagation to its Feed-Forward Network (FFN) submodule; (3) an efficiently integrated ensemble of diverse audio encoders provides richer, complementary representations, thereby broadening the LLM's capacity to probe a wider spectrum of audio information. All hypotheses are evaluated using an identical three-stage training curriculum on a dataset of 5.6 million audio-text pairs, ensuring controlled comparisons. Our final architecture, which incorporates all proposed modifications, achieves relative improvements from 10\% to 60\% over the baseline, validating our approach to optimizing cross-modal information transfer in audio-LLMs. Project page: https://ta012.github.io/PAL/
Context Compression for Auto-regressive Transformers with Sentinel Tokens
The quadratic complexity of the attention module makes it gradually become the bulk of compute in Transformer-based LLMs during generation. Moreover, the excessive key-value cache that arises when dealing with long inputs also brings severe issues on memory footprint and inference latency. In this work, we propose a plug-and-play approach that is able to incrementally compress the intermediate activation of a specified span of tokens into compact ones, thereby reducing both memory and computational cost when processing subsequent context. Experiments on both in-domain language modeling and zero-shot open-ended document generation demonstrate the advantage of our approach over sparse attention baselines in terms of fluency, n-gram matching, and semantic similarity. At last, we comprehensively profile the benefit of context compression on improving the system throughout. Code is available at https://github.com/DRSY/KV_Compression.
A study of latent monotonic attention variants
End-to-end models reach state-of-the-art performance for speech recognition, but global soft attention is not monotonic, which might lead to convergence problems, to instability, to bad generalisation, cannot be used for online streaming, and is also inefficient in calculation. Monotonicity can potentially fix all of this. There are several ad-hoc solutions or heuristics to introduce monotonicity, but a principled introduction is rarely found in literature so far. In this paper, we present a mathematically clean solution to introduce monotonicity, by introducing a new latent variable which represents the audio position or segment boundaries. We compare several monotonic latent models to our global soft attention baseline such as a hard attention model, a local windowed soft attention model, and a segmental soft attention model. We can show that our monotonic models perform as good as the global soft attention model. We perform our experiments on Switchboard 300h. We carefully outline the details of our training and release our code and configs.
Autonomous Soundscape Augmentation with Multimodal Fusion of Visual and Participant-linked Inputs
Autonomous soundscape augmentation systems typically use trained models to pick optimal maskers to effect a desired perceptual change. While acoustic information is paramount to such systems, contextual information, including participant demographics and the visual environment, also influences acoustic perception. Hence, we propose modular modifications to an existing attention-based deep neural network, to allow early, mid-level, and late feature fusion of participant-linked, visual, and acoustic features. Ablation studies on module configurations and corresponding fusion methods using the ARAUS dataset show that contextual features improve the model performance in a statistically significant manner on the normalized ISO Pleasantness, to a mean squared error of 0.1194pm0.0012 for the best-performing all-modality model, against 0.1217pm0.0009 for the audio-only model. Soundscape augmentation systems can thereby leverage multimodal inputs for improved performance. We also investigate the impact of individual participant-linked factors using trained models to illustrate improvements in model explainability.
Dataset Decomposition: Faster LLM Training with Variable Sequence Length Curriculum
Large language models (LLMs) are commonly trained on datasets consisting of fixed-length token sequences. These datasets are created by randomly concatenating documents of various lengths and then chunking them into sequences of a predetermined target length. However, this method of concatenation can lead to cross-document attention within a sequence, which is neither a desirable learning signal nor computationally efficient. Additionally, training on long sequences becomes computationally prohibitive due to the quadratic cost of attention. In this study, we introduce dataset decomposition, a novel variable sequence length training technique, to tackle these challenges. We decompose a dataset into a union of buckets, each containing sequences of the same size extracted from a unique document. During training, we use variable sequence length and batch size, sampling simultaneously from all buckets with a curriculum. In contrast to the concat-and-chunk baseline, which incurs a fixed attention cost at every step of training, our proposed method incurs a penalty proportional to the actual document lengths at each step, resulting in significant savings in training time. We train an 8k context-length 1B model at the same cost as a 2k context-length model trained with the baseline approach. Experiments on a web-scale corpus demonstrate that our approach significantly enhances performance on standard language evaluations and long-context benchmarks, reaching target accuracy 3x faster compared to the baseline. Our method not only enables efficient pretraining on long sequences but also scales effectively with dataset size. Lastly, we shed light on a critical yet less studied aspect of training large language models: the distribution and curriculum of sequence lengths, which results in a non-negligible difference in performance.
Comateformer: Combined Attention Transformer for Semantic Sentence Matching
The Transformer-based model have made significant strides in semantic matching tasks by capturing connections between phrase pairs. However, to assess the relevance of sentence pairs, it is insufficient to just examine the general similarity between the sentences. It is crucial to also consider the tiny subtleties that differentiate them from each other. Regrettably, attention softmax operations in transformers tend to miss these subtle differences. To this end, in this work, we propose a novel semantic sentence matching model named Combined Attention Network based on Transformer model (Comateformer). In Comateformer model, we design a novel transformer-based quasi-attention mechanism with compositional properties. Unlike traditional attention mechanisms that merely adjust the weights of input tokens, our proposed method learns how to combine, subtract, or resize specific vectors when building a representation. Moreover, our proposed approach builds on the intuition of similarity and dissimilarity (negative affinity) when calculating dual affinity scores. This allows for a more meaningful representation of relationships between sentences. To evaluate the performance of our proposed model, we conducted extensive experiments on ten public real-world datasets and robustness testing. Experimental results show that our method achieves consistent improvements.
Generating Realistic Images from In-the-wild Sounds
Representing wild sounds as images is an important but challenging task due to the lack of paired datasets between sound and images and the significant differences in the characteristics of these two modalities. Previous studies have focused on generating images from sound in limited categories or music. In this paper, we propose a novel approach to generate images from in-the-wild sounds. First, we convert sound into text using audio captioning. Second, we propose audio attention and sentence attention to represent the rich characteristics of sound and visualize the sound. Lastly, we propose a direct sound optimization with CLIPscore and AudioCLIP and generate images with a diffusion-based model. In experiments, it shows that our model is able to generate high quality images from wild sounds and outperforms baselines in both quantitative and qualitative evaluations on wild audio datasets.
Revisiting End-to-End Learning with Slide-level Supervision in Computational Pathology
Pre-trained encoders for offline feature extraction followed by multiple instance learning (MIL) aggregators have become the dominant paradigm in computational pathology (CPath), benefiting cancer diagnosis and prognosis. However, performance limitations arise from the absence of encoder fine-tuning for downstream tasks and disjoint optimization with MIL. While slide-level supervised end-to-end (E2E) learning is an intuitive solution to this issue, it faces challenges such as high computational demands and suboptimal results. These limitations motivate us to revisit E2E learning. We argue that prior work neglects inherent E2E optimization challenges, leading to performance disparities compared to traditional two-stage methods. In this paper, we pioneer the elucidation of optimization challenge caused by sparse-attention MIL and propose a novel MIL called ABMILX. It mitigates this problem through global correlation-based attention refinement and multi-head mechanisms. With the efficient multi-scale random patch sampling strategy, an E2E trained ResNet with ABMILX surpasses SOTA foundation models under the two-stage paradigm across multiple challenging benchmarks, while remaining computationally efficient (<10 RTX3090 hours). We show the potential of E2E learning in CPath and calls for greater research focus in this area. The code is https://github.com/DearCaat/E2E-WSI-ABMILX.
Efficient Long-Range Transformers: You Need to Attend More, but Not Necessarily at Every Layer
Pretrained transformer models have demonstrated remarkable performance across various natural language processing tasks. These models leverage the attention mechanism to capture long- and short-range dependencies in the sequence. However, the (full) attention mechanism incurs high computational cost - quadratic in the sequence length, which is not affordable in tasks with long sequences, e.g., inputs with 8k tokens. Although sparse attention can be used to improve computational efficiency, as suggested in existing work, it has limited modeling capacity and often fails to capture complicated dependencies in long sequences. To tackle this challenge, we propose MASFormer, an easy-to-implement transformer variant with Mixed Attention Spans. Specifically, MASFormer is equipped with full attention to capture long-range dependencies, but only at a small number of layers. For the remaining layers, MASformer only employs sparse attention to capture short-range dependencies. Our experiments on natural language modeling and generation tasks show that a decoder-only MASFormer model of 1.3B parameters can achieve competitive performance to vanilla transformers with full attention while significantly reducing computational cost (up to 75%). Additionally, we investigate the effectiveness of continual training with long sequence data and how sequence length impacts downstream generation performance, which may be of independent interest.
GPT2MVS: Generative Pre-trained Transformer-2 for Multi-modal Video Summarization
Traditional video summarization methods generate fixed video representations regardless of user interest. Therefore such methods limit users' expectations in content search and exploration scenarios. Multi-modal video summarization is one of the methods utilized to address this problem. When multi-modal video summarization is used to help video exploration, a text-based query is considered as one of the main drivers of video summary generation, as it is user-defined. Thus, encoding the text-based query and the video effectively are both important for the task of multi-modal video summarization. In this work, a new method is proposed that uses a specialized attention network and contextualized word representations to tackle this task. The proposed model consists of a contextualized video summary controller, multi-modal attention mechanisms, an interactive attention network, and a video summary generator. Based on the evaluation of the existing multi-modal video summarization benchmark, experimental results show that the proposed model is effective with the increase of +5.88% in accuracy and +4.06% increase of F1-score, compared with the state-of-the-art method.
Language-Guided Music Recommendation for Video via Prompt Analogies
We propose a method to recommend music for an input video while allowing a user to guide music selection with free-form natural language. A key challenge of this problem setting is that existing music video datasets provide the needed (video, music) training pairs, but lack text descriptions of the music. This work addresses this challenge with the following three contributions. First, we propose a text-synthesis approach that relies on an analogy-based prompting procedure to generate natural language music descriptions from a large-scale language model (BLOOM-176B) given pre-trained music tagger outputs and a small number of human text descriptions. Second, we use these synthesized music descriptions to train a new trimodal model, which fuses text and video input representations to query music samples. For training, we introduce a text dropout regularization mechanism which we show is critical to model performance. Our model design allows for the retrieved music audio to agree with the two input modalities by matching visual style depicted in the video and musical genre, mood, or instrumentation described in the natural language query. Third, to evaluate our approach, we collect a testing dataset for our problem by annotating a subset of 4k clips from the YT8M-MusicVideo dataset with natural language music descriptions which we make publicly available. We show that our approach can match or exceed the performance of prior methods on video-to-music retrieval while significantly improving retrieval accuracy when using text guidance.
Effective Approaches to Attention-based Neural Machine Translation
An attentional mechanism has lately been used to improve neural machine translation (NMT) by selectively focusing on parts of the source sentence during translation. However, there has been little work exploring useful architectures for attention-based NMT. This paper examines two simple and effective classes of attentional mechanism: a global approach which always attends to all source words and a local one that only looks at a subset of source words at a time. We demonstrate the effectiveness of both approaches over the WMT translation tasks between English and German in both directions. With local attention, we achieve a significant gain of 5.0 BLEU points over non-attentional systems which already incorporate known techniques such as dropout. Our ensemble model using different attention architectures has established a new state-of-the-art result in the WMT'15 English to German translation task with 25.9 BLEU points, an improvement of 1.0 BLEU points over the existing best system backed by NMT and an n-gram reranker.
InternVideo2.5: Empowering Video MLLMs with Long and Rich Context Modeling
This paper aims to improve the performance of video multimodal large language models (MLLM) via long and rich context (LRC) modeling. As a result, we develop a new version of InternVideo2.5 with a focus on enhancing the original MLLMs' ability to perceive fine-grained details and capture long-form temporal structure in videos. Specifically, our approach incorporates dense vision task annotations into MLLMs using direct preference optimization and develops compact spatiotemporal representations through adaptive hierarchical token compression. Experimental results demonstrate this unique design of LRC greatly improves the results of video MLLM in mainstream video understanding benchmarks (short & long), enabling the MLLM to memorize significantly longer video inputs (at least 6x longer than the original), and master specialized vision capabilities like object tracking and segmentation. Our work highlights the importance of multimodal context richness (length and fineness) in empowering MLLM's innate abilites (focus and memory), providing new insights for future research on video MLLM. Code and models are available at https://github.com/OpenGVLab/InternVideo/tree/main/InternVideo2.5
CNN-based MultiChannel End-to-End Speech Recognition for everyday home environments
Casual conversations involving multiple speakers and noises from surrounding devices are common in everyday environments, which degrades the performances of automatic speech recognition systems. These challenging characteristics of environments are the target of the CHiME-5 challenge. By employing a convolutional neural network (CNN)-based multichannel end-to-end speech recognition system, this study attempts to overcome the presents difficulties in everyday environments. The system comprises of an attention-based encoder-decoder neural network that directly generates a text as an output from a sound input. The multichannel CNN encoder, which uses residual connections and batch renormalization, is trained with augmented data, including white noise injection. The experimental results show that the word error rate is reduced by 8.5% and 0.6% absolute from a single channel end-to-end and the best baseline (LF-MMI TDNN) on the CHiME-5 corpus, respectively.
