Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeGenerative Image Inpainting with Submanifold Alignment
Image inpainting aims at restoring missing regions of corrupted images, which has many applications such as image restoration and object removal. However, current GAN-based generative inpainting models do not explicitly exploit the structural or textural consistency between restored contents and their surrounding contexts.To address this limitation, we propose to enforce the alignment (or closeness) between the local data submanifolds (or subspaces) around restored images and those around the original (uncorrupted) images during the learning process of GAN-based inpainting models. We exploit Local Intrinsic Dimensionality (LID) to measure, in deep feature space, the alignment between data submanifolds learned by a GAN model and those of the original data, from a perspective of both images (denoted as iLID) and local patches (denoted as pLID) of images. We then apply iLID and pLID as regularizations for GAN-based inpainting models to encourage two levels of submanifold alignment: 1) an image-level alignment for improving structural consistency, and 2) a patch-level alignment for improving textural details. Experimental results on four benchmark datasets show that our proposed model can generate more accurate results than state-of-the-art models.
MagicEraser: Erasing Any Objects via Semantics-Aware Control
The traditional image inpainting task aims to restore corrupted regions by referencing surrounding background and foreground. However, the object erasure task, which is in increasing demand, aims to erase objects and generate harmonious background. Previous GAN-based inpainting methods struggle with intricate texture generation. Emerging diffusion model-based algorithms, such as Stable Diffusion Inpainting, exhibit the capability to generate novel content, but they often produce incongruent results at the locations of the erased objects and require high-quality text prompt inputs. To address these challenges, we introduce MagicEraser, a diffusion model-based framework tailored for the object erasure task. It consists of two phases: content initialization and controllable generation. In the latter phase, we develop two plug-and-play modules called prompt tuning and semantics-aware attention refocus. Additionally, we propose a data construction strategy that generates training data specially suitable for this task. MagicEraser achieves fine and effective control of content generation while mitigating undesired artifacts. Experimental results highlight a valuable advancement of our approach in the object erasure task.
Improving Diffusion Models for Virtual Try-on
This paper considers image-based virtual try-on, which renders an image of a person wearing a curated garment, given a pair of images depicting the person and the garment, respectively. Previous works adapt existing exemplar-based inpainting diffusion models for virtual try-on to improve the naturalness of the generated visuals compared to other methods (e.g., GAN-based), but they fail to preserve the identity of the garments. To overcome this limitation, we propose a novel diffusion model that improves garment fidelity and generates authentic virtual try-on images. Our method, coined IDM-VTON, uses two different modules to encode the semantics of garment image; given the base UNet of the diffusion model, 1) the high-level semantics extracted from a visual encoder are fused to the cross-attention layer, and then 2) the low-level features extracted from parallel UNet are fused to the self-attention layer. In addition, we provide detailed textual prompts for both garment and person images to enhance the authenticity of the generated visuals. Finally, we present a customization method using a pair of person-garment images, which significantly improves fidelity and authenticity. Our experimental results show that our method outperforms previous approaches (both diffusion-based and GAN-based) in preserving garment details and generating authentic virtual try-on images, both qualitatively and quantitatively. Furthermore, the proposed customization method demonstrates its effectiveness in a real-world scenario.
PEPSI++: Fast and Lightweight Network for Image Inpainting
Among the various generative adversarial network (GAN)-based image inpainting methods, a coarse-to-fine network with a contextual attention module (CAM) has shown remarkable performance. However, owing to two stacked generative networks, the coarse-to-fine network needs numerous computational resources such as convolution operations and network parameters, which result in low speed. To address this problem, we propose a novel network architecture called PEPSI: parallel extended-decoder path for semantic inpainting network, which aims at reducing the hardware costs and improving the inpainting performance. PEPSI consists of a single shared encoding network and parallel decoding networks called coarse and inpainting paths. The coarse path produces a preliminary inpainting result to train the encoding network for the prediction of features for the CAM. Simultaneously, the inpainting path generates higher inpainting quality using the refined features reconstructed via the CAM. In addition, we propose Diet-PEPSI that significantly reduces the network parameters while maintaining the performance. In Diet-PEPSI, to capture the global contextual information with low hardware costs, we propose novel rate-adaptive dilated convolutional layers, which employ the common weights but produce dynamic features depending on the given dilation rates. Extensive experiments comparing the performance with state-of-the-art image inpainting methods demonstrate that both PEPSI and Diet-PEPSI improve the qualitative scores, i.e. the peak signal-to-noise ratio (PSNR) and structural similarity (SSIM), as well as significantly reduce hardware costs such as computational time and the number of network parameters.
Aggregated Contextual Transformations for High-Resolution Image Inpainting
State-of-the-art image inpainting approaches can suffer from generating distorted structures and blurry textures in high-resolution images (e.g., 512x512). The challenges mainly drive from (1) image content reasoning from distant contexts, and (2) fine-grained texture synthesis for a large missing region. To overcome these two challenges, we propose an enhanced GAN-based model, named Aggregated COntextual-Transformation GAN (AOT-GAN), for high-resolution image inpainting. Specifically, to enhance context reasoning, we construct the generator of AOT-GAN by stacking multiple layers of a proposed AOT block. The AOT blocks aggregate contextual transformations from various receptive fields, allowing to capture both informative distant image contexts and rich patterns of interest for context reasoning. For improving texture synthesis, we enhance the discriminator of AOT-GAN by training it with a tailored mask-prediction task. Such a training objective forces the discriminator to distinguish the detailed appearances of real and synthesized patches, and in turn, facilitates the generator to synthesize clear textures. Extensive comparisons on Places2, the most challenging benchmark with 1.8 million high-resolution images of 365 complex scenes, show that our model outperforms the state-of-the-art by a significant margin in terms of FID with 38.60% relative improvement. A user study including more than 30 subjects further validates the superiority of AOT-GAN. We further evaluate the proposed AOT-GAN in practical applications, e.g., logo removal, face editing, and object removal. Results show that our model achieves promising completions in the real world. We release code and models in https://github.com/researchmm/AOT-GAN-for-Inpainting.
Keys to Better Image Inpainting: Structure and Texture Go Hand in Hand
Deep image inpainting has made impressive progress with recent advances in image generation and processing algorithms. We claim that the performance of inpainting algorithms can be better judged by the generated structures and textures. Structures refer to the generated object boundary or novel geometric structures within the hole, while texture refers to high-frequency details, especially man-made repeating patterns filled inside the structural regions. We believe that better structures are usually obtained from a coarse-to-fine GAN-based generator network while repeating patterns nowadays can be better modeled using state-of-the-art high-frequency fast fourier convolutional layers. In this paper, we propose a novel inpainting network combining the advantages of the two designs. Therefore, our model achieves a remarkable visual quality to match state-of-the-art performance in both structure generation and repeating texture synthesis using a single network. Extensive experiments demonstrate the effectiveness of the method, and our conclusions further highlight the two critical factors of image inpainting quality, structures, and textures, as the future design directions of inpainting networks.
Free-Form Image Inpainting with Gated Convolution
We present a generative image inpainting system to complete images with free-form mask and guidance. The system is based on gated convolutions learned from millions of images without additional labelling efforts. The proposed gated convolution solves the issue of vanilla convolution that treats all input pixels as valid ones, generalizes partial convolution by providing a learnable dynamic feature selection mechanism for each channel at each spatial location across all layers. Moreover, as free-form masks may appear anywhere in images with any shape, global and local GANs designed for a single rectangular mask are not applicable. Thus, we also present a patch-based GAN loss, named SN-PatchGAN, by applying spectral-normalized discriminator on dense image patches. SN-PatchGAN is simple in formulation, fast and stable in training. Results on automatic image inpainting and user-guided extension demonstrate that our system generates higher-quality and more flexible results than previous methods. Our system helps user quickly remove distracting objects, modify image layouts, clear watermarks and edit faces. Code, demo and models are available at: https://github.com/JiahuiYu/generative_inpainting
Architect: Generating Vivid and Interactive 3D Scenes with Hierarchical 2D Inpainting
Creating large-scale interactive 3D environments is essential for the development of Robotics and Embodied AI research. Current methods, including manual design, procedural generation, diffusion-based scene generation, and large language model (LLM) guided scene design, are hindered by limitations such as excessive human effort, reliance on predefined rules or training datasets, and limited 3D spatial reasoning ability. Since pre-trained 2D image generative models better capture scene and object configuration than LLMs, we address these challenges by introducing Architect, a generative framework that creates complex and realistic 3D embodied environments leveraging diffusion-based 2D image inpainting. In detail, we utilize foundation visual perception models to obtain each generated object from the image and leverage pre-trained depth estimation models to lift the generated 2D image to 3D space. Our pipeline is further extended to a hierarchical and iterative inpainting process to continuously generate placement of large furniture and small objects to enrich the scene. This iterative structure brings the flexibility for our method to generate or refine scenes from various starting points, such as text, floor plans, or pre-arranged environments.
Inst-Inpaint: Instructing to Remove Objects with Diffusion Models
Image inpainting task refers to erasing unwanted pixels from images and filling them in a semantically consistent and realistic way. Traditionally, the pixels that are wished to be erased are defined with binary masks. From the application point of view, a user needs to generate the masks for the objects they would like to remove which can be time-consuming and prone to errors. In this work, we are interested in an image inpainting algorithm that estimates which object to be removed based on natural language input and removes it, simultaneously. For this purpose, first, we construct a dataset named GQA-Inpaint for this task. Second, we present a novel inpainting framework, Inst-Inpaint, that can remove objects from images based on the instructions given as text prompts. We set various GAN and diffusion-based baselines and run experiments on synthetic and real image datasets. We compare methods with different evaluation metrics that measure the quality and accuracy of the models and show significant quantitative and qualitative improvements.
