1 ChatSpot: Bootstrapping Multimodal LLMs via Precise Referring Instruction Tuning Human-AI interactivity is a critical aspect that reflects the usability of multimodal large language models (MLLMs). However, existing end-to-end MLLMs only allow users to interact with them through language instructions, leading to the limitation of the interactive accuracy and efficiency. In this study, we present precise referring instructions that utilize diverse reference representations such as points and boxes as referring prompts to refer to the special region. This enables MLLMs to focus on the region of interest and achieve finer-grained interaction. Based on precise referring instruction, we propose ChatSpot, a unified end-to-end multimodal large language model that supports diverse forms of interactivity including mouse clicks, drag-and-drop, and drawing boxes, which provides a more flexible and seamless interactive experience. We also construct a multi-grained vision-language instruction-following dataset based on existing datasets and GPT-4 generating. Furthermore, we design a series of evaluation tasks to assess the effectiveness of region recognition and interaction. Experimental results showcase ChatSpot's promising performance. 11 authors · Jul 18, 2023
- ChatSpamDetector: Leveraging Large Language Models for Effective Phishing Email Detection The proliferation of phishing sites and emails poses significant challenges to existing cybersecurity efforts. Despite advances in malicious email filters and email security protocols, problems with oversight and false positives persist. Users often struggle to understand why emails are flagged as potentially fraudulent, risking the possibility of missing important communications or mistakenly trusting deceptive phishing emails. This study introduces ChatSpamDetector, a system that uses large language models (LLMs) to detect phishing emails. By converting email data into a prompt suitable for LLM analysis, the system provides a highly accurate determination of whether an email is phishing or not. Importantly, it offers detailed reasoning for its phishing determinations, assisting users in making informed decisions about how to handle suspicious emails. We conducted an evaluation using a comprehensive phishing email dataset and compared our system to several LLMs and baseline systems. We confirmed that our system using GPT-4 has superior detection capabilities with an accuracy of 99.70%. Advanced contextual interpretation by LLMs enables the identification of various phishing tactics and impersonations, making them a potentially powerful tool in the fight against email-based phishing threats. 4 authors · Feb 28, 2024