Softplus Attention with Re-weighting Boosts Length Extrapolation in Large Language Models
Large language models have achieved remarkable success in recent years, primarily due to the implementation of self-attention mechanisms. However, traditional Softmax attention suffers from numerical instability and reduced performance as the length of inference tokens increases. This paper addresses these issues by decomposing the Softmax operation into a non-linear transformation and the l_1-norm. We identify the latter as essential for maintaining model performance. By replacing the non-linear transformation with the Softplus activation function and introducing a dynamic scale factor for different token lengths based on invariance entropy, we create a novel attention mechanism with performance better than conventional Softmax attention across various inference lengths. To further improve the length extrapolation ability of the proposed attention mechanism, we introduce a fine-tuning-free re-weighting mechanism that amplifies significant attention weights while diminishing weaker ones, enabling the model to concentrate more effectively on relevant tokens without requiring retraining. When combined with our proposed attention mechanism, this approach demonstrates significant promise in managing longer sequences, maintaining nearly constant validation loss even at 16times the training token length while ensuring numerical stability. Our code is available at: https://github.com/iminfine/freeatten.
SpargeAttn: Accurate Sparse Attention Accelerating Any Model Inference
An efficient attention implementation is essential for large models due to its quadratic time complexity. Fortunately, attention commonly exhibits sparsity, i.e., many values in the attention map are near zero, allowing for the omission of corresponding computations. Many studies have utilized the sparse pattern to accelerate attention. However, most existing works focus on optimizing attention within specific models by exploiting certain sparse patterns of the attention map. A universal sparse attention that guarantees both the speedup and end-to-end performance of diverse models remains elusive. In this paper, we propose SpargeAttn, a universal sparse and quantized attention for any model. Our method uses a two-stage online filter: in the first stage, we rapidly and accurately predict the attention map, enabling the skip of some matrix multiplications in attention. In the second stage, we design an online softmax-aware filter that incurs no extra overhead and further skips some matrix multiplications. Experiments show that our method significantly accelerates diverse models, including language, image, and video generation, without sacrificing end-to-end metrics. The codes are available at https://github.com/thu-ml/SpargeAttn.
VMAS: Video-to-Music Generation via Semantic Alignment in Web Music Videos
We present a framework for learning to generate background music from video inputs. Unlike existing works that rely on symbolic musical annotations, which are limited in quantity and diversity, our method leverages large-scale web videos accompanied by background music. This enables our model to learn to generate realistic and diverse music. To accomplish this goal, we develop a generative video-music Transformer with a novel semantic video-music alignment scheme. Our model uses a joint autoregressive and contrastive learning objective, which encourages the generation of music aligned with high-level video content. We also introduce a novel video-beat alignment scheme to match the generated music beats with the low-level motions in the video. Lastly, to capture fine-grained visual cues in a video needed for realistic background music generation, we introduce a new temporal video encoder architecture, allowing us to efficiently process videos consisting of many densely sampled frames. We train our framework on our newly curated DISCO-MV dataset, consisting of 2.2M video-music samples, which is orders of magnitude larger than any prior datasets used for video music generation. Our method outperforms existing approaches on the DISCO-MV and MusicCaps datasets according to various music generation evaluation metrics, including human evaluation. Results are available at https://genjib.github.io/project_page/VMAs/index.html
Modality Mixer Exploiting Complementary Information for Multi-modal Action Recognition
Due to the distinctive characteristics of sensors, each modality exhibits unique physical properties. For this reason, in the context of multi-modal action recognition, it is important to consider not only the overall action content but also the complementary nature of different modalities. In this paper, we propose a novel network, named Modality Mixer (M-Mixer) network, which effectively leverages and incorporates the complementary information across modalities with the temporal context of actions for action recognition. A key component of our proposed M-Mixer is the Multi-modal Contextualization Unit (MCU), a simple yet effective recurrent unit. Our MCU is responsible for temporally encoding a sequence of one modality (e.g., RGB) with action content features of other modalities (e.g., depth and infrared modalities). This process encourages M-Mixer network to exploit global action content and also to supplement complementary information of other modalities. Furthermore, to extract appropriate complementary information regarding to the given modality settings, we introduce a new module, named Complementary Feature Extraction Module (CFEM). CFEM incorporates sepearte learnable query embeddings for each modality, which guide CFEM to extract complementary information and global action content from the other modalities. As a result, our proposed method outperforms state-of-the-art methods on NTU RGB+D 60, NTU RGB+D 120, and NW-UCLA datasets. Moreover, through comprehensive ablation studies, we further validate the effectiveness of our proposed method.
MCQA: Multimodal Co-attention Based Network for Question Answering
We present MCQA, a learning-based algorithm for multimodal question answering. MCQA explicitly fuses and aligns the multimodal input (i.e. text, audio, and video), which forms the context for the query (question and answer). Our approach fuses and aligns the question and the answer within this context. Moreover, we use the notion of co-attention to perform cross-modal alignment and multimodal context-query alignment. Our context-query alignment module matches the relevant parts of the multimodal context and the query with each other and aligns them to improve the overall performance. We evaluate the performance of MCQA on Social-IQ, a benchmark dataset for multimodal question answering. We compare the performance of our algorithm with prior methods and observe an accuracy improvement of 4-7%.
TidalDecode: Fast and Accurate LLM Decoding with Position Persistent Sparse Attention
Large language models (LLMs) have driven significant advancements across diverse NLP tasks, with long-context models gaining prominence for handling extended inputs. However, the expanding key-value (KV) cache size required by Transformer architectures intensifies the memory constraints, particularly during the decoding phase, creating a significant bottleneck. Existing sparse attention mechanisms designed to address this bottleneck have two limitations: (1) they often fail to reliably identify the most relevant tokens for attention, and (2) they overlook the spatial coherence of token selection across consecutive Transformer layers, which can lead to performance degradation and substantial overhead in token selection. This paper introduces TidalDecode, a simple yet effective algorithm and system for fast and accurate LLM decoding through position persistent sparse attention. TidalDecode leverages the spatial coherence of tokens selected by existing sparse attention methods and introduces a few token selection layers that perform full attention to identify the tokens with the highest attention scores, while all other layers perform sparse attention with the pre-selected tokens. This design enables TidalDecode to substantially reduce the overhead of token selection for sparse attention without sacrificing the quality of the generated results. Evaluation on a diverse set of LLMs and tasks shows that TidalDecode closely matches the generative performance of full attention methods while reducing the LLM decoding latency by up to 2.1x.
Star Attention: Efficient LLM Inference over Long Sequences
Inference with Transformer-based Large Language Models (LLMs) on long sequences is both costly and slow due to the quadratic complexity of the self-attention mechanism. We introduce Star Attention, a two-phase block-sparse approximation that improves computational efficiency by sharding attention across multiple hosts while minimizing communication overhead. In the first phase, the context is processed using blockwise-local attention across hosts, in parallel. In the second phase, query and response tokens attend to all prior cached tokens through sequence-global attention. Star Attention integrates seamlessly with most Transformer-based LLMs trained with global attention, reducing memory requirements and inference time by up to 11x while preserving 95-100% of accuracy.
CrossLMM: Decoupling Long Video Sequences from LMMs via Dual Cross-Attention Mechanisms
The advent of Large Multimodal Models (LMMs) has significantly enhanced Large Language Models (LLMs) to process and interpret diverse data modalities (e.g., image and video). However, as input complexity increases, particularly with long video sequences, the number of required tokens has grown significantly, leading to quadratically computational costs. This has made the efficient compression of video tokens in LMMs, while maintaining performance integrity, a pressing research challenge. In this paper, we introduce CrossLMM, decoupling long video sequences from LMMs via a dual cross-attention mechanism, which substantially reduces visual token quantity with minimal performance degradation. Specifically, we first implement a significant token reduction from pretrained visual encoders through a pooling methodology. Then, within LLM layers, we employ a visual-to-visual cross-attention mechanism, wherein the pooled visual tokens function as queries against the original visual token set. This module enables more efficient token utilization while retaining fine-grained informational fidelity. In addition, we introduce a text-to-visual cross-attention mechanism, for which the text tokens are enhanced through interaction with the original visual tokens, enriching the visual comprehension of the text tokens. Comprehensive empirical evaluation demonstrates that our approach achieves comparable or superior performance across diverse video-based LMM benchmarks, despite utilizing substantially fewer computational resources.
Browse and Concentrate: Comprehending Multimodal Content via prior-LLM Context Fusion
With the bloom of Large Language Models (LLMs), Multimodal Large Language Models (MLLMs) that incorporate LLMs with pre-trained vision models have recently demonstrated impressive performance across diverse vision-language tasks. However, they fall short to comprehend context involving multiple images. A primary reason for this shortcoming is that the visual features for each images are encoded individually by frozen encoders before feeding into the LLM backbone, lacking awareness of other images and the multimodal instructions. We term this issue as prior-LLM modality isolation and propose a two phase paradigm, browse-and-concentrate, to enable in-depth multimodal context fusion prior to feeding the features into LLMs. This paradigm initially "browses" through the inputs for essential insights, and then revisits the inputs to "concentrate" on crucial details, guided by these insights, to achieve a more comprehensive understanding of the multimodal inputs. Additionally, we develop training strategies specifically to enhance the understanding of multi-image inputs. Our method markedly boosts the performance on 7 multi-image scenarios, contributing to increments on average accuracy by 2.13% and 7.60% against strong MLLMs baselines with 3B and 11B LLMs, respectively.
SLEEPING-DISCO 9M: A large-scale pre-training dataset for generative music modeling
We present Sleeping-DISCO 9M, a large-scale pre-training dataset for music and song. To the best of our knowledge, there are no open-source high-quality dataset representing popular and well-known songs for generative music modeling tasks such as text-music, music-captioning, singing-voice synthesis, melody reconstruction and cross-model retrieval. Past contributions focused on isolated and constrained factors whose core perspective was to create synthetic or re-recorded music corpus (e.g. GTSinger, M4Singer) and arbitrarily large-scale audio datasets (e.g. DISCO-10M and LAIONDISCO-12M) had been another focus for the community. Unfortunately, adoption of these datasets has been below substantial in the generative music community as these datasets fail to reflect real-world music and its flavour. Our dataset changes this narrative and provides a dataset that is constructed using actual popular music and world-renowned artists.
AV-Link: Temporally-Aligned Diffusion Features for Cross-Modal Audio-Video Generation
We propose AV-Link, a unified framework for Video-to-Audio and Audio-to-Video generation that leverages the activations of frozen video and audio diffusion models for temporally-aligned cross-modal conditioning. The key to our framework is a Fusion Block that enables bidirectional information exchange between our backbone video and audio diffusion models through a temporally-aligned self attention operation. Unlike prior work that uses feature extractors pretrained for other tasks for the conditioning signal, AV-Link can directly leverage features obtained by the complementary modality in a single framework i.e. video features to generate audio, or audio features to generate video. We extensively evaluate our design choices and demonstrate the ability of our method to achieve synchronized and high-quality audiovisual content, showcasing its potential for applications in immersive media generation. Project Page: snap-research.github.io/AVLink/
Efficient Content-Based Sparse Attention with Routing Transformers
Self-attention has recently been adopted for a wide range of sequence modeling problems. Despite its effectiveness, self-attention suffers from quadratic compute and memory requirements with respect to sequence length. Successful approaches to reduce this complexity focused on attending to local sliding windows or a small set of locations independent of content. Our work proposes to learn dynamic sparse attention patterns that avoid allocating computation and memory to attend to content unrelated to the query of interest. This work builds upon two lines of research: it combines the modeling flexibility of prior work on content-based sparse attention with the efficiency gains from approaches based on local, temporal sparse attention. Our model, the Routing Transformer, endows self-attention with a sparse routing module based on online k-means while reducing the overall complexity of attention to Oleft(n^{1.5}dright) from Oleft(n^2dright) for sequence length n and hidden dimension d. We show that our model outperforms comparable sparse attention models on language modeling on Wikitext-103 (15.8 vs 18.3 perplexity) as well as on image generation on ImageNet-64 (3.43 vs 3.44 bits/dim) while using fewer self-attention layers. Additionally, we set a new state-of-the-art on the newly released PG-19 data-set, obtaining a test perplexity of 33.2 with a 22 layer Routing Transformer model trained on sequences of length 8192.