PD-GAN: Probabilistic Diverse GAN for Image Inpainting
We propose PD-GAN, a probabilistic diverse GAN for image inpainting. Given an input image with arbitrary hole regions, PD-GAN produces multiple inpainting results with diverse and visually realistic content. Our PD-GAN is built upon a vanilla GAN which generates images based on random noise. During image generation, we modulate deep features of input random noise from coarse-to-fine by injecting an initially restored image and the hole regions in multiple scales. We argue that during hole filling, the pixels near the hole boundary should be more deterministic (i.e., with higher probability trusting the context and initially restored image to create natural inpainting boundary), while those pixels lie in the center of the hole should enjoy more degrees of freedom (i.e., more likely to depend on the random noise for enhancing diversity). To this end, we propose spatially probabilistic diversity normalization (SPDNorm) inside the modulation to model the probability of generating a pixel conditioned on the context information. SPDNorm dynamically balances the realism and diversity inside the hole region, making the generated content more diverse towards the hole center and resemble neighboring image content more towards the hole boundary. Meanwhile, we propose a perceptual diversity loss to further empower PD-GAN for diverse content generation. Experiments on benchmark datasets including CelebA-HQ, Places2 and Paris Street View indicate that PD-GAN is effective for diverse and visually realistic image restoration.
Deep Learning-based Image and Video Inpainting: A Survey
Image and video inpainting is a classic problem in computer vision and computer graphics, aiming to fill in the plausible and realistic content in the missing areas of images and videos. With the advance of deep learning, this problem has achieved significant progress recently. The goal of this paper is to comprehensively review the deep learning-based methods for image and video inpainting. Specifically, we sort existing methods into different categories from the perspective of their high-level inpainting pipeline, present different deep learning architectures, including CNN, VAE, GAN, diffusion models, etc., and summarize techniques for module design. We review the training objectives and the common benchmark datasets. We present evaluation metrics for low-level pixel and high-level perceptional similarity, conduct a performance evaluation, and discuss the strengths and weaknesses of representative inpainting methods. We also discuss related real-world applications. Finally, we discuss open challenges and suggest potential future research directions.
UniVG: A Generalist Diffusion Model for Unified Image Generation and Editing
Text-to-Image (T2I) diffusion models have shown impressive results in generating visually compelling images following user prompts. Building on this, various methods further fine-tune the pre-trained T2I model for specific tasks. However, this requires separate model architectures, training designs, and multiple parameter sets to handle different tasks. In this paper, we introduce UniVG, a generalist diffusion model capable of supporting a diverse range of image generation tasks with a single set of weights. UniVG treats multi-modal inputs as unified conditions to enable various downstream applications, ranging from T2I generation, inpainting, instruction-based editing, identity-preserving generation, and layout-guided generation, to depth estimation and referring segmentation. Through comprehensive empirical studies on data mixing and multi-task training, we provide detailed insights into the training processes and decisions that inform our final designs. For example, we show that T2I generation and other tasks, such as instruction-based editing, can coexist without performance trade-offs, while auxiliary tasks like depth estimation and referring segmentation enhance image editing. Notably, our model can even outperform some task-specific models on their respective benchmarks, marking a significant step towards a unified image generation model.
High-Resolution Image Inpainting with Iterative Confidence Feedback and Guided Upsampling
Existing image inpainting methods often produce artifacts when dealing with large holes in real applications. To address this challenge, we propose an iterative inpainting method with a feedback mechanism. Specifically, we introduce a deep generative model which not only outputs an inpainting result but also a corresponding confidence map. Using this map as feedback, it progressively fills the hole by trusting only high-confidence pixels inside the hole at each iteration and focuses on the remaining pixels in the next iteration. As it reuses partial predictions from the previous iterations as known pixels, this process gradually improves the result. In addition, we propose a guided upsampling network to enable generation of high-resolution inpainting results. We achieve this by extending the Contextual Attention module to borrow high-resolution feature patches in the input image. Furthermore, to mimic real object removal scenarios, we collect a large object mask dataset and synthesize more realistic training data that better simulates user inputs. Experiments show that our method significantly outperforms existing methods in both quantitative and qualitative evaluations. More results and Web APP are available at https://zengxianyu.github.io/iic.
Image Inpainting via Iteratively Decoupled Probabilistic Modeling
Generative adversarial networks (GANs) have made great success in image inpainting yet still have difficulties tackling large missing regions. In contrast, iterative probabilistic algorithms, such as autoregressive and denoising diffusion models, have to be deployed with massive computing resources for decent effect. To achieve high-quality results with low computational cost, we present a novel pixel spread model (PSM) that iteratively employs decoupled probabilistic modeling, combining the optimization efficiency of GANs with the prediction tractability of probabilistic models. As a result, our model selectively spreads informative pixels throughout the image in a few iterations, largely enhancing the completion quality and efficiency. On multiple benchmarks, we achieve new state-of-the-art performance. Code is released at https://github.com/fenglinglwb/PSM.
Generative Image Inpainting with Contextual Attention
Recent deep learning based approaches have shown promising results for the challenging task of inpainting large missing regions in an image. These methods can generate visually plausible image structures and textures, but often create distorted structures or blurry textures inconsistent with surrounding areas. This is mainly due to ineffectiveness of convolutional neural networks in explicitly borrowing or copying information from distant spatial locations. On the other hand, traditional texture and patch synthesis approaches are particularly suitable when it needs to borrow textures from the surrounding regions. Motivated by these observations, we propose a new deep generative model-based approach which can not only synthesize novel image structures but also explicitly utilize surrounding image features as references during network training to make better predictions. The model is a feed-forward, fully convolutional neural network which can process images with multiple holes at arbitrary locations and with variable sizes during the test time. Experiments on multiple datasets including faces (CelebA, CelebA-HQ), textures (DTD) and natural images (ImageNet, Places2) demonstrate that our proposed approach generates higher-quality inpainting results than existing ones. Code, demo and models are available at: https://github.com/JiahuiYu/generative_inpainting.
Image Processing Using Multi-Code GAN Prior
Despite the success of Generative Adversarial Networks (GANs) in image synthesis, applying trained GAN models to real image processing remains challenging. Previous methods typically invert a target image back to the latent space either by back-propagation or by learning an additional encoder. However, the reconstructions from both of the methods are far from ideal. In this work, we propose a novel approach, called mGANprior, to incorporate the well-trained GANs as effective prior to a variety of image processing tasks. In particular, we employ multiple latent codes to generate multiple feature maps at some intermediate layer of the generator, then compose them with adaptive channel importance to recover the input image. Such an over-parameterization of the latent space significantly improves the image reconstruction quality, outperforming existing competitors. The resulting high-fidelity image reconstruction enables the trained GAN models as prior to many real-world applications, such as image colorization, super-resolution, image inpainting, and semantic manipulation. We further analyze the properties of the layer-wise representation learned by GAN models and shed light on what knowledge each layer is capable of representing.
Face Completion with Semantic Knowledge and Collaborative Adversarial Learning
Unlike a conventional background inpainting approach that infers a missing area from image patches similar to the background, face completion requires semantic knowledge about the target object for realistic outputs. Current image inpainting approaches utilize generative adversarial networks (GANs) to achieve such semantic understanding. However, in adversarial learning, the semantic knowledge is learned implicitly and hence good semantic understanding is not always guaranteed. In this work, we propose a collaborative adversarial learning approach to face completion to explicitly induce the training process. Our method is formulated under a novel generative framework called collaborative GAN (collaGAN), which allows better semantic understanding of a target object through collaborative learning of multiple tasks including face completion, landmark detection, and semantic segmentation. Together with the collaGAN, we also introduce an inpainting concentrated scheme such that the model emphasizes more on inpainting instead of autoencoding. Extensive experiments show that the proposed designs are indeed effective and collaborative adversarial learning provides better feature representations of the faces. In comparison with other generative image inpainting models and single task learning methods, our solution produces superior performances on all tasks.
EdgeConnect: Generative Image Inpainting with Adversarial Edge Learning
Over the last few years, deep learning techniques have yielded significant improvements in image inpainting. However, many of these techniques fail to reconstruct reasonable structures as they are commonly over-smoothed and/or blurry. This paper develops a new approach for image inpainting that does a better job of reproducing filled regions exhibiting fine details. We propose a two-stage adversarial model EdgeConnect that comprises of an edge generator followed by an image completion network. The edge generator hallucinates edges of the missing region (both regular and irregular) of the image, and the image completion network fills in the missing regions using hallucinated edges as a priori. We evaluate our model end-to-end over the publicly available datasets CelebA, Places2, and Paris StreetView, and show that it outperforms current state-of-the-art techniques quantitatively and qualitatively. Code and models available at: https://github.com/knazeri/edge-connect
Contextual-based Image Inpainting: Infer, Match, and Translate
We study the task of image inpainting, which is to fill in the missing region of an incomplete image with plausible contents. To this end, we propose a learning-based approach to generate visually coherent completion given a high-resolution image with missing components. In order to overcome the difficulty to directly learn the distribution of high-dimensional image data, we divide the task into inference and translation as two separate steps and model each step with a deep neural network. We also use simple heuristics to guide the propagation of local textures from the boundary to the hole. We show that, by using such techniques, inpainting reduces to the problem of learning two image-feature translation functions in much smaller space and hence easier to train. We evaluate our method on several public datasets and show that we generate results of better visual quality than previous state-of-the-art methods.
