1 Position: Don't use the CLT in LLM evals with fewer than a few hundred datapoints Rigorous statistical evaluations of large language models (LLMs), including valid error bars and significance testing, are essential for meaningful and reliable performance assessment. Currently, when such statistical measures are reported, they typically rely on the Central Limit Theorem (CLT). In this position paper, we argue that while CLT-based methods for uncertainty quantification are appropriate when benchmarks consist of thousands of examples, they fail to provide adequate uncertainty estimates for LLM evaluations that rely on smaller, highly specialized benchmarks. In these small-data settings, we demonstrate that CLT-based methods perform very poorly, usually dramatically underestimating uncertainty (i.e. producing error bars that are too small). We give recommendations for alternative frequentist and Bayesian methods that are both easy to implement and more appropriate in these increasingly common scenarios. We provide a simple Python library for these Bayesian methods at https://github.com/sambowyer/bayes_evals . 3 authors · Mar 3
- Towards Two-Stage Counterfactual Learning to Rank Counterfactual learning to rank (CLTR) aims to learn a ranking policy from user interactions while correcting for the inherent biases in interaction data, such as position bias. Existing CLTR methods assume a single ranking policy that selects top-K ranking from the entire document candidate set. In real-world applications, the candidate document set is on the order of millions, making a single-stage ranking policy impractical. In order to scale to millions of documents, real-world ranking systems are designed in a two-stage fashion, with a candidate generator followed by a ranker. The existing CLTR method for a two-stage offline ranking system only considers the top-1 ranking set-up and only focuses on training the candidate generator, with the ranker fixed. A CLTR method for training both the ranker and candidate generator jointly is missing from the existing literature. In this paper, we propose a two-stage CLTR estimator that considers the interaction between the two stages and estimates the joint value of the two policies offline. In addition, we propose a novel joint optimization method to train the candidate and ranker policies, respectively. To the best of our knowledge, we are the first to propose a CLTR estimator and learning method for two-stage ranking. Experimental results on a semi-synthetic benchmark demonstrate the effectiveness of the proposed joint CLTR method over baselines. 3 authors · Jun 25