AudioGen-Omni: A Unified Multimodal Diffusion Transformer for Video-Synchronized Audio, Speech, and Song Generation
We present AudioGen-Omni - a unified approach based on multimodal diffusion transformers (MMDit), capable of generating high-fidelity audio, speech, and song coherently synchronized with the input video. AudioGen-Omni introduces a novel joint training paradigm that seamlessly integrates large-scale video-text-audio corpora, enabling a model capable of generating semantically rich, acoustically diverse audio conditioned on multimodal inputs and adaptable to a wide range of audio generation tasks. AudioGen-Omni employs a unified lyrics-transcription encoder that encodes graphemes and phonemes from both song and spoken inputs into dense frame-level representations. Dense frame-level representations are fused using an AdaLN-based joint attention mechanism enhanced with phase-aligned anisotropic positional infusion (PAAPI), wherein RoPE is selectively applied to temporally structured modalities to ensure precise and robust cross-modal alignment. By unfreezing all modalities and masking missing inputs, AudioGen-Omni mitigates the semantic constraints of text-frozen paradigms, enabling effective cross-modal conditioning. This joint training approach enhances audio quality, semantic alignment, and lip-sync accuracy, while also achieving state-of-the-art results on Text-to-Audio/Speech/Song tasks. With an inference time of 1.91 seconds for 8 seconds of audio, it offers substantial improvements in both efficiency and generality.
Multimodal Needle in a Haystack: Benchmarking Long-Context Capability of Multimodal Large Language Models
Multimodal Large Language Models (MLLMs) have shown significant promise in various applications, leading to broad interest from researchers and practitioners alike. However, a comprehensive evaluation of their long-context capabilities remains underexplored. To address these gaps, we introduce the MultiModal Needle-in-a-haystack (MMNeedle) benchmark, specifically designed to assess the long-context capabilities of MLLMs. Besides multi-image input, we employ image stitching to further increase the input context length, and develop a protocol to automatically generate labels for sub-image level retrieval. Essentially, MMNeedle evaluates MLLMs by stress-testing their capability to locate a target sub-image (needle) within a set of images (haystack) based on textual instructions and descriptions of image contents. This setup necessitates an advanced understanding of extensive visual contexts and effective information retrieval within long-context image inputs. With this benchmark, we evaluate state-of-the-art MLLMs, encompassing both API-based and open-source models. The findings reveal that GPT-4o consistently surpasses other models in long-context scenarios, but suffers from hallucination problems in negative samples, i.e., when needles are not in the haystacks. Our comprehensive long-context evaluation of MLLMs also sheds lights on the considerable performance gap between API-based and open-source models. All the code, data, and instructions required to reproduce the main results are available at https://github.com/Wang-ML-Lab/multimodal-needle-in-a-haystack.
Fortify the Shortest Stave in Attention: Enhancing Context Awareness of Large Language Models for Effective Tool Use
In this paper, we demonstrate that an inherent waveform pattern in the attention allocation of large language models (LLMs) significantly affects their performance in tasks demanding a high degree of context awareness, such as utilizing LLMs for tool-use. Specifically, the crucial information in the context will be potentially overlooked by model when it is positioned in the trough zone of the attention waveform, leading to decreased performance. To address this issue, we propose a novel inference method named Attention Buckets. It allows LLMs to process their input through multiple parallel processes. Each process utilizes a distinct base angle for the rotary position embedding, thereby creating a unique attention waveform. By compensating an attention trough of a particular process with an attention peak of another process, our approach enhances LLM's awareness to various contextual positions, thus mitigating the risk of overlooking crucial information. In the largest tool-use benchmark, our method elevates a 7B model to achieve state-of-the-art performance, comparable to that of GPT-4. On other benchmarks and some RAG tasks, which also demand a thorough understanding of contextual content, Attention Buckets also exhibited notable enhancements in performance.
MMDenseLSTM: An efficient combination of convolutional and recurrent neural networks for audio source separation
Deep neural networks have become an indispensable technique for audio source separation (ASS). It was recently reported that a variant of CNN architecture called MMDenseNet was successfully employed to solve the ASS problem of estimating source amplitudes, and state-of-the-art results were obtained for DSD100 dataset. To further enhance MMDenseNet, here we propose a novel architecture that integrates long short-term memory (LSTM) in multiple scales with skip connections to efficiently model long-term structures within an audio context. The experimental results show that the proposed method outperforms MMDenseNet, LSTM and a blend of the two networks. The number of parameters and processing time of the proposed model are significantly less than those for simple blending. Furthermore, the proposed method yields better results than those obtained using ideal binary masks for a singing voice separation task.
Exploring Multimodal Diffusion Transformers for Enhanced Prompt-based Image Editing
Transformer-based diffusion models have recently superseded traditional U-Net architectures, with multimodal diffusion transformers (MM-DiT) emerging as the dominant approach in state-of-the-art models like Stable Diffusion 3 and Flux.1. Previous approaches have relied on unidirectional cross-attention mechanisms, with information flowing from text embeddings to image latents. In contrast, MMDiT introduces a unified attention mechanism that concatenates input projections from both modalities and performs a single full attention operation, allowing bidirectional information flow between text and image branches. This architectural shift presents significant challenges for existing editing techniques. In this paper, we systematically analyze MM-DiT's attention mechanism by decomposing attention matrices into four distinct blocks, revealing their inherent characteristics. Through these analyses, we propose a robust, prompt-based image editing method for MM-DiT that supports global to local edits across various MM-DiT variants, including few-step models. We believe our findings bridge the gap between existing U-Net-based methods and emerging architectures, offering deeper insights into MMDiT's behavioral patterns.
SPMTrack: Spatio-Temporal Parameter-Efficient Fine-Tuning with Mixture of Experts for Scalable Visual Tracking
Most state-of-the-art trackers adopt one-stream paradigm, using a single Vision Transformer for joint feature extraction and relation modeling of template and search region images. However, relation modeling between different image patches exhibits significant variations. For instance, background regions dominated by target-irrelevant information require reduced attention allocation, while foreground, particularly boundary areas, need to be be emphasized. A single model may not effectively handle all kinds of relation modeling simultaneously. In this paper, we propose a novel tracker called SPMTrack based on mixture-of-experts tailored for visual tracking task (TMoE), combining the capability of multiple experts to handle diverse relation modeling more flexibly. Benefiting from TMoE, we extend relation modeling from image pairs to spatio-temporal context, further improving tracking accuracy with minimal increase in model parameters. Moreover, we employ TMoE as a parameter-efficient fine-tuning method, substantially reducing trainable parameters, which enables us to train SPMTrack of varying scales efficiently and preserve the generalization ability of pretrained models to achieve superior performance. We conduct experiments on seven datasets, and experimental results demonstrate that our method significantly outperforms current state-of-the-art trackers. The source code is available at https://github.com/WenRuiCai/SPMTrack.
Mixture of Contexts for Long Video Generation
Long video generation is fundamentally a long context memory problem: models must retain and retrieve salient events across a long range without collapsing or drifting. However, scaling diffusion transformers to generate long-context videos is fundamentally limited by the quadratic cost of self-attention, which makes memory and computation intractable and difficult to optimize for long sequences. We recast long-context video generation as an internal information retrieval task and propose a simple, learnable sparse attention routing module, Mixture of Contexts (MoC), as an effective long-term memory retrieval engine. In MoC, each query dynamically selects a few informative chunks plus mandatory anchors (caption, local windows) to attend to, with causal routing that prevents loop closures. As we scale the data and gradually sparsify the routing, the model allocates compute to salient history, preserving identities, actions, and scenes over minutes of content. Efficiency follows as a byproduct of retrieval (near-linear scaling), which enables practical training and synthesis, and the emergence of memory and consistency at the scale of minutes.
SiMBA: Simplified Mamba-Based Architecture for Vision and Multivariate Time series
Transformers have widely adopted attention networks for sequence mixing and MLPs for channel mixing, playing a pivotal role in achieving breakthroughs across domains. However, recent literature highlights issues with attention networks, including low inductive bias and quadratic complexity concerning input sequence length. State Space Models (SSMs) like S4 and others (Hippo, Global Convolutions, liquid S4, LRU, Mega, and Mamba), have emerged to address the above issues to help handle longer sequence lengths. Mamba, while being the state-of-the-art SSM, has a stability issue when scaled to large networks for computer vision datasets. We propose SiMBA, a new architecture that introduces Einstein FFT (EinFFT) for channel modeling by specific eigenvalue computations and uses the Mamba block for sequence modeling. Extensive performance studies across image and time-series benchmarks demonstrate that SiMBA outperforms existing SSMs, bridging the performance gap with state-of-the-art transformers. Notably, SiMBA establishes itself as the new state-of-the-art SSM on ImageNet and transfer learning benchmarks such as Stanford Car and Flower as well as task learning benchmarks as well as seven time series benchmark datasets. The project page is available on this website ~https://github.com/badripatro/Simba.
Visual Features for Context-Aware Speech Recognition
Automatic transcriptions of consumer-generated multi-media content such as "Youtube" videos still exhibit high word error rates. Such data typically occupies a very broad domain, has been recorded in challenging conditions, with cheap hardware and a focus on the visual modality, and may have been post-processed or edited. In this paper, we extend our earlier work on adapting the acoustic model of a DNN-based speech recognition system to an RNN language model and show how both can be adapted to the objects and scenes that can be automatically detected in the video. We are working on a corpus of "how-to" videos from the web, and the idea is that an object that can be seen ("car"), or a scene that is being detected ("kitchen") can be used to condition both models on the "context" of the recording, thereby reducing perplexity and improving transcription. We achieve good improvements in both cases and compare and analyze the respective reductions in word error rate. We expect that our results can be used for any type of speech processing in which "context" information is available, for example in robotics, man-machine interaction, or when indexing large audio-visual archives, and should ultimately help to bring together the "video-to-text" and "speech-to-text" communities.
Mega: Moving Average Equipped Gated Attention
The design choices in the Transformer attention mechanism, including weak inductive bias and quadratic computational complexity, have limited its application for modeling long sequences. In this paper, we introduce Mega, a simple, theoretically grounded, single-head gated attention mechanism equipped with (exponential) moving average to incorporate inductive bias of position-aware local dependencies into the position-agnostic attention mechanism. We further propose a variant of Mega that offers linear time and space complexity yet yields only minimal quality loss, by efficiently splitting the whole sequence into multiple chunks with fixed length. Extensive experiments on a wide range of sequence modeling benchmarks, including the Long Range Arena, neural machine translation, auto-regressive language modeling, and image and speech classification, show that Mega achieves significant improvements over other sequence models, including variants of Transformers and recent state space models.
DuoAttention: Efficient Long-Context LLM Inference with Retrieval and Streaming Heads
Deploying long-context large language models (LLMs) is essential but poses significant computational and memory challenges. Caching all Key and Value (KV) states across all attention heads consumes substantial memory. Existing KV cache pruning methods either damage the long-context capabilities of LLMs or offer only limited efficiency improvements. In this paper, we identify that only a fraction of attention heads, a.k.a, Retrieval Heads, are critical for processing long contexts and require full attention across all tokens. In contrast, all other heads, which primarily focus on recent tokens and attention sinks--referred to as Streaming Heads--do not require full attention. Based on this insight, we introduce DuoAttention, a framework that only applies a full KV cache to retrieval heads while using a light-weight, constant-length KV cache for streaming heads, which reduces both LLM's decoding and pre-filling memory and latency without compromising its long-context abilities. DuoAttention uses a lightweight, optimization-based algorithm with synthetic data to identify retrieval heads accurately. Our method significantly reduces long-context inference memory by up to 2.55x for MHA and 1.67x for GQA models while speeding up decoding by up to 2.18x and 1.50x and accelerating pre-filling by up to 1.73x and 1.63x for MHA and GQA models, respectively, with minimal accuracy loss compared to full attention. Notably, combined with quantization, DuoAttention enables Llama-3-8B decoding with 3.3 million context length on a single A100 GPU. Code is provided in https://github.com/mit-han-lab/duo-attention.