RePaint: Inpainting using Denoising Diffusion Probabilistic Models
Free-form inpainting is the task of adding new content to an image in the regions specified by an arbitrary binary mask. Most existing approaches train for a certain distribution of masks, which limits their generalization capabilities to unseen mask types. Furthermore, training with pixel-wise and perceptual losses often leads to simple textural extensions towards the missing areas instead of semantically meaningful generation. In this work, we propose RePaint: A Denoising Diffusion Probabilistic Model (DDPM) based inpainting approach that is applicable to even extreme masks. We employ a pretrained unconditional DDPM as the generative prior. To condition the generation process, we only alter the reverse diffusion iterations by sampling the unmasked regions using the given image information. Since this technique does not modify or condition the original DDPM network itself, the model produces high-quality and diverse output images for any inpainting form. We validate our method for both faces and general-purpose image inpainting using standard and extreme masks. RePaint outperforms state-of-the-art Autoregressive, and GAN approaches for at least five out of six mask distributions. Github Repository: git.io/RePaint
Diverse Inpainting and Editing with GAN Inversion
Recent inversion methods have shown that real images can be inverted into StyleGAN's latent space and numerous edits can be achieved on those images thanks to the semantically rich feature representations of well-trained GAN models. However, extensive research has also shown that image inversion is challenging due to the trade-off between high-fidelity reconstruction and editability. In this paper, we tackle an even more difficult task, inverting erased images into GAN's latent space for realistic inpaintings and editings. Furthermore, by augmenting inverted latent codes with different latent samples, we achieve diverse inpaintings. Specifically, we propose to learn an encoder and mixing network to combine encoded features from erased images with StyleGAN's mapped features from random samples. To encourage the mixing network to utilize both inputs, we train the networks with generated data via a novel set-up. We also utilize higher-rate features to prevent color inconsistencies between the inpainted and unerased parts. We run extensive experiments and compare our method with state-of-the-art inversion and inpainting methods. Qualitative metrics and visual comparisons show significant improvements.
Image Inpainting via Generative Multi-column Convolutional Neural Networks
In this paper, we propose a generative multi-column network for image inpainting. This network synthesizes different image components in a parallel manner within one stage. To better characterize global structures, we design a confidence-driven reconstruction loss while an implicit diversified MRF regularization is adopted to enhance local details. The multi-column network combined with the reconstruction and MRF loss propagates local and global information derived from context to the target inpainting regions. Extensive experiments on challenging street view, face, natural objects and scenes manifest that our method produces visual compelling results even without previously common post-processing.
Mechanisms of Generative Image-to-Image Translation Networks
Generative Adversarial Networks (GANs) are a class of neural networks that have been widely used in the field of image-to-image translation. In this paper, we propose a streamlined image-to-image translation network with a simpler architecture compared to existing models. We investigate the relationship between GANs and autoencoders and provide an explanation for the efficacy of employing only the GAN component for tasks involving image translation. We show that adversarial for GAN models yields results comparable to those of existing methods without additional complex loss penalties. Subsequently, we elucidate the rationale behind this phenomenon. We also incorporate experimental results to demonstrate the validity of our findings.
StructureFlow: Image Inpainting via Structure-aware Appearance Flow
Image inpainting techniques have shown significant improvements by using deep neural networks recently. However, most of them may either fail to reconstruct reasonable structures or restore fine-grained textures. In order to solve this problem, in this paper, we propose a two-stage model which splits the inpainting task into two parts: structure reconstruction and texture generation. In the first stage, edge-preserved smooth images are employed to train a structure reconstructor which completes the missing structures of the inputs. In the second stage, based on the reconstructed structures, a texture generator using appearance flow is designed to yield image details. Experiments on multiple publicly available datasets show the superior performance of the proposed network.
SPG-Net: Segmentation Prediction and Guidance Network for Image Inpainting
In this paper, we focus on image inpainting task, aiming at recovering the missing area of an incomplete image given the context information. Recent development in deep generative models enables an efficient end-to-end framework for image synthesis and inpainting tasks, but existing methods based on generative models don't exploit the segmentation information to constrain the object shapes, which usually lead to blurry results on the boundary. To tackle this problem, we propose to introduce the semantic segmentation information, which disentangles the inter-class difference and intra-class variation for image inpainting. This leads to much clearer recovered boundary between semantically different regions and better texture within semantically consistent segments. Our model factorizes the image inpainting process into segmentation prediction (SP-Net) and segmentation guidance (SG-Net) as two steps, which predict the segmentation labels in the missing area first, and then generate segmentation guided inpainting results. Experiments on multiple public datasets show that our approach outperforms existing methods in optimizing the image inpainting quality, and the interactive segmentation guidance provides possibilities for multi-modal predictions of image inpainting.
Detecting Overfitting of Deep Generative Networks via Latent Recovery
State of the art deep generative networks are capable of producing images with such incredible realism that they can be suspected of memorizing training images. It is why it is not uncommon to include visualizations of training set nearest neighbors, to suggest generated images are not simply memorized. We demonstrate this is not sufficient and motivates the need to study memorization/overfitting of deep generators with more scrutiny. This paper addresses this question by i) showing how simple losses are highly effective at reconstructing images for deep generators ii) analyzing the statistics of reconstruction errors when reconstructing training and validation images, which is the standard way to analyze overfitting in machine learning. Using this methodology, this paper shows that overfitting is not detectable in the pure GAN models proposed in the literature, in contrast with those using hybrid adversarial losses, which are amongst the most widely applied generative methods. The paper also shows that standard GAN evaluation metrics fail to capture memorization for some deep generators. Finally, the paper also shows how off-the-shelf GAN generators can be successfully applied to face inpainting and face super-resolution using the proposed reconstruction method, without hybrid adversarial losses.
Image Inpainting for Irregular Holes Using Partial Convolutions
Existing deep learning based image inpainting methods use a standard convolutional network over the corrupted image, using convolutional filter responses conditioned on both valid pixels as well as the substitute values in the masked holes (typically the mean value). This often leads to artifacts such as color discrepancy and blurriness. Post-processing is usually used to reduce such artifacts, but are expensive and may fail. We propose the use of partial convolutions, where the convolution is masked and renormalized to be conditioned on only valid pixels. We further include a mechanism to automatically generate an updated mask for the next layer as part of the forward pass. Our model outperforms other methods for irregular masks. We show qualitative and quantitative comparisons with other methods to validate our approach.
Image Inpainting with Learnable Bidirectional Attention Maps
Most convolutional network (CNN)-based inpainting methods adopt standard convolution to indistinguishably treat valid pixels and holes, making them limited in handling irregular holes and more likely to generate inpainting results with color discrepancy and blurriness. Partial convolution has been suggested to address this issue, but it adopts handcrafted feature re-normalization, and only considers forward mask-updating. In this paper, we present a learnable attention map module for learning feature renormalization and mask-updating in an end-to-end manner, which is effective in adapting to irregular holes and propagation of convolution layers. Furthermore, learnable reverse attention maps are introduced to allow the decoder of U-Net to concentrate on filling in irregular holes instead of reconstructing both holes and known regions, resulting in our learnable bidirectional attention maps. Qualitative and quantitative experiments show that our method performs favorably against state-of-the-arts in generating sharper, more coherent and visually plausible inpainting results. The source code and pre-trained models will be available.
Plug & Play Generative Networks: Conditional Iterative Generation of Images in Latent Space
Generating high-resolution, photo-realistic images has been a long-standing goal in machine learning. Recently, Nguyen et al. (2016) showed one interesting way to synthesize novel images by performing gradient ascent in the latent space of a generator network to maximize the activations of one or multiple neurons in a separate classifier network. In this paper we extend this method by introducing an additional prior on the latent code, improving both sample quality and sample diversity, leading to a state-of-the-art generative model that produces high quality images at higher resolutions (227x227) than previous generative models, and does so for all 1000 ImageNet categories. In addition, we provide a unified probabilistic interpretation of related activation maximization methods and call the general class of models "Plug and Play Generative Networks". PPGNs are composed of 1) a generator network G that is capable of drawing a wide range of image types and 2) a replaceable "condition" network C that tells the generator what to draw. We demonstrate the generation of images conditioned on a class (when C is an ImageNet or MIT Places classification network) and also conditioned on a caption (when C is an image captioning network). Our method also improves the state of the art of Multifaceted Feature Visualization, which generates the set of synthetic inputs that activate a neuron in order to better understand how deep neural networks operate. Finally, we show that our model performs reasonably well at the task of image inpainting. While image models are used in this paper, the approach is modality-agnostic and can be applied to many types of data.
StudioGAN: A Taxonomy and Benchmark of GANs for Image Synthesis
Generative Adversarial Network (GAN) is one of the state-of-the-art generative models for realistic image synthesis. While training and evaluating GAN becomes increasingly important, the current GAN research ecosystem does not provide reliable benchmarks for which the evaluation is conducted consistently and fairly. Furthermore, because there are few validated GAN implementations, researchers devote considerable time to reproducing baselines. We study the taxonomy of GAN approaches and present a new open-source library named StudioGAN. StudioGAN supports 7 GAN architectures, 9 conditioning methods, 4 adversarial losses, 13 regularization modules, 3 differentiable augmentations, 7 evaluation metrics, and 5 evaluation backbones. With our training and evaluation protocol, we present a large-scale benchmark using various datasets (CIFAR10, ImageNet, AFHQv2, FFHQ, and Baby/Papa/Granpa-ImageNet) and 3 different evaluation backbones (InceptionV3, SwAV, and Swin Transformer). Unlike other benchmarks used in the GAN community, we train representative GANs, including BigGAN, StyleGAN2, and StyleGAN3, in a unified training pipeline and quantify generation performance with 7 evaluation metrics. The benchmark evaluates other cutting-edge generative models(e.g., StyleGAN-XL, ADM, MaskGIT, and RQ-Transformer). StudioGAN provides GAN implementations, training, and evaluation scripts with the pre-trained weights. StudioGAN is available at https://github.com/POSTECH-CVLab/PyTorch-StudioGAN.
Deep Generative Adversarial Network for Occlusion Removal from a Single Image
Nowadays, the enhanced capabilities of in-expensive imaging devices have led to a tremendous increase in the acquisition and sharing of multimedia content over the Internet. Despite advances in imaging sensor technology, annoying conditions like occlusions hamper photography and may deteriorate the performance of applications such as surveillance, detection, and recognition. Occlusion segmentation is difficult because of scale variations, illumination changes, and so on. Similarly, recovering a scene from foreground occlusions also poses significant challenges due to the complexity of accurately estimating the occluded regions and maintaining coherence with the surrounding context. In particular, image de-fencing presents its own set of challenges because of the diverse variations in shape, texture, color, patterns, and the often cluttered environment. This study focuses on the automatic detection and removal of occlusions from a single image. We propose a fully automatic, two-stage convolutional neural network for fence segmentation and occlusion completion. We leverage generative adversarial networks (GANs) to synthesize realistic content, including both structure and texture, in a single shot for inpainting. To assess zero-shot generalization, we evaluated our trained occlusion detection model on our proposed fence-like occlusion segmentation dataset. The dataset can be found on GitHub.
