- Docling: An Efficient Open-Source Toolkit for AI-driven Document Conversion We introduce Docling, an easy-to-use, self-contained, MIT-licensed, open-source toolkit for document conversion, that can parse several types of popular document formats into a unified, richly structured representation. It is powered by state-of-the-art specialized AI models for layout analysis (DocLayNet) and table structure recognition (TableFormer), and runs efficiently on commodity hardware in a small resource budget. Docling is released as a Python package and can be used as a Python API or as a CLI tool. Docling's modular architecture and efficient document representation make it easy to implement extensions, new features, models, and customizations. Docling has been already integrated in other popular open-source frameworks (e.g., LangChain, LlamaIndex, spaCy), making it a natural fit for the processing of documents and the development of high-end applications. The open-source community has fully engaged in using, promoting, and developing for Docling, which gathered 10k stars on GitHub in less than a month and was reported as the No. 1 trending repository in GitHub worldwide in November 2024. 17 authors · Jan 27
- TMIQ: Quantifying Test and Measurement Domain Intelligence in Large Language Models The Test and Measurement domain, known for its strict requirements for accuracy and efficiency, is increasingly adopting Generative AI technologies to enhance the performance of data analysis, automation, and decision-making processes. Among these, Large Language Models (LLMs) show significant promise for advancing automation and precision in testing. However, the evaluation of LLMs in this specialized area remains insufficiently explored. To address this gap, we introduce the Test and Measurement Intelligence Quotient (TMIQ), a benchmark designed to quantitatively assess LLMs across a wide range of electronic engineering tasks. TMIQ offers a comprehensive set of scenarios and metrics for detailed evaluation, including SCPI command matching accuracy, ranked response evaluation, Chain-of-Thought Reasoning (CoT), and the impact of output formatting variations required by LLMs on performance. In testing various LLMs, our findings indicate varying levels of proficiency, with exact SCPI command match accuracy ranging from around 56% to 73%, and ranked matching first-position scores achieving around 33% for the best-performing model. We also assess token usage, cost-efficiency, and response times, identifying trade-offs between accuracy and operational efficiency. Additionally, we present a command-line interface (CLI) tool that enables users to generate datasets using the same methodology, allowing for tailored assessments of LLMs. TMIQ and the CLI tool provide a rigorous, reproducible means of evaluating LLMs for production environments, facilitating continuous monitoring and identifying strengths and areas for improvement, and driving innovation in their selections for applications within the Test and Measurement industry. 2 authors · Mar 3
1 LARGE: Legal Retrieval Augmented Generation Evaluation Tool Recently, building retrieval-augmented generation (RAG) systems to enhance the capability of large language models (LLMs) has become a common practice. Especially in the legal domain, previous judicial decisions play a significant role under the doctrine of stare decisis which emphasizes the importance of making decisions based on (retrieved) prior documents. However, the overall performance of RAG system depends on many components: (1) retrieval corpora, (2) retrieval algorithms, (3) rerankers, (4) LLM backbones, and (5) evaluation metrics. Here we propose LRAGE, an open-source tool for holistic evaluation of RAG systems focusing on the legal domain. LRAGE provides GUI and CLI interfaces to facilitate seamless experiments and investigate how changes in the aforementioned five components affect the overall accuracy. We validated LRAGE using multilingual legal benches including Korean (KBL), English (LegalBench), and Chinese (LawBench) by demonstrating how the overall accuracy changes when varying the five components mentioned above. The source code is available at https://github.com/hoorangyee/LRAGE. 4 authors · Apr 2