Sparse-to-Dense: A Free Lunch for Lossless Acceleration of Video Understanding in LLMs
Due to the auto-regressive nature of current video large language models (Video-LLMs), the inference latency increases as the input sequence length grows, posing challenges for the efficient processing of video sequences that are usually very long. We observe that during decoding, the attention scores of most tokens in Video-LLMs tend to be sparse and concentrated, with only certain tokens requiring comprehensive full attention. Based on this insight, we introduce Sparse-to-Dense (StD), a novel decoding strategy that integrates two distinct modules: one leveraging sparse top-K attention and the other employing dense full attention. These modules collaborate to accelerate Video-LLMs without loss. The fast (sparse) model speculatively decodes multiple tokens, while the slow (dense) model verifies them in parallel. StD is a tuning-free, plug-and-play solution that achieves up to a 1.94times walltime speedup in video processing. It maintains model performance while enabling a seamless transition from a standard Video-LLM to a sparse Video-LLM with minimal code modifications.
SelectMix: Enhancing Label Noise Robustness through Targeted Sample Mixing
Deep neural networks tend to memorize noisy labels, severely degrading their generalization performance. Although Mixup has demonstrated effectiveness in improving generalization and robustness, existing Mixup-based methods typically perform indiscriminate mixing without principled guidance on sample selection and mixing strategy, inadvertently propagating noisy supervision. To overcome these limitations, we propose SelectMix, a confidence-guided mixing framework explicitly tailored for noisy labels. SelectMix first identifies potentially noisy or ambiguous samples through confidence based mismatch analysis using K-fold cross-validation, then selectively blends identified uncertain samples with confidently predicted peers from their potential classes. Furthermore, SelectMix employs soft labels derived from all classes involved in the mixing process, ensuring the labels accurately represent the composition of the mixed samples, thus aligning supervision signals closely with the actual mixed inputs. Through extensive theoretical analysis and empirical evaluations on multiple synthetic (MNIST, Fashion-MNIST, CIFAR-10, CIFAR-100) and real-world benchmark datasets (CIFAR-N, MNIST and Clothing1M), we demonstrate that SelectMix consistently outperforms strong baseline methods, validating its effectiveness and robustness in learning with noisy labels.
LeVo: High-Quality Song Generation with Multi-Preference Alignment
Recent advances in large language models (LLMs) and audio language models have significantly improved music generation, particularly in lyrics-to-song generation. However, existing approaches still struggle with the complex composition of songs and the scarcity of high-quality data, leading to limitations in sound quality, musicality, instruction following, and vocal-instrument harmony. To address these challenges, we introduce LeVo, an LM-based framework consisting of LeLM and a music codec. LeLM is capable of parallelly modeling two types of tokens: mixed tokens, which represent the combined audio of vocals and accompaniment to achieve vocal-instrument harmony, and dual-track tokens, which separately encode vocals and accompaniment for high-quality song generation. It employs two decoder-only transformers and a modular extension training strategy to prevent interference between different token types. To further enhance musicality and instruction following, we introduce a multi-preference alignment method based on Direct Preference Optimization (DPO). This method handles diverse human preferences through a semi-automatic data construction process and DPO post-training. Experimental results demonstrate that LeVo consistently outperforms existing methods on both objective and subjective metrics. Ablation studies further justify the effectiveness of our designs. Audio examples are available at https://levo-demo.github.io/.
WhisQ: Cross-Modal Representation Learning for Text-to-Music MOS Prediction
Mean Opinion Score (MOS) prediction for text to music systems requires evaluating both overall musical quality and text prompt alignment. This paper introduces WhisQ, a multimodal architecture that addresses this dual-assessment challenge through sequence level co-attention and optimal transport regularization. WhisQ employs the Whisper Base pretrained model for temporal audio encoding and Qwen 3, a 0.6B Small Language Model (SLM), for text encoding, with both maintaining sequence structure for fine grained cross-modal modeling. The architecture features specialized prediction pathways: OMQ is predicted from pooled audio embeddings, while TA leverages bidirectional sequence co-attention between audio and text. Sinkhorn optimal transport loss further enforce semantic alignment in the shared embedding space. On the MusicEval Track-1 dataset, WhisQ achieves substantial improvements over the baseline: 7% improvement in Spearman correlation for OMQ and 14% for TA. Ablation studies reveal that optimal transport regularization provides the largest performance gain (10% SRCC improvement), demonstrating the importance of explicit cross-modal alignment for text-to-music evaluation.
Harnessing Hard Mixed Samples with Decoupled Regularizer
Mixup is an efficient data augmentation approach that improves the generalization of neural networks by smoothing the decision boundary with mixed data. Recently, dynamic mixup methods have improved previous static policies effectively (e.g., linear interpolation) by maximizing target-related salient regions in mixed samples, but excessive additional time costs are not acceptable. These additional computational overheads mainly come from optimizing the mixed samples according to the mixed labels. However, we found that the extra optimizing step may be redundant because label-mismatched mixed samples are informative hard mixed samples for deep models to localize discriminative features. In this paper, we thus are not trying to propose a more complicated dynamic mixup policy but rather an efficient mixup objective function with a decoupled regularizer named Decoupled Mixup (DM). The primary effect is that DM can adaptively utilize those hard mixed samples to mine discriminative features without losing the original smoothness of mixup. As a result, DM enables static mixup methods to achieve comparable or even exceed the performance of dynamic methods without any extra computation. This also leads to an interesting objective design problem for mixup training that we need to focus on both smoothing the decision boundaries and identifying discriminative features. Extensive experiments on supervised and semi-supervised learning benchmarks across seven datasets validate the effectiveness of DM as a plug-and-play module. Source code and models are available at https://github.com/Westlake-AI/openmixup
Align and Attend: Multimodal Summarization with Dual Contrastive Losses
The goal of multimodal summarization is to extract the most important information from different modalities to form output summaries. Unlike the unimodal summarization, the multimodal summarization task explicitly leverages cross-modal information to help generate more reliable and high-quality summaries. However, existing methods fail to leverage the temporal correspondence between different modalities and ignore the intrinsic correlation between different samples. To address this issue, we introduce Align and Attend Multimodal Summarization (A2Summ), a unified multimodal transformer-based model which can effectively align and attend the multimodal input. In addition, we propose two novel contrastive losses to model both inter-sample and intra-sample correlations. Extensive experiments on two standard video summarization datasets (TVSum and SumMe) and two multimodal summarization datasets (Daily Mail and CNN) demonstrate the superiority of A2Summ, achieving state-of-the-art performances on all datasets. Moreover, we collected a large-scale multimodal summarization dataset BLiSS, which contains livestream videos and transcribed texts with annotated summaries. Our code and dataset are publicly available at ~https://boheumd.github.io/A2Summ/.
Registering Source Tokens to Target Language Spaces in Multilingual Neural Machine Translation
The multilingual neural machine translation (MNMT) enables arbitrary translations across multiple languages by training a model with limited parameters using parallel data only. However, the performance of such MNMT models still lags behind that of large language models (LLMs), limiting their practicality. In this work, we address this limitation by introducing registering to achieve the new state-of-the-art of decoder-only MNMT models. Specifically, we insert a set of artificial tokens specifying the target language, called registers, into the input sequence between the source and target tokens. By modifying the attention mask, the target token generation only pays attention to the activation of registers, representing the source tokens in the target language space. Experiments on EC-40, a large-scale benchmark, show that our method outperforms related methods driven by optimizing multilingual representations. We further scale up and collect 9.3 billion sentence pairs across 24 languages from public datasets to pre-train two models, namely MITRE (multilingual translation with registers). One of them, MITRE-913M, outperforms NLLB-3.3B, achieves comparable performance with commercial LLMs, and shows strong adaptability in fine-tuning. Finally, we open-source our models to facilitate further research and development in MNMT: https://github.com/zhiqu22/mitre.
JAM: A Tiny Flow-based Song Generator with Fine-grained Controllability and Aesthetic Alignment
Diffusion and flow-matching models have revolutionized automatic text-to-audio generation in recent times. These models are increasingly capable of generating high quality and faithful audio outputs capturing to speech and acoustic events. However, there is still much room for improvement in creative audio generation that primarily involves music and songs. Recent open lyrics-to-song models, such as, DiffRhythm, ACE-Step, and LeVo, have set an acceptable standard in automatic song generation for recreational use. However, these models lack fine-grained word-level controllability often desired by musicians in their workflows. To the best of our knowledge, our flow-matching-based JAM is the first effort toward endowing word-level timing and duration control in song generation, allowing fine-grained vocal control. To enhance the quality of generated songs to better align with human preferences, we implement aesthetic alignment through Direct Preference Optimization, which iteratively refines the model using a synthetic dataset, eliminating the need or manual data annotations. Furthermore, we aim to standardize the evaluation of such lyrics-to-song models through our public evaluation dataset JAME. We show that JAM outperforms the existing models in terms of the music-specific attributes.
Linear Log-Normal Attention with Unbiased Concentration
Transformer models have achieved remarkable results in a wide range of applications. However, their scalability is hampered by the quadratic time and memory complexity of the self-attention mechanism concerning the sequence length. This limitation poses a substantial obstacle when dealing with long documents or high-resolution images. In this work, we study the self-attention mechanism by analyzing the distribution of the attention matrix and its concentration ability. Furthermore, we propose instruments to measure these quantities and introduce a novel self-attention mechanism, Linear Log-Normal Attention, designed to emulate the distribution and concentration behavior of the original self-attention. Our experimental results on popular natural language benchmarks reveal that our proposed Linear Log-Normal Attention outperforms other linearized attention alternatives, offering a promising avenue for enhancing the scalability of transformer models. Our code is available in supplementary materials.
OverLoCK: An Overview-first-Look-Closely-next ConvNet with Context-Mixing Dynamic Kernels
Top-down attention plays a crucial role in the human vision system, wherein the brain initially obtains a rough overview of a scene to discover salient cues (i.e., overview first), followed by a more careful finer-grained examination (i.e., look closely next). However, modern ConvNets remain confined to a pyramid structure that successively downsamples the feature map for receptive field expansion, neglecting this crucial biomimetic principle. We present OverLoCK, the first pure ConvNet backbone architecture that explicitly incorporates a top-down attention mechanism. Unlike pyramid backbone networks, our design features a branched architecture with three synergistic sub-networks: 1) a Base-Net that encodes low/mid-level features; 2) a lightweight Overview-Net that generates dynamic top-down attention through coarse global context modeling (i.e., overview first); and 3) a robust Focus-Net that performs finer-grained perception guided by top-down attention (i.e., look closely next). To fully unleash the power of top-down attention, we further propose a novel context-mixing dynamic convolution (ContMix) that effectively models long-range dependencies while preserving inherent local inductive biases even when the input resolution increases, addressing critical limitations in existing convolutions. Our OverLoCK exhibits a notable performance improvement over existing methods. For instance, OverLoCK-T achieves a Top-1 accuracy of 84.2%, significantly surpassing ConvNeXt-B while using only around one-third of the FLOPs/parameters. On object detection, our OverLoCK-S clearly surpasses MogaNet-B by 1% in AP^b. On semantic segmentation, our OverLoCK-T remarkably improves UniRepLKNet-T by 1.7% in mIoU. Code is publicly available at https://github.com/LMMMEng/OverLoCK.
Towards Micro-video Thumbnail Selection via a Multi-label Visual-semantic Embedding Model
The thumbnail, as the first sight of a micro-video, plays a pivotal role in attracting users to click and watch. While in the real scenario, the more the thumbnails satisfy the users, the more likely the micro-videos will be clicked. In this paper, we aim to select the thumbnail of a given micro-video that meets most users` interests. Towards this end, we present a multi-label visual-semantic embedding model to estimate the similarity between the pair of each frame and the popular topics that users are interested in. In this model, the visual and textual information is embedded into a shared semantic space, whereby the similarity can be measured directly, even the unseen words. Moreover, to compare the frame to all words from the popular topics, we devise an attention embedding space associated with the semantic-attention projection. With the help of these two embedding spaces, the popularity score of a frame, which is defined by the sum of similarity scores over the corresponding visual information and popular topic pairs, is achieved. Ultimately, we fuse the visual representation score and the popularity score of each frame to select the attractive thumbnail for the given micro-video. Extensive experiments conducted on a real-world dataset have well-verified that our model significantly outperforms several state-of-the-art baselines.