Projected GANs Converge Faster
Generative Adversarial Networks (GANs) produce high-quality images but are challenging to train. They need careful regularization, vast amounts of compute, and expensive hyper-parameter sweeps. We make significant headway on these issues by projecting generated and real samples into a fixed, pretrained feature space. Motivated by the finding that the discriminator cannot fully exploit features from deeper layers of the pretrained model, we propose a more effective strategy that mixes features across channels and resolutions. Our Projected GAN improves image quality, sample efficiency, and convergence speed. It is further compatible with resolutions of up to one Megapixel and advances the state-of-the-art Fr\'echet Inception Distance (FID) on twenty-two benchmark datasets. Importantly, Projected GANs match the previously lowest FIDs up to 40 times faster, cutting the wall-clock time from 5 days to less than 3 hours given the same computational resources.
Deep Inception Generative Network for Cognitive Image Inpainting
Recent advances in deep learning have shown exciting promise in filling large holes and lead to another orientation for image inpainting. However, existing learning-based methods often create artifacts and fallacious textures because of insufficient cognition understanding. Previous generative networks are limited with single receptive type and give up pooling in consideration of detail sharpness. Human cognition is constant regardless of the target attribute. As multiple receptive fields improve the ability of abstract image characterization and pooling can keep feature invariant, specifically, deep inception learning is adopted to promote high-level feature representation and enhance model learning capacity for local patches. Moreover, approaches for generating diverse mask images are introduced and a random mask dataset is created. We benchmark our methods on ImageNet, Places2 dataset, and CelebA-HQ. Experiments for regular, irregular, and custom regions completion are all performed and free-style image inpainting is also presented. Quantitative comparisons with previous state-of-the-art methods show that ours obtain much more natural image completions.
Multitask Brain Tumor Inpainting with Diffusion Models: A Methodological Report
Despite the ever-increasing interest in applying deep learning (DL) models to medical imaging, the typical scarcity and imbalance of medical datasets can severely impact the performance of DL models. The generation of synthetic data that might be freely shared without compromising patient privacy is a well-known technique for addressing these difficulties. Inpainting algorithms are a subset of DL generative models that can alter one or more regions of an input image while matching its surrounding context and, in certain cases, non-imaging input conditions. Although the majority of inpainting techniques for medical imaging data use generative adversarial networks (GANs), the performance of these algorithms is frequently suboptimal due to their limited output variety, a problem that is already well-known for GANs. Denoising diffusion probabilistic models (DDPMs) are a recently introduced family of generative networks that can generate results of comparable quality to GANs, but with diverse outputs. In this paper, we describe a DDPM to execute multiple inpainting tasks on 2D axial slices of brain MRI with various sequences, and present proof-of-concept examples of its performance in a variety of evaluation scenarios. Our model and a public online interface to try our tool are available at: https://github.com/Mayo-Radiology-Informatics-Lab/MBTI
Semantic Photo Manipulation with a Generative Image Prior
Despite the recent success of GANs in synthesizing images conditioned on inputs such as a user sketch, text, or semantic labels, manipulating the high-level attributes of an existing natural photograph with GANs is challenging for two reasons. First, it is hard for GANs to precisely reproduce an input image. Second, after manipulation, the newly synthesized pixels often do not fit the original image. In this paper, we address these issues by adapting the image prior learned by GANs to image statistics of an individual image. Our method can accurately reconstruct the input image and synthesize new content, consistent with the appearance of the input image. We demonstrate our interactive system on several semantic image editing tasks, including synthesizing new objects consistent with background, removing unwanted objects, and changing the appearance of an object. Quantitative and qualitative comparisons against several existing methods demonstrate the effectiveness of our method.
High-Resolution Image Inpainting using Multi-Scale Neural Patch Synthesis
Recent advances in deep learning have shown exciting promise in filling large holes in natural images with semantically plausible and context aware details, impacting fundamental image manipulation tasks such as object removal. While these learning-based methods are significantly more effective in capturing high-level features than prior techniques, they can only handle very low-resolution inputs due to memory limitations and difficulty in training. Even for slightly larger images, the inpainted regions would appear blurry and unpleasant boundaries become visible. We propose a multi-scale neural patch synthesis approach based on joint optimization of image content and texture constraints, which not only preserves contextual structures but also produces high-frequency details by matching and adapting patches with the most similar mid-layer feature correlations of a deep classification network. We evaluate our method on the ImageNet and Paris Streetview datasets and achieved state-of-the-art inpainting accuracy. We show our approach produces sharper and more coherent results than prior methods, especially for high-resolution images.
GAN Dissection: Visualizing and Understanding Generative Adversarial Networks
Generative Adversarial Networks (GANs) have recently achieved impressive results for many real-world applications, and many GAN variants have emerged with improvements in sample quality and training stability. However, they have not been well visualized or understood. How does a GAN represent our visual world internally? What causes the artifacts in GAN results? How do architectural choices affect GAN learning? Answering such questions could enable us to develop new insights and better models. In this work, we present an analytic framework to visualize and understand GANs at the unit-, object-, and scene-level. We first identify a group of interpretable units that are closely related to object concepts using a segmentation-based network dissection method. Then, we quantify the causal effect of interpretable units by measuring the ability of interventions to control objects in the output. We examine the contextual relationship between these units and their surroundings by inserting the discovered object concepts into new images. We show several practical applications enabled by our framework, from comparing internal representations across different layers, models, and datasets, to improving GANs by locating and removing artifact-causing units, to interactively manipulating objects in a scene. We provide open source interpretation tools to help researchers and practitioners better understand their GAN models.
Are GANs Created Equal? A Large-Scale Study
Generative adversarial networks (GAN) are a powerful subclass of generative models. Despite a very rich research activity leading to numerous interesting GAN algorithms, it is still very hard to assess which algorithm(s) perform better than others. We conduct a neutral, multi-faceted large-scale empirical study on state-of-the art models and evaluation measures. We find that most models can reach similar scores with enough hyperparameter optimization and random restarts. This suggests that improvements can arise from a higher computational budget and tuning more than fundamental algorithmic changes. To overcome some limitations of the current metrics, we also propose several data sets on which precision and recall can be computed. Our experimental results suggest that future GAN research should be based on more systematic and objective evaluation procedures. Finally, we did not find evidence that any of the tested algorithms consistently outperforms the non-saturating GAN introduced in goodfellow2014generative.
Analyzing and Improving the Image Quality of StyleGAN
The style-based GAN architecture (StyleGAN) yields state-of-the-art results in data-driven unconditional generative image modeling. We expose and analyze several of its characteristic artifacts, and propose changes in both model architecture and training methods to address them. In particular, we redesign the generator normalization, revisit progressive growing, and regularize the generator to encourage good conditioning in the mapping from latent codes to images. In addition to improving image quality, this path length regularizer yields the additional benefit that the generator becomes significantly easier to invert. This makes it possible to reliably attribute a generated image to a particular network. We furthermore visualize how well the generator utilizes its output resolution, and identify a capacity problem, motivating us to train larger models for additional quality improvements. Overall, our improved model redefines the state of the art in unconditional image modeling, both in terms of existing distribution quality metrics as well as perceived image quality.
Taming the Power of Diffusion Models for High-Quality Virtual Try-On with Appearance Flow
Virtual try-on is a critical image synthesis task that aims to transfer clothes from one image to another while preserving the details of both humans and clothes. While many existing methods rely on Generative Adversarial Networks (GANs) to achieve this, flaws can still occur, particularly at high resolutions. Recently, the diffusion model has emerged as a promising alternative for generating high-quality images in various applications. However, simply using clothes as a condition for guiding the diffusion model to inpaint is insufficient to maintain the details of the clothes. To overcome this challenge, we propose an exemplar-based inpainting approach that leverages a warping module to guide the diffusion model's generation effectively. The warping module performs initial processing on the clothes, which helps to preserve the local details of the clothes. We then combine the warped clothes with clothes-agnostic person image and add noise as the input of diffusion model. Additionally, the warped clothes is used as local conditions for each denoising process to ensure that the resulting output retains as much detail as possible. Our approach, namely Diffusion-based Conditional Inpainting for Virtual Try-ON (DCI-VTON), effectively utilizes the power of the diffusion model, and the incorporation of the warping module helps to produce high-quality and realistic virtual try-on results. Experimental results on VITON-HD demonstrate the effectiveness and superiority of our method.
StackGAN++: Realistic Image Synthesis with Stacked Generative Adversarial Networks
Although Generative Adversarial Networks (GANs) have shown remarkable success in various tasks, they still face challenges in generating high quality images. In this paper, we propose Stacked Generative Adversarial Networks (StackGAN) aiming at generating high-resolution photo-realistic images. First, we propose a two-stage generative adversarial network architecture, StackGAN-v1, for text-to-image synthesis. The Stage-I GAN sketches the primitive shape and colors of the object based on given text description, yielding low-resolution images. The Stage-II GAN takes Stage-I results and text descriptions as inputs, and generates high-resolution images with photo-realistic details. Second, an advanced multi-stage generative adversarial network architecture, StackGAN-v2, is proposed for both conditional and unconditional generative tasks. Our StackGAN-v2 consists of multiple generators and discriminators in a tree-like structure; images at multiple scales corresponding to the same scene are generated from different branches of the tree. StackGAN-v2 shows more stable training behavior than StackGAN-v1 by jointly approximating multiple distributions. Extensive experiments demonstrate that the proposed stacked generative adversarial networks significantly outperform other state-of-the-art methods in generating photo-realistic images.