MoGA: Mixture-of-Groups Attention for End-to-End Long Video Generation
Long video generation with Diffusion Transformers (DiTs) is bottlenecked by the quadratic scaling of full attention with sequence length. Since attention is highly redundant, outputs are dominated by a small subset of query-key pairs. Existing sparse methods rely on blockwise coarse estimation, whose accuracy-efficiency trade-offs are constrained by block size. This paper introduces Mixture-of-Groups Attention (MoGA), an efficient sparse attention that uses a lightweight, learnable token router to precisely match tokens without blockwise estimation. Through semantic-aware routing, MoGA enables effective long-range interactions. As a kernel-free method, MoGA integrates seamlessly with modern attention stacks, including FlashAttention and sequence parallelism. Building on MoGA, we develop an efficient long video generation model that end-to-end produces minute-level, multi-shot, 480p videos at 24 fps, with a context length of approximately 580k. Comprehensive experiments on various video generation tasks validate the effectiveness of our approach.
Sound Event Detection in Multichannel Audio Using Spatial and Harmonic Features
In this paper, we propose the use of spatial and harmonic features in combination with long short term memory (LSTM) recurrent neural network (RNN) for automatic sound event detection (SED) task. Real life sound recordings typically have many overlapping sound events, making it hard to recognize with just mono channel audio. Human listeners have been successfully recognizing the mixture of overlapping sound events using pitch cues and exploiting the stereo (multichannel) audio signal available at their ears to spatially localize these events. Traditionally SED systems have only been using mono channel audio, motivated by the human listener we propose to extend them to use multichannel audio. The proposed SED system is compared against the state of the art mono channel method on the development subset of TUT sound events detection 2016 database. The usage of spatial and harmonic features are shown to improve the performance of SED.
MMInference: Accelerating Pre-filling for Long-Context VLMs via Modality-Aware Permutation Sparse Attention
The integration of long-context capabilities with visual understanding unlocks unprecedented potential for Vision Language Models (VLMs). However, the quadratic attention complexity during the pre-filling phase remains a significant obstacle to real-world deployment. To overcome this limitation, we introduce MMInference (Multimodality Million tokens Inference), a dynamic sparse attention method that accelerates the prefilling stage for long-context multi-modal inputs. First, our analysis reveals that the temporal and spatial locality of video input leads to a unique sparse pattern, the Grid pattern. Simultaneously, VLMs exhibit markedly different sparse distributions across different modalities. We introduce a permutation-based method to leverage the unique Grid pattern and handle modality boundary issues. By offline search the optimal sparse patterns for each head, MMInference constructs the sparse distribution dynamically based on the input. We also provide optimized GPU kernels for efficient sparse computations. Notably, MMInference integrates seamlessly into existing VLM pipelines without any model modifications or fine-tuning. Experiments on multi-modal benchmarks-including Video QA, Captioning, VisionNIAH, and Mixed-Modality NIAH-with state-of-the-art long-context VLMs (LongVila, LlavaVideo, VideoChat-Flash, Qwen2.5-VL) show that MMInference accelerates the pre-filling stage by up to 8.3x at 1M tokens while maintaining accuracy. Our code is available at https://aka.ms/MMInference.
Unveiling Visual Perception in Language Models: An Attention Head Analysis Approach
Recent advancements in Multimodal Large Language Models (MLLMs) have demonstrated remarkable progress in visual understanding. This impressive leap raises a compelling question: how can language models, initially trained solely on linguistic data, effectively interpret and process visual content? This paper aims to address this question with systematic investigation across 4 model families and 4 model scales, uncovering a unique class of attention heads that focus specifically on visual content. Our analysis reveals a strong correlation between the behavior of these attention heads, the distribution of attention weights, and their concentration on visual tokens within the input. These findings enhance our understanding of how LLMs adapt to multimodal tasks, demonstrating their potential to bridge the gap between textual and visual understanding. This work paves the way for the development of AI systems capable of engaging with diverse modalities.
Enriching Music Descriptions with a Finetuned-LLM and Metadata for Text-to-Music Retrieval
Text-to-Music Retrieval, finding music based on a given natural language query, plays a pivotal role in content discovery within extensive music databases. To address this challenge, prior research has predominantly focused on a joint embedding of music audio and text, utilizing it to retrieve music tracks that exactly match descriptive queries related to musical attributes (i.e. genre, instrument) and contextual elements (i.e. mood, theme). However, users also articulate a need to explore music that shares similarities with their favorite tracks or artists, such as I need a similar track to Superstition by Stevie Wonder. To address these concerns, this paper proposes an improved Text-to-Music Retrieval model, denoted as TTMR++, which utilizes rich text descriptions generated with a finetuned large language model and metadata. To accomplish this, we obtained various types of seed text from several existing music tag and caption datasets and a knowledge graph dataset of artists and tracks. The experimental results show the effectiveness of TTMR++ in comparison to state-of-the-art music-text joint embedding models through a comprehensive evaluation involving various musical text queries.
MambaOut: Do We Really Need Mamba for Vision?
Mamba, an architecture with RNN-like token mixer of state space model (SSM), was recently introduced to address the quadratic complexity of the attention mechanism and subsequently applied to vision tasks. Nevertheless, the performance of Mamba for vision is often underwhelming when compared with convolutional and attention-based models. In this paper, we delve into the essence of Mamba, and conceptually conclude that Mamba is ideally suited for tasks with long-sequence and autoregressive characteristics. For vision tasks, as image classification does not align with either characteristic, we hypothesize that Mamba is not necessary for this task; Detection and segmentation tasks are also not autoregressive, yet they adhere to the long-sequence characteristic, so we believe it is still worthwhile to explore Mamba's potential for these tasks. To empirically verify our hypotheses, we construct a series of models named MambaOut through stacking Mamba blocks while removing their core token mixer, SSM. Experimental results strongly support our hypotheses. Specifically, our MambaOut model surpasses all visual Mamba models on ImageNet image classification, indicating that Mamba is indeed unnecessary for this task. As for detection and segmentation, MambaOut cannot match the performance of state-of-the-art visual Mamba models, demonstrating the potential of Mamba for long-sequence visual tasks. The code is available at https://github.com/yuweihao/MambaOut
SoundStorm: Efficient Parallel Audio Generation
We present SoundStorm, a model for efficient, non-autoregressive audio generation. SoundStorm receives as input the semantic tokens of AudioLM, and relies on bidirectional attention and confidence-based parallel decoding to generate the tokens of a neural audio codec. Compared to the autoregressive generation approach of AudioLM, our model produces audio of the same quality and with higher consistency in voice and acoustic conditions, while being two orders of magnitude faster. SoundStorm generates 30 seconds of audio in 0.5 seconds on a TPU-v4. We demonstrate the ability of our model to scale audio generation to longer sequences by synthesizing high-quality, natural dialogue segments, given a transcript annotated with speaker turns and a short prompt with the speakers' voices.
Melody-Lyrics Matching with Contrastive Alignment Loss
The connection between music and lyrics is far beyond semantic bonds. Conceptual pairs in the two modalities such as rhythm and rhyme, note duration and syllabic stress, and structure correspondence, raise a compelling yet seldom-explored direction in the field of music information retrieval. In this paper, we present melody-lyrics matching (MLM), a new task which retrieves potential lyrics for a given symbolic melody from text sources. Rather than generating lyrics from scratch, MLM essentially exploits the relationships between melody and lyrics. We propose a self-supervised representation learning framework with contrastive alignment loss for melody and lyrics. This has the potential to leverage the abundance of existing songs with paired melody and lyrics. No alignment annotations are required. Additionally, we introduce sylphone, a novel representation for lyrics at syllable-level activated by phoneme identity and vowel stress. We demonstrate that our method can match melody with coherent and singable lyrics with empirical results and intuitive examples. We open source code and provide matching examples on the companion webpage: https://github.com/changhongw/mlm.
TPLA: Tensor Parallel Latent Attention for Efficient Disaggregated Prefill \& Decode Inference
Multi-Head Latent Attention (MLA), introduced in DeepSeek-V2, compresses key-value states into a low-rank latent vector, caching only this vector to reduce memory. In tensor parallelism (TP), however, attention heads are computed across multiple devices, and each device must load the full cache, eroding the advantage of MLA over Grouped Query Attention (GQA). We propose Tensor-Parallel Latent Attention (TPLA): a scheme that partitions both the latent representation and each head's input dimension across devices, performs attention independently per shard, and then combines results with an all-reduce. TPLA preserves the benefits of a compressed KV cache while unlocking TP efficiency. Unlike Grouped Latent Attention (GLA), every head in TPLA still leverages the full latent representation, maintaining stronger representational capacity. TPLA is drop-in compatible with models pre-trained using MLA: it supports MLA-style prefilling and enables efficient tensor-parallel decoding without retraining. Applying simple orthogonal transforms -- e.g., the Hadamard transform or PCA -- before TP slicing further mitigates cross-shard interference, yielding minimal accuracy degradation. By reducing the per-device KV cache for DeepSeek-V3 and Kimi-K2, we achieve 1.79x and 1.93x speedups, respectively, at a 32K-token context length while maintaining performance on commonsense and LongBench benchmarks. TPLA can be implemented with FlashAttention-3, enabling practical end-to-end acceleration.
MOSAIC: Multi-Subject Personalized Generation via Correspondence-Aware Alignment and Disentanglement
Multi-subject personalized generation presents unique challenges in maintaining identity fidelity and semantic coherence when synthesizing images conditioned on multiple reference subjects. Existing methods often suffer from identity blending and attribute leakage due to inadequate modeling of how different subjects should interact within shared representation spaces. We present MOSAIC, a representation-centric framework that rethinks multi-subject generation through explicit semantic correspondence and orthogonal feature disentanglement. Our key insight is that multi-subject generation requires precise semantic alignment at the representation level - knowing exactly which regions in the generated image should attend to which parts of each reference. To enable this, we introduce SemAlign-MS, a meticulously annotated dataset providing fine-grained semantic correspondences between multiple reference subjects and target images, previously unavailable in this domain. Building on this foundation, we propose the semantic correspondence attention loss to enforce precise point-to-point semantic alignment, ensuring high consistency from each reference to its designated regions. Furthermore, we develop the multi-reference disentanglement loss to push different subjects into orthogonal attention subspaces, preventing feature interference while preserving individual identity characteristics. Extensive experiments demonstrate that MOSAIC achieves state-of-the-art performance on multiple benchmarks. Notably, while existing methods typically degrade beyond 3 subjects, MOSAIC maintains high fidelity with 4+ reference subjects, opening new possibilities for complex multi-subject synthesis applications.
Attention-Challenging Multiple Instance Learning for Whole Slide Image Classification
In the application of Multiple Instance Learning (MIL) methods for Whole Slide Image (WSI) classification, attention mechanisms often focus on a subset of discriminative instances, which are closely linked to overfitting. To mitigate overfitting, we present Attention-Challenging MIL (ACMIL). ACMIL combines two techniques based on separate analyses for attention value concentration. Firstly, UMAP of instance features reveals various patterns among discriminative instances, with existing attention mechanisms capturing only some of them. To remedy this, we introduce Multiple Branch Attention (MBA) to capture more discriminative instances using multiple attention branches. Secondly, the examination of the cumulative value of Top-K attention scores indicates that a tiny number of instances dominate the majority of attention. In response, we present Stochastic Top-K Instance Masking (STKIM), which masks out a portion of instances with Top-K attention values and allocates their attention values to the remaining instances. The extensive experimental results on three WSI datasets with two pre-trained backbones reveal that our ACMIL outperforms state-of-the-art methods. Additionally, through heatmap visualization and UMAP visualization, this paper extensively illustrates ACMIL's effectiveness in suppressing attention value concentration and overcoming the overfitting challenge. The source code is available at https://github.com/dazhangyu123/ACMIL.
MusicLDM: Enhancing Novelty in Text-to-Music Generation Using Beat-Synchronous Mixup Strategies
Diffusion models have shown promising results in cross-modal generation tasks, including text-to-image and text-to-audio generation. However, generating music, as a special type of audio, presents unique challenges due to limited availability of music data and sensitive issues related to copyright and plagiarism. In this paper, to tackle these challenges, we first construct a state-of-the-art text-to-music model, MusicLDM, that adapts Stable Diffusion and AudioLDM architectures to the music domain. We achieve this by retraining the contrastive language-audio pretraining model (CLAP) and the Hifi-GAN vocoder, as components of MusicLDM, on a collection of music data samples. Then, to address the limitations of training data and to avoid plagiarism, we leverage a beat tracking model and propose two different mixup strategies for data augmentation: beat-synchronous audio mixup and beat-synchronous latent mixup, which recombine training audio directly or via a latent embeddings space, respectively. Such mixup strategies encourage the model to interpolate between musical training samples and generate new music within the convex hull of the training data, making the generated music more diverse while still staying faithful to the corresponding style. In addition to popular evaluation metrics, we design several new evaluation metrics based on CLAP score to demonstrate that our proposed MusicLDM and beat-synchronous mixup strategies improve both the quality and novelty of generated music, as well as the correspondence between input text and generated music.
Zero-Shot Text-to-Speech from Continuous Text Streams
Existing zero-shot text-to-speech (TTS) systems are typically designed to process complete sentences and are constrained by the maximum duration for which they have been trained. However, in many streaming applications, texts arrive continuously in short chunks, necessitating instant responses from the system. We identify the essential capabilities required for chunk-level streaming and introduce LiveSpeech 2, a stream-aware model that supports infinitely long speech generation, text-audio stream synchronization, and seamless transitions between short speech chunks. To achieve these, we propose (1) adopting Mamba, a class of sequence modeling distinguished by linear-time decoding, which is augmented by cross-attention mechanisms for conditioning, (2) utilizing rotary positional embeddings in the computation of cross-attention, enabling the model to process an infinite text stream by sliding a window, and (3) decoding with semantic guidance, a technique that aligns speech with the transcript during inference with minimal overhead. Experimental results demonstrate that our models are competitive with state-of-the-art language model-based zero-shot TTS models, while also providing flexibility to support a wide range of streaming scenarios.
Positional Encoding via Token-Aware Phase Attention
We prove under practical assumptions that Rotary Positional Embedding (RoPE) introduces an intrinsic distance-dependent bias in attention scores that limits RoPE's ability to model long-context. RoPE extension methods may alleviate this issue, but they typically require post-hoc adjustments after pretraining, such as rescaling or hyperparameters retuning. This paper introduces Token-Aware Phase Attention (TAPA), a new positional encoding method that incorporates a learnable phase function into the attention mechanism. TAPA preserves token interactions over long range, extends to longer contexts with direct and light fine-tuning, extrapolates to unseen lengths, and attains significantly lower perplexity on long-context than RoPE families.
Latent Attention for Linear Time Transformers
The time complexity of the standard attention mechanism in a transformer scales quadratically with the length of the sequence. We introduce a method to reduce this to linear scaling with time, based on defining attention via latent vectors. The method is readily usable as a drop-in replacement for the standard attention mechanism. Our "Latte Transformer" model can be implemented for both bidirectional and unidirectional tasks, with the causal version allowing a recurrent implementation which is memory and time-efficient during inference of language generation tasks. Whilst next token prediction scales linearly with the sequence length for a standard transformer, a Latte Transformer requires constant time to compute the next token. The empirical performance of our method is comparable to standard attention, yet allows scaling to context windows much larger than practical in standard attention.
Mirasol3B: A Multimodal Autoregressive model for time-aligned and contextual modalities
One of the main challenges of multimodal learning is the need to combine heterogeneous modalities (e.g., video, audio, text). For example, video and audio are obtained at much higher rates than text and are roughly aligned in time. They are often not synchronized with text, which comes as a global context, e.g., a title, or a description. Furthermore, video and audio inputs are of much larger volumes, and grow as the video length increases, which naturally requires more compute dedicated to these modalities and makes modeling of long-range dependencies harder. We here decouple the multimodal modeling, dividing it into separate, focused autoregressive models, processing the inputs according to the characteristics of the modalities. We propose a multimodal model, called Mirasol3B, consisting of an autoregressive component for the time-synchronized modalities (audio and video), and an autoregressive component for the context modalities which are not necessarily aligned in time but are still sequential. To address the long-sequences of the video-audio inputs, we propose to further partition the video and audio sequences in consecutive snippets and autoregressively process their representations. To that end, we propose a Combiner mechanism, which models the audio-video information jointly within a timeframe. The Combiner learns to extract audio and video features from raw spatio-temporal signals, and then learns to fuse these features producing compact but expressive representations per snippet. Our approach achieves the state-of-the-art on well established multimodal benchmarks, outperforming much larger models. It effectively addresses the high computational demand of media inputs by both learning compact representations, controlling the sequence length of the audio-video feature representations, and modeling their dependencies in time.
JamendoMaxCaps: A Large Scale Music-caption Dataset with Imputed Metadata
We introduce JamendoMaxCaps, a large-scale music-caption dataset featuring over 200,000 freely licensed instrumental tracks from the renowned Jamendo platform. The dataset includes captions generated by a state-of-the-art captioning model, enhanced with imputed metadata. We also introduce a retrieval system that leverages both musical features and metadata to identify similar songs, which are then used to fill in missing metadata using a local large language model (LLLM). This approach allows us to provide a more comprehensive and informative dataset for researchers working on music-language understanding tasks. We validate this approach quantitatively with five different measurements. By making the JamendoMaxCaps dataset publicly available, we provide a high-quality resource to advance research in music-language understanding tasks such as music retrieval, multimodal representation learning, and generative music models.
Representation, Exploration and Recommendation of Music Playlists
Playlists have become a significant part of our listening experience because of the digital cloud-based services such as Spotify, Pandora, Apple Music. Owing to the meteoric rise in the usage of playlists, recommending playlists is crucial to music services today. Although there has been a lot of work done in playlist prediction, the area of playlist representation hasn't received that level of attention. Over the last few years, sequence-to-sequence models, especially in the field of natural language processing, have shown the effectiveness of learned embeddings in capturing the semantic characteristics of sequences. We can apply similar concepts to music to learn fixed length representations for playlists and use those representations for downstream tasks such as playlist discovery, browsing, and recommendation. In this work, we formulate the problem of learning a fixed-length playlist representation in an unsupervised manner, using Sequence-to-sequence (Seq2seq) models, interpreting playlists as sentences and songs as words. We compare our model with two other encoding architectures for baseline comparison. We evaluate our work using the suite of tasks commonly used for assessing sentence embeddings, along with a few additional tasks pertaining to music, and a recommendation task to study the traits captured by the playlist embeddings and their effectiveness for the purpose of music recommendation.
Training-Free Long-Context Scaling of Large Language Models
The ability of Large Language Models (LLMs) to process and generate coherent text is markedly weakened when the number of input tokens exceeds their pretraining length. Given the expensive overhead of finetuning large-scale models with longer sequences, we propose Dual Chunk Attention (DCA), which enables Llama2 70B to support context windows of more than 100k tokens without continual training. By decomposing the attention computation for long sequences into chunk-based modules, DCA manages to effectively capture the relative positional information of tokens within the same chunk (Intra-Chunk) and across distinct chunks (Inter-Chunk), as well as integrates seamlessly with Flash Attention. In addition to its impressive extrapolation capability, DCA achieves performance on practical long-context tasks that is comparable to or even better than that of finetuned models. When compared with proprietary models, our training-free 70B model attains 94% of the performance of gpt-3.5-16k, indicating it is a viable open-source alternative. All code and data used in this work are released at https://github.com/HKUNLP/ChunkLlama.
YuE: Scaling Open Foundation Models for Long-Form Music Generation
We tackle the task of long-form music generation--particularly the challenging lyrics-to-song problem--by introducing YuE, a family of open foundation models based on the LLaMA2 architecture. Specifically, YuE scales to trillions of tokens and generates up to five minutes of music while maintaining lyrical alignment, coherent musical structure, and engaging vocal melodies with appropriate accompaniment. It achieves this through (1) track-decoupled next-token prediction to overcome dense mixture signals, (2) structural progressive conditioning for long-context lyrical alignment, and (3) a multitask, multiphase pre-training recipe to converge and generalize. In addition, we redesign the in-context learning technique for music generation, enabling versatile style transfer (e.g., converting Japanese city pop into an English rap while preserving the original accompaniment) and bidirectional generation. Through extensive evaluation, we demonstrate that YuE matches or even surpasses some of the proprietary systems in musicality and vocal agility. In addition, fine-tuning YuE enables additional controls and enhanced support for tail languages. Furthermore, beyond generation, we show that YuE's learned representations can perform well on music understanding tasks, where the results of YuE match or exceed state-of-the-art methods on the MARBLE benchmark. Keywords: lyrics2song, song generation, long-form, foundation model, music generation
InfiMM-HD: A Leap Forward in High-Resolution Multimodal Understanding
Multimodal Large Language Models (MLLMs) have experienced significant advancements recently. Nevertheless, challenges persist in the accurate recognition and comprehension of intricate details within high-resolution images. Despite being indispensable for the development of robust MLLMs, this area remains underinvestigated. To tackle this challenge, our work introduces InfiMM-HD, a novel architecture specifically designed for processing images of different resolutions with low computational overhead. This innovation facilitates the enlargement of MLLMs to higher-resolution capabilities. InfiMM-HD incorporates a cross-attention module and visual windows to reduce computation costs. By integrating this architectural design with a four-stage training pipeline, our model attains improved visual perception efficiently and cost-effectively. Empirical study underscores the robustness and effectiveness of InfiMM-HD, opening new avenues for exploration in related areas. Codes and models can be found at https://huggingface.co/Infi-MM/infimm-hd
A Simple but Strong Baseline for Sounding Video Generation: Effective Adaptation of Audio and Video Diffusion Models for Joint Generation
In this work, we build a simple but strong baseline for sounding video generation. Given base diffusion models for audio and video, we integrate them with additional modules into a single model and train it to make the model jointly generate audio and video. To enhance alignment between audio-video pairs, we introduce two novel mechanisms in our model. The first one is timestep adjustment, which provides different timestep information to each base model. It is designed to align how samples are generated along with timesteps across modalities. The second one is a new design of the additional modules, termed Cross-Modal Conditioning as Positional Encoding (CMC-PE). In CMC-PE, cross-modal information is embedded as if it represents temporal position information, and the embeddings are fed into the model like positional encoding. Compared with the popular cross-attention mechanism, CMC-PE provides a better inductive bias for temporal alignment in the generated data. Experimental results validate the effectiveness of the two newly introduced mechanisms and also demonstrate that our method outperforms existing methods.
Video2Music: Suitable Music Generation from Videos using an Affective Multimodal Transformer model
Numerous studies in the field of music generation have demonstrated impressive performance, yet virtually no models are able to directly generate music to match accompanying videos. In this work, we develop a generative music AI framework, Video2Music, that can match a provided video. We first curated a unique collection of music videos. Then, we analysed the music videos to obtain semantic, scene offset, motion, and emotion features. These distinct features are then employed as guiding input to our music generation model. We transcribe the audio files into MIDI and chords, and extract features such as note density and loudness. This results in a rich multimodal dataset, called MuVi-Sync, on which we train a novel Affective Multimodal Transformer (AMT) model to generate music given a video. This model includes a novel mechanism to enforce affective similarity between video and music. Finally, post-processing is performed based on a biGRU-based regression model to estimate note density and loudness based on the video features. This ensures a dynamic rendering of the generated chords with varying rhythm and volume. In a thorough experiment, we show that our proposed framework can generate music that matches the video content in terms of emotion. The musical quality, along with the quality of music-video matching is confirmed in a user study. The proposed AMT model, along with the new MuVi-Sync dataset, presents a promising step for the new task of music generation for videos.
Advancing the Foundation Model for Music Understanding
The field of Music Information Retrieval (MIR) is fragmented, with specialized models excelling at isolated tasks. In this work, we challenge this paradigm by introducing a unified foundation model named MuFun for holistic music understanding. Our model features a novel architecture that jointly processes instrumental and lyrical content, and is trained on a large-scale dataset covering diverse tasks such as genre classification, music tagging, and question answering. To facilitate robust evaluation, we also propose a new benchmark for multi-faceted music understanding called MuCUE (Music Comprehensive Understanding Evaluation). Experiments show our model significantly outperforms existing audio large language models across the MuCUE tasks, demonstrating its state-of-the-art effectiveness and generalization ability.