Learning Pyramid-Context Encoder Network for High-Quality Image Inpainting
High-quality image inpainting requires filling missing regions in a damaged image with plausible content. Existing works either fill the regions by copying image patches or generating semantically-coherent patches from region context, while neglect the fact that both visual and semantic plausibility are highly-demanded. In this paper, we propose a Pyramid-context ENcoder Network (PEN-Net) for image inpainting by deep generative models. The PEN-Net is built upon a U-Net structure, which can restore an image by encoding contextual semantics from full resolution input, and decoding the learned semantic features back into images. Specifically, we propose a pyramid-context encoder, which progressively learns region affinity by attention from a high-level semantic feature map and transfers the learned attention to the previous low-level feature map. As the missing content can be filled by attention transfer from deep to shallow in a pyramid fashion, both visual and semantic coherence for image inpainting can be ensured. We further propose a multi-scale decoder with deeply-supervised pyramid losses and an adversarial loss. Such a design not only results in fast convergence in training, but more realistic results in testing. Extensive experiments on various datasets show the superior performance of the proposed network
On Hallucinating Context and Background Pixels from a Face Mask using Multi-scale GANs
We propose a multi-scale GAN model to hallucinate realistic context (forehead, hair, neck, clothes) and background pixels automatically from a single input face mask. Instead of swapping a face on to an existing picture, our model directly generates realistic context and background pixels based on the features of the provided face mask. Unlike face inpainting algorithms, it can generate realistic hallucinations even for a large number of missing pixels. Our model is composed of a cascaded network of GAN blocks, each tasked with hallucination of missing pixels at a particular resolution while guiding the synthesis process of the next GAN block. The hallucinated full face image is made photo-realistic by using a combination of reconstruction, perceptual, adversarial and identity preserving losses at each block of the network. With a set of extensive experiments, we demonstrate the effectiveness of our model in hallucinating context and background pixels from face masks varying in facial pose, expression and lighting, collected from multiple datasets subject disjoint with our training data. We also compare our method with two popular face swapping and face completion methods in terms of visual quality and recognition performance. Additionally, we analyze our cascaded pipeline and compare it with the recently proposed progressive growing of GANs.
Barbershop: GAN-based Image Compositing using Segmentation Masks
Seamlessly blending features from multiple images is extremely challenging because of complex relationships in lighting, geometry, and partial occlusion which cause coupling between different parts of the image. Even though recent work on GANs enables synthesis of realistic hair or faces, it remains difficult to combine them into a single, coherent, and plausible image rather than a disjointed set of image patches. We present a novel solution to image blending, particularly for the problem of hairstyle transfer, based on GAN-inversion. We propose a novel latent space for image blending which is better at preserving detail and encoding spatial information, and propose a new GAN-embedding algorithm which is able to slightly modify images to conform to a common segmentation mask. Our novel representation enables the transfer of the visual properties from multiple reference images including specific details such as moles and wrinkles, and because we do image blending in a latent-space we are able to synthesize images that are coherent. Our approach avoids blending artifacts present in other approaches and finds a globally consistent image. Our results demonstrate a significant improvement over the current state of the art in a user study, with users preferring our blending solution over 95 percent of the time.
CLIPAway: Harmonizing Focused Embeddings for Removing Objects via Diffusion Models
Advanced image editing techniques, particularly inpainting, are essential for seamlessly removing unwanted elements while preserving visual integrity. Traditional GAN-based methods have achieved notable success, but recent advancements in diffusion models have produced superior results due to their training on large-scale datasets, enabling the generation of remarkably realistic inpainted images. Despite their strengths, diffusion models often struggle with object removal tasks without explicit guidance, leading to unintended hallucinations of the removed object. To address this issue, we introduce CLIPAway, a novel approach leveraging CLIP embeddings to focus on background regions while excluding foreground elements. CLIPAway enhances inpainting accuracy and quality by identifying embeddings that prioritize the background, thus achieving seamless object removal. Unlike other methods that rely on specialized training datasets or costly manual annotations, CLIPAway provides a flexible, plug-and-play solution compatible with various diffusion-based inpainting techniques.
Image Inpainting with External-internal Learning and Monochromic Bottleneck
Although recent inpainting approaches have demonstrated significant improvements with deep neural networks, they still suffer from artifacts such as blunt structures and abrupt colors when filling in the missing regions. To address these issues, we propose an external-internal inpainting scheme with a monochromic bottleneck that helps image inpainting models remove these artifacts. In the external learning stage, we reconstruct missing structures and details in the monochromic space to reduce the learning dimension. In the internal learning stage, we propose a novel internal color propagation method with progressive learning strategies for consistent color restoration. Extensive experiments demonstrate that our proposed scheme helps image inpainting models produce more structure-preserved and visually compelling results.
An Internal Learning Approach to Video Inpainting
We propose a novel video inpainting algorithm that simultaneously hallucinates missing appearance and motion (optical flow) information, building upon the recent 'Deep Image Prior' (DIP) that exploits convolutional network architectures to enforce plausible texture in static images. In extending DIP to video we make two important contributions. First, we show that coherent video inpainting is possible without a priori training. We take a generative approach to inpainting based on internal (within-video) learning without reliance upon an external corpus of visual data to train a one-size-fits-all model for the large space of general videos. Second, we show that such a framework can jointly generate both appearance and flow, whilst exploiting these complementary modalities to ensure mutual consistency. We show that leveraging appearance statistics specific to each video achieves visually plausible results whilst handling the challenging problem of long-term consistency.
NeRFiller: Completing Scenes via Generative 3D Inpainting
We propose NeRFiller, an approach that completes missing portions of a 3D capture via generative 3D inpainting using off-the-shelf 2D visual generative models. Often parts of a captured 3D scene or object are missing due to mesh reconstruction failures or a lack of observations (e.g., contact regions, such as the bottom of objects, or hard-to-reach areas). We approach this challenging 3D inpainting problem by leveraging a 2D inpainting diffusion model. We identify a surprising behavior of these models, where they generate more 3D consistent inpaints when images form a 2times2 grid, and show how to generalize this behavior to more than four images. We then present an iterative framework to distill these inpainted regions into a single consistent 3D scene. In contrast to related works, we focus on completing scenes rather than deleting foreground objects, and our approach does not require tight 2D object masks or text. We compare our approach to relevant baselines adapted to our setting on a variety of scenes, where NeRFiller creates the most 3D consistent and plausible scene completions. Our project page is at https://ethanweber.me/nerfiller.
Fidelity-Controllable Extreme Image Compression with Generative Adversarial Networks
We propose a GAN-based image compression method working at extremely low bitrates below 0.1bpp. Most existing learned image compression methods suffer from blur at extremely low bitrates. Although GAN can help to reconstruct sharp images, there are two drawbacks. First, GAN makes training unstable. Second, the reconstructions often contain unpleasing noise or artifacts. To address both of the drawbacks, our method adopts two-stage training and network interpolation. The two-stage training is effective to stabilize the training. Moreover, the network interpolation utilizes the models in both stages and reduces undesirable noise and artifacts, while maintaining important edges. Hence, we can control the trade-off between perceptual quality and fidelity without re-training models. The experimental results show that our model can reconstruct high quality images. Furthermore, our user study confirms that our reconstructions are preferable to state-of-the-art GAN-based image compression model. The code will be available.
GANTASTIC: GAN-based Transfer of Interpretable Directions for Disentangled Image Editing in Text-to-Image Diffusion Models
The rapid advancement in image generation models has predominantly been driven by diffusion models, which have demonstrated unparalleled success in generating high-fidelity, diverse images from textual prompts. Despite their success, diffusion models encounter substantial challenges in the domain of image editing, particularly in executing disentangled edits-changes that target specific attributes of an image while leaving irrelevant parts untouched. In contrast, Generative Adversarial Networks (GANs) have been recognized for their success in disentangled edits through their interpretable latent spaces. We introduce GANTASTIC, a novel framework that takes existing directions from pre-trained GAN models-representative of specific, controllable attributes-and transfers these directions into diffusion-based models. This novel approach not only maintains the generative quality and diversity that diffusion models are known for but also significantly enhances their capability to perform precise, targeted image edits, thereby leveraging the best of both worlds.
SinGAN: Learning a Generative Model from a Single Natural Image
We introduce SinGAN, an unconditional generative model that can be learned from a single natural image. Our model is trained to capture the internal distribution of patches within the image, and is then able to generate high quality, diverse samples that carry the same visual content as the image. SinGAN contains a pyramid of fully convolutional GANs, each responsible for learning the patch distribution at a different scale of the image. This allows generating new samples of arbitrary size and aspect ratio, that have significant variability, yet maintain both the global structure and the fine textures of the training image. In contrast to previous single image GAN schemes, our approach is not limited to texture images, and is not conditional (i.e. it generates samples from noise). User studies confirm that the generated samples are commonly confused to be real images. We illustrate the utility of SinGAN in a wide range of image manipulation tasks.
GAN Prior Embedded Network for Blind Face Restoration in the Wild
Blind face restoration (BFR) from severely degraded face images in the wild is a very challenging problem. Due to the high illness of the problem and the complex unknown degradation, directly training a deep neural network (DNN) usually cannot lead to acceptable results. Existing generative adversarial network (GAN) based methods can produce better results but tend to generate over-smoothed restorations. In this work, we propose a new method by first learning a GAN for high-quality face image generation and embedding it into a U-shaped DNN as a prior decoder, then fine-tuning the GAN prior embedded DNN with a set of synthesized low-quality face images. The GAN blocks are designed to ensure that the latent code and noise input to the GAN can be respectively generated from the deep and shallow features of the DNN, controlling the global face structure, local face details and background of the reconstructed image. The proposed GAN prior embedded network (GPEN) is easy-to-implement, and it can generate visually photo-realistic results. Our experiments demonstrated that the proposed GPEN achieves significantly superior results to state-of-the-art BFR methods both quantitatively and qualitatively, especially for the restoration of severely degraded face images in the wild. The source code and models can be found at https://github.com/yangxy/GPEN.