Improving Transformers with Dynamically Composable Multi-Head Attention
Multi-Head Attention (MHA) is a key component of Transformer. In MHA, attention heads work independently, causing problems such as low-rank bottleneck of attention score matrices and head redundancy. We propose Dynamically Composable Multi-Head Attention (DCMHA), a parameter and computation efficient attention architecture that tackles the shortcomings of MHA and increases the expressive power of the model by dynamically composing attention heads. At the core of DCMHA is a Compose function that transforms the attention score and weight matrices in an input-dependent way. DCMHA can be used as a drop-in replacement of MHA in any transformer architecture to obtain the corresponding DCFormer. DCFormer significantly outperforms Transformer on different architectures and model scales in language modeling, matching the performance of models with ~1.7x-2.0x compute. For example, DCPythia-6.9B outperforms open source Pythia-12B on both pretraining perplexity and downstream task evaluation. The code and models are available at https://github.com/Caiyun-AI/DCFormer.
MagicPIG: LSH Sampling for Efficient LLM Generation
Large language models (LLMs) with long context windows have gained significant attention. However, the KV cache, stored to avoid re-computation, becomes a bottleneck. Various dynamic sparse or TopK-based attention approximation methods have been proposed to leverage the common insight that attention is sparse. In this paper, we first show that TopK attention itself suffers from quality degradation in certain downstream tasks because attention is not always as sparse as expected. Rather than selecting the keys and values with the highest attention scores, sampling with theoretical guarantees can provide a better estimation for attention output. To make the sampling-based approximation practical in LLM generation, we propose MagicPIG, a heterogeneous system based on Locality Sensitive Hashing (LSH). MagicPIG significantly reduces the workload of attention computation while preserving high accuracy for diverse tasks. MagicPIG stores the LSH hash tables and runs the attention computation on the CPU, which allows it to serve longer contexts and larger batch sizes with high approximation accuracy. MagicPIG can improve decoding throughput by up to 5times across various GPU hardware and achieve 54ms decoding latency on a single RTX 4090 for Llama-3.1-8B-Instruct model with a context of 96k tokens. The code is available at https://github.com/Infini-AI-Lab/MagicPIG.
Comparison of semi-supervised deep learning algorithms for audio classification
In this article, we adapted five recent SSL methods to the task of audio classification. The first two methods, namely Deep Co-Training (DCT) and Mean Teacher (MT), involve two collaborative neural networks. The three other algorithms, called MixMatch (MM), ReMixMatch (RMM), and FixMatch (FM), are single-model methods that rely primarily on data augmentation strategies. Using the Wide-ResNet-28-2 architecture in all our experiments, 10% of labeled data and the remaining 90% as unlabeled data for training, we first compare the error rates of the five methods on three standard benchmark audio datasets: Environmental Sound Classification (ESC-10), UrbanSound8K (UBS8K), and Google Speech Commands (GSC). In all but one cases, MM, RMM, and FM outperformed MT and DCT significantly, MM and RMM being the best methods in most experiments. On UBS8K and GSC, MM achieved 18.02% and 3.25% error rate (ER), respectively, outperforming models trained with 100% of the available labeled data, which reached 23.29% and 4.94%, respectively. RMM achieved the best results on ESC-10 (12.00% ER), followed by FM which reached 13.33%. Second, we explored adding the mixup augmentation, used in MM and RMM, to DCT, MT, and FM. In almost all cases, mixup brought consistent gains. For instance, on GSC, FM reached 4.44% and 3.31% ER without and with mixup. Our PyTorch code will be made available upon paper acceptance at https:// github. com/ Labbe ti/ SSLH.
Improving Routing in Sparse Mixture of Experts with Graph of Tokens
Sparse Mixture of Experts (SMoE) has emerged as a key to achieving unprecedented scalability in deep learning. By activating only a small subset of parameters per sample, SMoE achieves an exponential increase in parameter counts while maintaining a constant computational overhead. However, SMoE models are susceptible to routing fluctuations--changes in the routing of a given input to its target expert--at the late stage of model training, leading to model non-robustness. In this work, we unveil the limitation of SMoE through the perspective of the probabilistic graphical model (PGM). Through this PGM framework, we highlight the independence in the expert-selection of tokens, which exposes the model to routing fluctuation and non-robustness. Alleviating this independence, we propose the novel Similarity-Aware (S)MoE, which considers interactions between tokens during expert selection. We then derive a new PGM underlying an (S)MoE-Attention block, going beyond just a single (S)MoE layer. Leveraging the token similarities captured by the attention matrix, we propose the innovative Attention-Aware (S)MoE, which employs the attention matrix to guide the routing of tokens to appropriate experts in (S)MoE. We theoretically prove that Similarity/Attention-Aware routing help reduce the entropy of expert selection, resulting in more stable token routing mechanisms. We empirically validate our models on various tasks and domains, showing significant improvements in reducing routing fluctuations, enhancing accuracy, and increasing model robustness over the baseline MoE-Transformer with token routing via softmax gating.
GQA: Training Generalized Multi-Query Transformer Models from Multi-Head Checkpoints
Multi-query attention (MQA), which only uses a single key-value head, drastically speeds up decoder inference. However, MQA can lead to quality degradation, and moreover it may not be desirable to train a separate model just for faster inference. We (1) propose a recipe for uptraining existing multi-head language model checkpoints into models with MQA using 5% of original pre-training compute, and (2) introduce grouped-query attention (GQA), a generalization of multi-query attention which uses an intermediate (more than one, less than number of query heads) number of key-value heads. We show that uptrained GQA achieves quality close to multi-head attention with comparable speed to MQA.
Attention Basin: Why Contextual Position Matters in Large Language Models
The performance of Large Language Models (LLMs) is significantly sensitive to the contextual position of information in the input. To investigate the mechanism behind this positional bias, our extensive experiments reveal a consistent phenomenon we term the attention basin: when presented with a sequence of structured items (e.g., retrieved documents or few-shot examples), models systematically assign higher attention to the items at the beginning and end of the sequence, while neglecting those in the middle. Crucially, our analysis further reveals that allocating higher attention to critical information is key to enhancing model performance. Based on these insights, we introduce Attention-Driven Reranking (AttnRank), a two-stage framework that (i) estimates a model's intrinsic positional attention preferences using a small calibration set, and (ii) reorders retrieved documents or few-shot examples to align the most salient content with these high-attention positions. AttnRank is a model-agnostic, training-free, and plug-and-play method with minimal computational overhead. Experiments on multi-hop QA and few-shot in-context learning tasks demonstrate that AttnRank achieves substantial improvements across 10 large language models of varying architectures and scales, without modifying model parameters or training procedures.
Meta-Adaptive Prompt Distillation for Few-Shot Visual Question Answering
Large Multimodal Models (LMMs) often rely on in-context learning (ICL) to perform new tasks with minimal supervision. However, ICL performance, especially in smaller LMMs, is inconsistent and does not always improve monotonically with increasing examples. We hypothesize that this occurs due to the LMM being overwhelmed by additional information present in the image embeddings, which is not required for the downstream task. To address this, we propose a meta-learning approach that provides an alternative for inducing few-shot capabilities in LMMs, using a fixed set of soft prompts that are distilled from task-relevant image features and can be adapted at test time using a few examples. To facilitate this distillation, we introduce an attention-mapper module that can be easily integrated with the popular LLaVA v1.5 architecture and is jointly learned with soft prompts, enabling task adaptation in LMMs under low-data regimes with just a few gradient steps. Evaluation on the VL-ICL Bench shows that our method consistently outperforms ICL and related prompt-tuning approaches, even under image perturbations, improving task induction and reasoning across visual question answering tasks.
Localizing Moments in Video with Natural Language
We consider retrieving a specific temporal segment, or moment, from a video given a natural language text description. Methods designed to retrieve whole video clips with natural language determine what occurs in a video but not when. To address this issue, we propose the Moment Context Network (MCN) which effectively localizes natural language queries in videos by integrating local and global video features over time. A key obstacle to training our MCN model is that current video datasets do not include pairs of localized video segments and referring expressions, or text descriptions which uniquely identify a corresponding moment. Therefore, we collect the Distinct Describable Moments (DiDeMo) dataset which consists of over 10,000 unedited, personal videos in diverse visual settings with pairs of localized video segments and referring expressions. We demonstrate that MCN outperforms several baseline methods and believe that our initial results together with the release of DiDeMo will inspire further research on localizing video moments with natural language.
Hymba: A Hybrid-head Architecture for Small Language Models
We propose Hymba, a family of small language models featuring a hybrid-head parallel architecture that integrates transformer attention mechanisms with state space models (SSMs) for enhanced efficiency. Attention heads provide high-resolution recall, while SSM heads enable efficient context summarization. Additionally, we introduce learnable meta tokens that are prepended to prompts, storing critical information and alleviating the "forced-to-attend" burden associated with attention mechanisms. This model is further optimized by incorporating cross-layer key-value (KV) sharing and partial sliding window attention, resulting in a compact cache size. During development, we conducted a controlled study comparing various architectures under identical settings and observed significant advantages of our proposed architecture. Notably, Hymba achieves state-of-the-art results for small LMs: Our Hymba-1.5B-Base model surpasses all sub-2B public models in performance and even outperforms Llama-3.2-3B with 1.32% higher average accuracy, an 11.67x cache size reduction, and 3.49x throughput.
Long-Context Modeling with Dynamic Hierarchical Sparse Attention for On-Device LLMs
The quadratic cost of attention hinders the scalability of long-context LLMs, especially in resource-constrained settings. Existing static sparse methods such as sliding windows or global tokens utilizes the sparsity of attention to reduce the cost of attention, but poorly adapts to the content-dependent variations in attention due to their staticity. While previous work has proposed several dynamic approaches to improve flexibility, they still depend on predefined templates or heuristic mechanisms. Such strategies reduce generality and prune tokens that remain contextually important, limiting their accuracy across diverse tasks. To tackle these bottlenecks of existing methods for long-context modeling, we introduce Dynamic Hierarchical Sparse Attention (DHSA), a data-driven framework that dynamically predicts attention sparsity online without retraining. Our proposed DHSA adaptively segments sequences into variable-length chunks, then computes chunk representations by aggregating the token embeddings within each chunk. To avoid the bias introduced by varying chunk lengths, we apply length-normalized aggregation that scales the averaged embeddings by the square root of the chunk size. Finally, DHSA upsamples the chunk-level similarity scores to token level similarities to calculate importance scores that determine which token-level interactions should be preserved. Our experiments on Gemma2 with Needle-in-a-Haystack Test and LongBench show that DHSA matches dense attention in accuracy, while reducing prefill latency by 20-60% and peak memory usage by 35%. Compared to other representative baselines such as block sparse attention, DHSA achieves consistently higher accuracy (6-18% relative gains) with comparable or lower cost, offering an efficient and adaptable solution for long-context on-device LLMs.
Text2FX: Harnessing CLAP Embeddings for Text-Guided Audio Effects
This work introduces Text2FX, a method that leverages CLAP embeddings and differentiable digital signal processing to control audio effects, such as equalization and reverberation, using open-vocabulary natural language prompts (e.g., "make this sound in-your-face and bold"). Text2FX operates without retraining any models, relying instead on single-instance optimization within the existing embedding space, thus enabling a flexible, scalable approach to open-vocabulary sound transformations through interpretable and disentangled FX manipulation. We show that CLAP encodes valuable information for controlling audio effects and propose two optimization approaches using CLAP to map text to audio effect parameters. While we demonstrate with CLAP, this approach is applicable to any shared text-audio embedding space. Similarly, while we demonstrate with equalization and reverberation, any differentiable audio effect may be controlled. We conduct a listener study with diverse text prompts and source audio to evaluate the quality and alignment of these methods with human perception. Demos and code are available at anniejchu.github.io/text2fx.
Pit One Against Many: Leveraging Attention-head Embeddings for Parameter-efficient Multi-head Attention
Scaling pre-trained language models has resulted in large performance gains in various natural language processing tasks but comes with a large cost in memory requirements. Inspired by the position embeddings in transformers, we aim to simplify and reduce the memory footprint of the multi-head attention (MHA) mechanism. We propose an alternative module that uses only a single shared projection matrix and multiple head embeddings (MHE), i.e. one per head. We empirically demonstrate that our MHE attention is substantially more memory efficient compared to alternative attention mechanisms while achieving high predictive performance retention ratio to vanilla MHA on several downstream tasks. MHE attention only requires a negligible fraction of additional parameters (3nd, where n is the number of attention heads and d the size of the head embeddings) compared to a single-head attention, while MHA requires (3n^2-3n)d^2-3nd additional parameters.