Text2Tex: Text-driven Texture Synthesis via Diffusion Models
We present Text2Tex, a novel method for generating high-quality textures for 3D meshes from the given text prompts. Our method incorporates inpainting into a pre-trained depth-aware image diffusion model to progressively synthesize high resolution partial textures from multiple viewpoints. To avoid accumulating inconsistent and stretched artifacts across views, we dynamically segment the rendered view into a generation mask, which represents the generation status of each visible texel. This partitioned view representation guides the depth-aware inpainting model to generate and update partial textures for the corresponding regions. Furthermore, we propose an automatic view sequence generation scheme to determine the next best view for updating the partial texture. Extensive experiments demonstrate that our method significantly outperforms the existing text-driven approaches and GAN-based methods.
BlendGAN: Implicitly GAN Blending for Arbitrary Stylized Face Generation
Generative Adversarial Networks (GANs) have made a dramatic leap in high-fidelity image synthesis and stylized face generation. Recently, a layer-swapping mechanism has been developed to improve the stylization performance. However, this method is incapable of fitting arbitrary styles in a single model and requires hundreds of style-consistent training images for each style. To address the above issues, we propose BlendGAN for arbitrary stylized face generation by leveraging a flexible blending strategy and a generic artistic dataset. Specifically, we first train a self-supervised style encoder on the generic artistic dataset to extract the representations of arbitrary styles. In addition, a weighted blending module (WBM) is proposed to blend face and style representations implicitly and control the arbitrary stylization effect. By doing so, BlendGAN can gracefully fit arbitrary styles in a unified model while avoiding case-by-case preparation of style-consistent training images. To this end, we also present a novel large-scale artistic face dataset AAHQ. Extensive experiments demonstrate that BlendGAN outperforms state-of-the-art methods in terms of visual quality and style diversity for both latent-guided and reference-guided stylized face synthesis.
BrushNet: A Plug-and-Play Image Inpainting Model with Decomposed Dual-Branch Diffusion
Image inpainting, the process of restoring corrupted images, has seen significant advancements with the advent of diffusion models (DMs). Despite these advancements, current DM adaptations for inpainting, which involve modifications to the sampling strategy or the development of inpainting-specific DMs, frequently suffer from semantic inconsistencies and reduced image quality. Addressing these challenges, our work introduces a novel paradigm: the division of masked image features and noisy latent into separate branches. This division dramatically diminishes the model's learning load, facilitating a nuanced incorporation of essential masked image information in a hierarchical fashion. Herein, we present BrushNet, a novel plug-and-play dual-branch model engineered to embed pixel-level masked image features into any pre-trained DM, guaranteeing coherent and enhanced image inpainting outcomes. Additionally, we introduce BrushData and BrushBench to facilitate segmentation-based inpainting training and performance assessment. Our extensive experimental analysis demonstrates BrushNet's superior performance over existing models across seven key metrics, including image quality, mask region preservation, and textual coherence.
Breaking the cycle -- Colleagues are all you need
This paper proposes a novel approach to performing image-to-image translation between unpaired domains. Rather than relying on a cycle constraint, our method takes advantage of collaboration between various GANs. This results in a multi-modal method, in which multiple optional and diverse images are produced for a given image. Our model addresses some of the shortcomings of classical GANs: (1) It is able to remove large objects, such as glasses. (2) Since it does not need to support the cycle constraint, no irrelevant traces of the input are left on the generated image. (3) It manages to translate between domains that require large shape modifications. Our results are shown to outperform those generated by state-of-the-art methods for several challenging applications on commonly-used datasets, both qualitatively and quantitatively.
PainterNet: Adaptive Image Inpainting with Actual-Token Attention and Diverse Mask Control
Recently, diffusion models have exhibited superior performance in the area of image inpainting. Inpainting methods based on diffusion models can usually generate realistic, high-quality image content for masked areas. However, due to the limitations of diffusion models, existing methods typically encounter problems in terms of semantic consistency between images and text, and the editing habits of users. To address these issues, we present PainterNet, a plugin that can be flexibly embedded into various diffusion models. To generate image content in the masked areas that highly aligns with the user input prompt, we proposed local prompt input, Attention Control Points (ACP), and Actual-Token Attention Loss (ATAL) to enhance the model's focus on local areas. Additionally, we redesigned the MASK generation algorithm in training and testing dataset to simulate the user's habit of applying MASK, and introduced a customized new training dataset, PainterData, and a benchmark dataset, PainterBench. Our extensive experimental analysis exhibits that PainterNet surpasses existing state-of-the-art models in key metrics including image quality and global/local text consistency.
SurfaceNet: Adversarial SVBRDF Estimation from a Single Image
In this paper we present SurfaceNet, an approach for estimating spatially-varying bidirectional reflectance distribution function (SVBRDF) material properties from a single image. We pose the problem as an image translation task and propose a novel patch-based generative adversarial network (GAN) that is able to produce high-quality, high-resolution surface reflectance maps. The employment of the GAN paradigm has a twofold objective: 1) allowing the model to recover finer details than standard translation models; 2) reducing the domain shift between synthetic and real data distributions in an unsupervised way. An extensive evaluation, carried out on a public benchmark of synthetic and real images under different illumination conditions, shows that SurfaceNet largely outperforms existing SVBRDF reconstruction methods, both quantitatively and qualitatively. Furthermore, SurfaceNet exhibits a remarkable ability in generating high-quality maps from real samples without any supervision at training time.
Deep Video Inpainting
Video inpainting aims to fill spatio-temporal holes with plausible content in a video. Despite tremendous progress of deep neural networks for image inpainting, it is challenging to extend these methods to the video domain due to the additional time dimension. In this work, we propose a novel deep network architecture for fast video inpainting. Built upon an image-based encoder-decoder model, our framework is designed to collect and refine information from neighbor frames and synthesize still-unknown regions. At the same time, the output is enforced to be temporally consistent by a recurrent feedback and a temporal memory module. Compared with the state-of-the-art image inpainting algorithm, our method produces videos that are much more semantically correct and temporally smooth. In contrast to the prior video completion method which relies on time-consuming optimization, our method runs in near real-time while generating competitive video results. Finally, we applied our framework to video retargeting task, and obtain visually pleasing results.
Towards Faster and Stabilized GAN Training for High-fidelity Few-shot Image Synthesis
Training Generative Adversarial Networks (GAN) on high-fidelity images usually requires large-scale GPU-clusters and a vast number of training images. In this paper, we study the few-shot image synthesis task for GAN with minimum computing cost. We propose a light-weight GAN structure that gains superior quality on 1024*1024 resolution. Notably, the model converges from scratch with just a few hours of training on a single RTX-2080 GPU, and has a consistent performance, even with less than 100 training samples. Two technique designs constitute our work, a skip-layer channel-wise excitation module and a self-supervised discriminator trained as a feature-encoder. With thirteen datasets covering a wide variety of image domains (The datasets and code are available at: https://github.com/odegeasslbc/FastGAN-pytorch), we show our model's superior performance compared to the state-of-the-art StyleGAN2, when data and computing budget are limited.
Self-Supervised Geometry-Aware Encoder for Style-Based 3D GAN Inversion
StyleGAN has achieved great progress in 2D face reconstruction and semantic editing via image inversion and latent editing. While studies over extending 2D StyleGAN to 3D faces have emerged, a corresponding generic 3D GAN inversion framework is still missing, limiting the applications of 3D face reconstruction and semantic editing. In this paper, we study the challenging problem of 3D GAN inversion where a latent code is predicted given a single face image to faithfully recover its 3D shapes and detailed textures. The problem is ill-posed: innumerable compositions of shape and texture could be rendered to the current image. Furthermore, with the limited capacity of a global latent code, 2D inversion methods cannot preserve faithful shape and texture at the same time when applied to 3D models. To solve this problem, we devise an effective self-training scheme to constrain the learning of inversion. The learning is done efficiently without any real-world 2D-3D training pairs but proxy samples generated from a 3D GAN. In addition, apart from a global latent code that captures the coarse shape and texture information, we augment the generation network with a local branch, where pixel-aligned features are added to faithfully reconstruct face details. We further consider a new pipeline to perform 3D view-consistent editing. Extensive experiments show that our method outperforms state-of-the-art inversion methods in both shape and texture reconstruction quality. Code and data will be released.
MobileStyleGAN: A Lightweight Convolutional Neural Network for High-Fidelity Image Synthesis
In recent years, the use of Generative Adversarial Networks (GANs) has become very popular in generative image modeling. While style-based GAN architectures yield state-of-the-art results in high-fidelity image synthesis, computationally, they are highly complex. In our work, we focus on the performance optimization of style-based generative models. We analyze the most computationally hard parts of StyleGAN2, and propose changes in the generator network to make it possible to deploy style-based generative networks in the edge devices. We introduce MobileStyleGAN architecture, which has x3.5 fewer parameters and is x9.5 less computationally complex than StyleGAN2, while providing comparable quality.
Geometry-Aware Diffusion Models for Multiview Scene Inpainting
In this paper, we focus on 3D scene inpainting, where parts of an input image set, captured from different viewpoints, are masked out. The main challenge lies in generating plausible image completions that are geometrically consistent across views. Most recent work addresses this challenge by combining generative models with a 3D radiance field to fuse information across a relatively dense set of viewpoints. However, a major drawback of these methods is that they often produce blurry images due to the fusion of inconsistent cross-view images. To avoid blurry inpaintings, we eschew the use of an explicit or implicit radiance field altogether and instead fuse cross-view information in a learned space. In particular, we introduce a geometry-aware conditional generative model, capable of multi-view consistent inpainting using reference-based geometric and appearance cues. A key advantage of our approach over existing methods is its unique ability to inpaint masked scenes with a limited number of views (i.e., few-view inpainting), whereas previous methods require relatively large image sets for their 3D model fitting step. Empirically, we evaluate and compare our scene-centric inpainting method on two datasets, SPIn-NeRF and NeRFiller, which contain images captured at narrow and wide baselines, respectively, and achieve state-of-the-art 3D inpainting performance on both. Additionally, we demonstrate the efficacy of our approach in the few-view setting compared to prior methods.
GAN Inversion: A Survey
GAN inversion aims to invert a given image back into the latent space of a pretrained GAN model, for the image to be faithfully reconstructed from the inverted code by the generator. As an emerging technique to bridge the real and fake image domains, GAN inversion plays an essential role in enabling the pretrained GAN models such as StyleGAN and BigGAN to be used for real image editing applications. Meanwhile, GAN inversion also provides insights on the interpretation of GAN's latent space and how the realistic images can be generated. In this paper, we provide an overview of GAN inversion with a focus on its recent algorithms and applications. We cover important techniques of GAN inversion and their applications to image restoration and image manipulation. We further elaborate on some trends and challenges for future directions.
Learning by Planning: Language-Guided Global Image Editing
Recently, language-guided global image editing draws increasing attention with growing application potentials. However, previous GAN-based methods are not only confined to domain-specific, low-resolution data but also lacking in interpretability. To overcome the collective difficulties, we develop a text-to-operation model to map the vague editing language request into a series of editing operations, e.g., change contrast, brightness, and saturation. Each operation is interpretable and differentiable. Furthermore, the only supervision in the task is the target image, which is insufficient for a stable training of sequential decisions. Hence, we propose a novel operation planning algorithm to generate possible editing sequences from the target image as pseudo ground truth. Comparison experiments on the newly collected MA5k-Req dataset and GIER dataset show the advantages of our methods. Code is available at https://jshi31.github.io/T2ONet.
E^{2}GAN: Efficient Training of Efficient GANs for Image-to-Image Translation
One highly promising direction for enabling flexible real-time on-device image editing is utilizing data distillation by leveraging large-scale text-to-image diffusion models to generate paired datasets used for training generative adversarial networks (GANs). This approach notably alleviates the stringent requirements typically imposed by high-end commercial GPUs for performing image editing with diffusion models. However, unlike text-to-image diffusion models, each distilled GAN is specialized for a specific image editing task, necessitating costly training efforts to obtain models for various concepts. In this work, we introduce and address a novel research direction: can the process of distilling GANs from diffusion models be made significantly more efficient? To achieve this goal, we propose a series of innovative techniques. First, we construct a base GAN model with generalized features, adaptable to different concepts through fine-tuning, eliminating the need for training from scratch. Second, we identify crucial layers within the base GAN model and employ Low-Rank Adaptation (LoRA) with a simple yet effective rank search process, rather than fine-tuning the entire base model. Third, we investigate the minimal amount of data necessary for fine-tuning, further reducing the overall training time. Extensive experiments show that we can efficiently empower GANs with the ability to perform real-time high-quality image editing on mobile devices with remarkably reduced training and storage costs for each concept.
How Stable is Stable Diffusion under Recursive InPainting (RIP)?
Generative Artificial Intelligence image models have achieved outstanding performance in text-to-image generation and other tasks, such as inpainting that completes images with missing fragments. The performance of inpainting can be accurately measured by taking an image, removing some fragments, performing the inpainting to restore them, and comparing the results with the original image. Interestingly, inpainting can also be applied recursively, starting from an image, removing some parts, applying inpainting to reconstruct the image, and then starting the inpainting process again on the reconstructed image, and so forth. This process of recursively applying inpainting can lead to an image that is similar or completely different from the original one, depending on the fragments that are removed and the ability of the model to reconstruct them. Intuitively, stability, understood as the capability to recover an image that is similar to the original one even after many recursive inpainting operations, is a desirable feature and can be used as an additional performance metric for inpainting. The concept of stability is also being studied in the context of recursive training of generative AI models with their own data. Recursive inpainting is an inference-only recursive process whose understanding may complement ongoing efforts to study the behavior of generative AI models under training recursion. In this paper, the impact of recursive inpainting is studied for one of the most widely used image models: Stable Diffusion. The results show that recursive inpainting can lead to image collapse, so ending with a nonmeaningful image, and that the outcome depends on several factors such as the type of image, the size of the inpainting masks, and the number of iterations.
ByteEdit: Boost, Comply and Accelerate Generative Image Editing
Recent advancements in diffusion-based generative image editing have sparked a profound revolution, reshaping the landscape of image outpainting and inpainting tasks. Despite these strides, the field grapples with inherent challenges, including: i) inferior quality; ii) poor consistency; iii) insufficient instrcution adherence; iv) suboptimal generation efficiency. To address these obstacles, we present ByteEdit, an innovative feedback learning framework meticulously designed to Boost, Comply, and Accelerate Generative Image Editing tasks. ByteEdit seamlessly integrates image reward models dedicated to enhancing aesthetics and image-text alignment, while also introducing a dense, pixel-level reward model tailored to foster coherence in the output. Furthermore, we propose a pioneering adversarial and progressive feedback learning strategy to expedite the model's inference speed. Through extensive large-scale user evaluations, we demonstrate that ByteEdit surpasses leading generative image editing products, including Adobe, Canva, and MeiTu, in both generation quality and consistency. ByteEdit-Outpainting exhibits a remarkable enhancement of 388% and 135% in quality and consistency, respectively, when compared to the baseline model. Experiments also verfied that our acceleration models maintains excellent performance results in terms of quality and consistency.
A Missing Data Imputation GAN for Character Sprite Generation
Creating and updating pixel art character sprites with many frames spanning different animations and poses takes time and can quickly become repetitive. However, that can be partially automated to allow artists to focus on more creative tasks. In this work, we concentrate on creating pixel art character sprites in a target pose from images of them facing other three directions. We present a novel approach to character generation by framing the problem as a missing data imputation task. Our proposed generative adversarial networks model receives the images of a character in all available domains and produces the image of the missing pose. We evaluated our approach in the scenarios with one, two, and three missing images, achieving similar or better results to the state-of-the-art when more images are available. We also evaluate the impact of the proposed changes to the base architecture.
StyleGAN of All Trades: Image Manipulation with Only Pretrained StyleGAN
Recently, StyleGAN has enabled various image manipulation and editing tasks thanks to the high-quality generation and the disentangled latent space. However, additional architectures or task-specific training paradigms are usually required for different tasks. In this work, we take a deeper look at the spatial properties of StyleGAN. We show that with a pretrained StyleGAN along with some operations, without any additional architecture, we can perform comparably to the state-of-the-art methods on various tasks, including image blending, panorama generation, generation from a single image, controllable and local multimodal image to image translation, and attributes transfer. The proposed method is simple, effective, efficient, and applicable to any existing pretrained StyleGAN model.
Improved Techniques for Training GANs
We present a variety of new architectural features and training procedures that we apply to the generative adversarial networks (GANs) framework. We focus on two applications of GANs: semi-supervised learning, and the generation of images that humans find visually realistic. Unlike most work on generative models, our primary goal is not to train a model that assigns high likelihood to test data, nor do we require the model to be able to learn well without using any labels. Using our new techniques, we achieve state-of-the-art results in semi-supervised classification on MNIST, CIFAR-10 and SVHN. The generated images are of high quality as confirmed by a visual Turing test: our model generates MNIST samples that humans cannot distinguish from real data, and CIFAR-10 samples that yield a human error rate of 21.3%. We also present ImageNet samples with unprecedented resolution and show that our methods enable the model to learn recognizable features of ImageNet classes.
Neural Implicit Dictionary via Mixture-of-Expert Training
Representing visual signals by coordinate-based deep fully-connected networks has been shown advantageous in fitting complex details and solving inverse problems than discrete grid-based representation. However, acquiring such a continuous Implicit Neural Representation (INR) requires tedious per-scene training on tons of signal measurements, which limits its practicality. In this paper, we present a generic INR framework that achieves both data and training efficiency by learning a Neural Implicit Dictionary (NID) from a data collection and representing INR as a functional combination of basis sampled from the dictionary. Our NID assembles a group of coordinate-based subnetworks which are tuned to span the desired function space. After training, one can instantly and robustly acquire an unseen scene representation by solving the coding coefficients. To parallelly optimize a large group of networks, we borrow the idea from Mixture-of-Expert (MoE) to design and train our network with a sparse gating mechanism. Our experiments show that, NID can improve reconstruction of 2D images or 3D scenes by 2 orders of magnitude faster with up to 98% less input data. We further demonstrate various applications of NID in image inpainting and occlusion removal, which are considered to be challenging with vanilla INR. Our codes are available in https://github.com/VITA-Group/Neural-Implicit-Dict.
SeamlessGAN: Self-Supervised Synthesis of Tileable Texture Maps
We present SeamlessGAN, a method capable of automatically generating tileable texture maps from a single input exemplar. In contrast to most existing methods, focused solely on solving the synthesis problem, our work tackles both problems, synthesis and tileability, simultaneously. Our key idea is to realize that tiling a latent space within a generative network trained using adversarial expansion techniques produces outputs with continuity at the seam intersection that can be then be turned into tileable images by cropping the central area. Since not every value of the latent space is valid to produce high-quality outputs, we leverage the discriminator as a perceptual error metric capable of identifying artifact-free textures during a sampling process. Further, in contrast to previous work on deep texture synthesis, our model is designed and optimized to work with multi-layered texture representations, enabling textures composed of multiple maps such as albedo, normals, etc. We extensively test our design choices for the network architecture, loss function and sampling parameters. We show qualitatively and quantitatively that our approach outperforms previous methods and works for textures of different types.
Does Diffusion Beat GAN in Image Super Resolution?
There is a prevalent opinion in the recent literature that Diffusion-based models outperform GAN-based counterparts on the Image Super Resolution (ISR) problem. However, in most studies, Diffusion-based ISR models were trained longer and utilized larger networks than the GAN baselines. This raises the question of whether the superiority of Diffusion models is due to the Diffusion paradigm being better suited for the ISR task or if it is a consequence of the increased scale and computational resources used in contemporary studies. In our work, we compare Diffusion-based and GAN-based Super Resolution under controlled settings, where both approaches are matched in terms of architecture, model and dataset size, and computational budget. We show that a GAN-based model can achieve results comparable to a Diffusion-based model. Additionally, we explore the impact of design choices such as text conditioning and augmentation on the performance of ISR models, showcasing their effect on several downstream tasks. We will release the inference code and weights of our scaled GAN.