Multitrack Music Transcription with a Time-Frequency Perceiver
Multitrack music transcription aims to transcribe a music audio input into the musical notes of multiple instruments simultaneously. It is a very challenging task that typically requires a more complex model to achieve satisfactory result. In addition, prior works mostly focus on transcriptions of regular instruments, however, neglecting vocals, which are usually the most important signal source if present in a piece of music. In this paper, we propose a novel deep neural network architecture, Perceiver TF, to model the time-frequency representation of audio input for multitrack transcription. Perceiver TF augments the Perceiver architecture by introducing a hierarchical expansion with an additional Transformer layer to model temporal coherence. Accordingly, our model inherits the benefits of Perceiver that posses better scalability, allowing it to well handle transcriptions of many instruments in a single model. In experiments, we train a Perceiver TF to model 12 instrument classes as well as vocal in a multi-task learning manner. Our result demonstrates that the proposed system outperforms the state-of-the-art counterparts (e.g., MT3 and SpecTNT) on various public datasets.
Video-to-Audio Generation with Hidden Alignment
Generating semantically and temporally aligned audio content in accordance with video input has become a focal point for researchers, particularly following the remarkable breakthrough in text-to-video generation. In this work, we aim to offer insights into the video-to-audio generation paradigm, focusing on three crucial aspects: vision encoders, auxiliary embeddings, and data augmentation techniques. Beginning with a foundational model VTA-LDM built on a simple yet surprisingly effective intuition, we explore various vision encoders and auxiliary embeddings through ablation studies. Employing a comprehensive evaluation pipeline that emphasizes generation quality and video-audio synchronization alignment, we demonstrate that our model exhibits state-of-the-art video-to-audio generation capabilities. Furthermore, we provide critical insights into the impact of different data augmentation methods on enhancing the generation framework's overall capacity. We showcase possibilities to advance the challenge of generating synchronized audio from semantic and temporal perspectives. We hope these insights will serve as a stepping stone toward developing more realistic and accurate audio-visual generation models.
DualFocus: Integrating Macro and Micro Perspectives in Multi-modal Large Language Models
We present DualFocus, a novel framework for integrating macro and micro perspectives within multi-modal large language models (MLLMs) to enhance vision-language task performance. Current MLLMs typically singularly focus on inputs at a predefined resolution, resulting in deficiencies in detailed questions involving local regions. We introduced a DualFocus mechanism where the model concentrates on the image from a macro perspective, responses to the question, and identifies suitable sub-regions to zoom in for subsequent micro perspective analysis. Via the integration of answers from both macro and micro perspectives, the model is adept at addressing tasks that encompass global, detailed, and combined considerations. To endows the DualFocus mechanism in MLLMs, we curated a tailored dataset derived from the Visual Genome (VG) and adapted it to align with the training regimen of DualFocus. Through comparative studies across different model sizes and benchmarks, we demonstrate DualFocus's superiority in balancing detailed examination with holistic insight, significantly reducing hallucination instances in MLLMs and improving their performance in various vision-language tasks.
Contextual Position Encoding: Learning to Count What's Important
The attention mechanism is a critical component of Large Language Models (LLMs) that allows tokens in a sequence to interact with each other, but is order-invariant. Incorporating position encoding (PE) makes it possible to address by position, such as attending to the i-th token. However, current PE methods use token counts to derive position, and thus cannot generalize to higher levels of abstraction, such as attending to the i-th sentence. In this paper, we propose a new position encoding method, Contextual Position Encoding (CoPE), that allows positions to be conditioned on context by incrementing position only on certain tokens determined by the model. This allows more general position addressing such as attending to the i-th particular word, noun, or sentence. We show that CoPE can solve the selective copy, counting and Flip-Flop tasks where popular position embeddings fail, and improves perplexity on language modeling and coding tasks.
True Multimodal In-Context Learning Needs Attention to the Visual Context
Multimodal Large Language Models (MLLMs), built on powerful language backbones, have enabled Multimodal In-Context Learning (MICL)-adapting to new tasks from a few multimodal demonstrations consisting of images, questions, and answers. Despite showing noticeable improvement on standard vision-language datasets, current MLLMs struggle to leverage visual information in the demonstrations. Specifically, they tend to neglect visual cues and over-rely on textual patterns, leading to mere text imitation rather than genuine multimodal adaptation. This behavior makes MICL still unimodal and largely restricts its practical utility. More importantly, this limitation is often concealed by the improved performance on tasks that do not require understanding the visual context. As a result, how to effectively enhance MICL ability and reliably evaluate the MICL performance remains underexplored. To address these issues, we first introduce Dynamic Attention Reallocation (DARA), an efficient fine-tuning strategy that encourages models to attend to the visual context by rebalancing attention across visual and textual tokens. In addition, we present TrueMICL, an MICL-dedicated dataset with both support and test sets that explicitly requires the integration of multimodal information-particularly visual content-for correct task completion. Extensive experiments demonstrate the effectiveness of our holistic solution, showcasing substantial improvements in the true multimodal in-context learning capabilities. Code and datasets are available at https://chenxshuo.github.io/true-micl-colm .
Theory, Analysis, and Best Practices for Sigmoid Self-Attention
Attention is a key part of the transformer architecture. It is a sequence-to-sequence mapping that transforms each sequence element into a weighted sum of values. The weights are typically obtained as the softmax of dot products between keys and queries. Recent work has explored alternatives to softmax attention in transformers, such as ReLU and sigmoid activations. In this work, we revisit sigmoid attention and conduct an in-depth theoretical and empirical analysis. Theoretically, we prove that transformers with sigmoid attention are universal function approximators and benefit from improved regularity compared to softmax attention. Through detailed empirical analysis, we identify stabilization of large initial attention norms during the early stages of training as a crucial factor for the successful training of models with sigmoid attention, outperforming prior attempts. We also introduce FLASHSIGMOID, a hardware-aware and memory-efficient implementation of sigmoid attention yielding a 17% inference kernel speed-up over FLASHATTENTION2 on H100 GPUs. Experiments across language, vision, and speech show that properly normalized sigmoid attention matches the strong performance of softmax attention on a wide range of domains and scales, which previous attempts at sigmoid attention were unable to fully achieve. Our work unifies prior art and establishes best practices for sigmoid attention as a drop-in softmax replacement in transformers.
EchoAtt: Attend, Copy, then Adjust for More Efficient Large Language Models
Large Language Models (LLMs), with their increasing depth and number of parameters, have demonstrated outstanding performance across a variety of natural language processing tasks. However, this growth in scale leads to increased computational demands, particularly during inference and fine-tuning. To address these challenges, we introduce EchoAtt, a novel framework aimed at optimizing transformer-based models by analyzing and leveraging the similarity of attention patterns across layers. Our analysis reveals that many inner layers in LLMs, especially larger ones, exhibit highly similar attention matrices. By exploiting this similarity, EchoAtt enables the sharing of attention matrices in less critical layers, significantly reducing computational requirements without compromising performance. We incorporate this approach within a knowledge distillation setup, where a pre-trained teacher model guides the training of a smaller student model. The student model selectively shares attention matrices in layers with high similarity while inheriting key parameters from the teacher. Our best results with TinyLLaMA-1.1B demonstrate that EchoAtt improves inference speed by 15\%, training speed by 25\%, and reduces the number of parameters by approximately 4\%, all while improving zero-shot performance. These findings highlight the potential of attention matrix sharing to enhance the efficiency of LLMs, making them more practical for real-time and resource-limited applications.
Vote&Mix: Plug-and-Play Token Reduction for Efficient Vision Transformer
Despite the remarkable success of Vision Transformers (ViTs) in various visual tasks, they are often hindered by substantial computational cost. In this work, we introduce Vote\&Mix (VoMix), a plug-and-play and parameter-free token reduction method, which can be readily applied to off-the-shelf ViT models without any training. VoMix tackles the computational redundancy of ViTs by identifying tokens with high homogeneity through a layer-wise token similarity voting mechanism. Subsequently, the selected tokens are mixed into the retained set, thereby preserving visual information. Experiments demonstrate VoMix significantly improves the speed-accuracy tradeoff of ViTs on both images and videos. Without any training, VoMix achieves a 2times increase in throughput of existing ViT-H on ImageNet-1K and a 2.4times increase in throughput of existing ViT-L on Kinetics-400 video dataset, with a mere 0.3\% drop in top-1 accuracy.
Long-Context Attention Benchmark: From Kernel Efficiency to Distributed Context Parallelism
Transformer-based large language models (LLMs) have achieved remarkable success, yet their standard attention mechanism incurs quadratic computation and memory costs with respect to sequence length, posing a major bottleneck for long-context training. Prior work tackles this challenge along two directions: (1) kernel-level optimizations, which accelerate dense and sparse attention operators; and (2) module-level strategies, often referred to as distributed attention or context parallel training, which scale attention across multiple devices. However, systematic evaluation still remains limited: operator-level comparisons are often incomplete, while context parallel strategies are typically framework-specific, with unclear performance analysis across contexts. To address these gaps, we propose a unified benchmark that integrates representative attention kernels and context parallel mechanisms with a modular and extensible interface for evaluation. The benchmark evaluates methods along two critical dimensions: (1) attention mask patterns, which strongly affect efficiency, scalability, and usability, and (2) sequence length and distributed scale, which determine performance under extreme long-context training. Through comprehensive experiments on the cluster of up to 96 GPUs, our benchmark enables reproducible comparisons, highlights method-specific trade-offs, and provides practical guidance for designing and deploying attention mechanisms in long-context LLM training.
MuChoMusic: Evaluating Music Understanding in Multimodal Audio-Language Models
Multimodal models that jointly process audio and language hold great promise in audio understanding and are increasingly being adopted in the music domain. By allowing users to query via text and obtain information about a given audio input, these models have the potential to enable a variety of music understanding tasks via language-based interfaces. However, their evaluation poses considerable challenges, and it remains unclear how to effectively assess their ability to correctly interpret music-related inputs with current methods. Motivated by this, we introduce MuChoMusic, a benchmark for evaluating music understanding in multimodal language models focused on audio. MuChoMusic comprises 1,187 multiple-choice questions, all validated by human annotators, on 644 music tracks sourced from two publicly available music datasets, and covering a wide variety of genres. Questions in the benchmark are crafted to assess knowledge and reasoning abilities across several dimensions that cover fundamental musical concepts and their relation to cultural and functional contexts. Through the holistic analysis afforded by the benchmark, we evaluate five open-source models and identify several pitfalls, including an over-reliance on the language modality, pointing to a need for better multimodal integration. Data and code are open-sourced.
VMoBA: Mixture-of-Block Attention for Video Diffusion Models
The quadratic complexity of full attention mechanisms poses a significant bottleneck for Video Diffusion Models (VDMs) aiming to generate long-duration, high-resolution videos. While various sparse attention methods have been proposed, many are designed as training-free inference accelerators or do not optimally capture the unique spatio-temporal characteristics inherent in video data when trained natively. This paper introduces Video Mixture of Block Attention (VMoBA), a novel sparse attention mechanism specifically adapted for VDMs. Motivated by an in-depth analysis of attention patterns within pre-trained video transformers, which revealed strong spatio-temporal locality, varying query importance, and head-specific concentration levels, VMoBA enhances the original MoBA framework with three key modifications: (1) a layer-wise recurrent block partition scheme (1D-2D-3D) to dynamically adapt to diverse spatio-temporal attention patterns and improve efficiency; (2) global block selection to prioritize the most salient query-key block interactions across an entire attention head; and (3) threshold-based block selection to dynamically determine the number of attended blocks based on their cumulative similarity. Extensive experiments demonstrate that VMoBA significantly accelerates the training of VDMs on longer sequences, achieving 2.92x FLOPs and 1.48x latency speedup, while attaining comparable or even superior generation quality to full attention. Furthermore, VMoBA exhibits competitive performance in training-free inference, offering 2.40x FLOPs and 1.35x latency speedup for high-res video generation.
T-CLAP: Temporal-Enhanced Contrastive Language-Audio Pretraining
Contrastive language-audio pretraining~(CLAP) has been developed to align the representations of audio and language, achieving remarkable performance in retrieval and classification tasks. However, current CLAP struggles to capture temporal information within audio and text features, presenting substantial limitations for tasks such as audio retrieval and generation. To address this gap, we introduce T-CLAP, a temporal-enhanced CLAP model. We use Large Language Models~(LLMs) and mixed-up strategies to generate temporal-contrastive captions for audio clips from extensive audio-text datasets. Subsequently, a new temporal-focused contrastive loss is designed to fine-tune the CLAP model by incorporating these synthetic data. We conduct comprehensive experiments and analysis in multiple downstream tasks. T-CLAP shows improved capability in capturing the temporal relationship of sound events and outperforms state-of-the-art models by a significant margin.