Painting Style-Aware Manga Colorization Based on Generative Adversarial Networks
Japanese comics (called manga) are traditionally created in monochrome format. In recent years, in addition to monochrome comics, full color comics, a more attractive medium, have appeared. Unfortunately, color comics require manual colorization, which incurs high labor costs. Although automatic colorization methods have been recently proposed, most of them are designed for illustrations, not for comics. Unlike illustrations, since comics are composed of many consecutive images, the painting style must be consistent. To realize consistent colorization, we propose here a semi-automatic colorization method based on generative adversarial networks (GAN); the method learns the painting style of a specific comic from small amount of training data. The proposed method takes a pair of a screen tone image and a flat colored image as input, and outputs a colorized image. Experiments show that the proposed method achieves better performance than the existing alternatives.
A Large-Scale Study on Regularization and Normalization in GANs
Generative adversarial networks (GANs) are a class of deep generative models which aim to learn a target distribution in an unsupervised fashion. While they were successfully applied to many problems, training a GAN is a notoriously challenging task and requires a significant number of hyperparameter tuning, neural architecture engineering, and a non-trivial amount of "tricks". The success in many practical applications coupled with the lack of a measure to quantify the failure modes of GANs resulted in a plethora of proposed losses, regularization and normalization schemes, as well as neural architectures. In this work we take a sober view of the current state of GANs from a practical perspective. We discuss and evaluate common pitfalls and reproducibility issues, open-source our code on Github, and provide pre-trained models on TensorFlow Hub.
StyleGAN-XL: Scaling StyleGAN to Large Diverse Datasets
Computer graphics has experienced a recent surge of data-centric approaches for photorealistic and controllable content creation. StyleGAN in particular sets new standards for generative modeling regarding image quality and controllability. However, StyleGAN's performance severely degrades on large unstructured datasets such as ImageNet. StyleGAN was designed for controllability; hence, prior works suspect its restrictive design to be unsuitable for diverse datasets. In contrast, we find the main limiting factor to be the current training strategy. Following the recently introduced Projected GAN paradigm, we leverage powerful neural network priors and a progressive growing strategy to successfully train the latest StyleGAN3 generator on ImageNet. Our final model, StyleGAN-XL, sets a new state-of-the-art on large-scale image synthesis and is the first to generate images at a resolution of 1024^2 at such a dataset scale. We demonstrate that this model can invert and edit images beyond the narrow domain of portraits or specific object classes.
VCNet: A Robust Approach to Blind Image Inpainting
Blind inpainting is a task to automatically complete visual contents without specifying masks for missing areas in an image. Previous works assume missing region patterns are known, limiting its application scope. In this paper, we relax the assumption by defining a new blind inpainting setting, making training a blind inpainting neural system robust against various unknown missing region patterns. Specifically, we propose a two-stage visual consistency network (VCN), meant to estimate where to fill (via masks) and generate what to fill. In this procedure, the unavoidable potential mask prediction errors lead to severe artifacts in the subsequent repairing. To address it, our VCN predicts semantically inconsistent regions first, making mask prediction more tractable. Then it repairs these estimated missing regions using a new spatial normalization, enabling VCN to be robust to the mask prediction errors. In this way, semantically convincing and visually compelling content is thus generated. Extensive experiments are conducted, showing our method is effective and robust in blind image inpainting. And our VCN allows for a wide spectrum of applications.
Diffusion Brush: A Latent Diffusion Model-based Editing Tool for AI-generated Images
Text-to-image generative models have made remarkable advancements in generating high-quality images. However, generated images often contain undesirable artifacts or other errors due to model limitations. Existing techniques to fine-tune generated images are time-consuming (manual editing), produce poorly-integrated results (inpainting), or result in unexpected changes across the entire image (variation selection and prompt fine-tuning). In this work, we present Diffusion Brush, a Latent Diffusion Model-based (LDM) tool to efficiently fine-tune desired regions within an AI-synthesized image. Our method introduces new random noise patterns at targeted regions during the reverse diffusion process, enabling the model to efficiently make changes to the specified regions while preserving the original context for the rest of the image. We evaluate our method's usability and effectiveness through a user study with artists, comparing our technique against other state-of-the-art image inpainting techniques and editing software for fine-tuning AI-generated imagery.
Noise Dimension of GAN: An Image Compression Perspective
Generative adversial network (GAN) is a type of generative model that maps a high-dimensional noise to samples in target distribution. However, the dimension of noise required in GAN is not well understood. Previous approaches view GAN as a mapping from a continuous distribution to another continous distribution. In this paper, we propose to view GAN as a discrete sampler instead. From this perspective, we build a connection between the minimum noise required and the bits to losslessly compress the images. Furthermore, to understand the behaviour of GAN when noise dimension is limited, we propose divergence-entropy trade-off. This trade-off depicts the best divergence we can achieve when noise is limited. And as rate distortion trade-off, it can be numerically solved when source distribution is known. Finally, we verifies our theory with experiments on image generation.
Paint by Inpaint: Learning to Add Image Objects by Removing Them First
Image editing has advanced significantly with the introduction of text-conditioned diffusion models. Despite this progress, seamlessly adding objects to images based on textual instructions without requiring user-provided input masks remains a challenge. We address this by leveraging the insight that removing objects (Inpaint) is significantly simpler than its inverse process of adding them (Paint), attributed to the utilization of segmentation mask datasets alongside inpainting models that inpaint within these masks. Capitalizing on this realization, by implementing an automated and extensive pipeline, we curate a filtered large-scale image dataset containing pairs of images and their corresponding object-removed versions. Using these pairs, we train a diffusion model to inverse the inpainting process, effectively adding objects into images. Unlike other editing datasets, ours features natural target images instead of synthetic ones; moreover, it maintains consistency between source and target by construction. Additionally, we utilize a large Vision-Language Model to provide detailed descriptions of the removed objects and a Large Language Model to convert these descriptions into diverse, natural-language instructions. We show that the trained model surpasses existing ones both qualitatively and quantitatively, and release the large-scale dataset alongside the trained models for the community.
Feature Refinement to Improve High Resolution Image Inpainting
In this paper, we address the problem of degradation in inpainting quality of neural networks operating at high resolutions. Inpainting networks are often unable to generate globally coherent structures at resolutions higher than their training set. This is partially attributed to the receptive field remaining static, despite an increase in image resolution. Although downscaling the image prior to inpainting produces coherent structure, it inherently lacks detail present at higher resolutions. To get the best of both worlds, we optimize the intermediate featuremaps of a network by minimizing a multiscale consistency loss at inference. This runtime optimization improves the inpainting results and establishes a new state-of-the-art for high resolution inpainting. Code is available at: https://github.com/geomagical/lama-with-refiner/tree/refinement.
Internal Video Inpainting by Implicit Long-range Propagation
We propose a novel framework for video inpainting by adopting an internal learning strategy. Unlike previous methods that use optical flow for cross-frame context propagation to inpaint unknown regions, we show that this can be achieved implicitly by fitting a convolutional neural network to known regions. Moreover, to handle challenging sequences with ambiguous backgrounds or long-term occlusion, we design two regularization terms to preserve high-frequency details and long-term temporal consistency. Extensive experiments on the DAVIS dataset demonstrate that the proposed method achieves state-of-the-art inpainting quality quantitatively and qualitatively. We further extend the proposed method to another challenging task: learning to remove an object from a video giving a single object mask in only one frame in a 4K video.
A Task is Worth One Word: Learning with Task Prompts for High-Quality Versatile Image Inpainting
Achieving high-quality versatile image inpainting, where user-specified regions are filled with plausible content according to user intent, presents a significant challenge. Existing methods face difficulties in simultaneously addressing context-aware image inpainting and text-guided object inpainting due to the distinct optimal training strategies required. To overcome this challenge, we introduce PowerPaint, the first high-quality and versatile inpainting model that excels in both tasks. First, we introduce learnable task prompts along with tailored fine-tuning strategies to guide the model's focus on different inpainting targets explicitly. This enables PowerPaint to accomplish various inpainting tasks by utilizing different task prompts, resulting in state-of-the-art performance. Second, we demonstrate the versatility of the task prompt in PowerPaint by showcasing its effectiveness as a negative prompt for object removal. Additionally, we leverage prompt interpolation techniques to enable controllable shape-guided object inpainting. Finally, we extensively evaluate PowerPaint on various inpainting benchmarks to demonstrate its superior performance for versatile image inpainting. We release our codes and models on our project page: https://powerpaint.github.io/.
Structural inpainting
Scene-agnostic visual inpainting remains very challenging despite progress in patch-based methods. Recently, Pathak et al. 2016 have introduced convolutional "context encoders" (CEs) for unsupervised feature learning through image completion tasks. With the additional help of adversarial training, CEs turned out to be a promising tool to complete complex structures in real inpainting problems. In the present paper we propose to push further this key ability by relying on perceptual reconstruction losses at training time. We show on a wide variety of visual scenes the merit of the approach for structural inpainting, and confirm it through a user study. Combined with the optimization-based refinement of Yang et al. 2016 with neural patches, our context encoder opens up new opportunities for prior-free visual inpainting.
QC-StyleGAN -- Quality Controllable Image Generation and Manipulation
The introduction of high-quality image generation models, particularly the StyleGAN family, provides a powerful tool to synthesize and manipulate images. However, existing models are built upon high-quality (HQ) data as desired outputs, making them unfit for in-the-wild low-quality (LQ) images, which are common inputs for manipulation. In this work, we bridge this gap by proposing a novel GAN structure that allows for generating images with controllable quality. The network can synthesize various image degradation and restore the sharp image via a quality control code. Our proposed QC-StyleGAN can directly edit LQ images without altering their quality by applying GAN inversion and manipulation techniques. It also provides for free an image restoration solution that can handle various degradations, including noise, blur, compression artifacts, and their mixtures. Finally, we demonstrate numerous other applications such as image degradation synthesis, transfer, and interpolation. The code is available at https://github.com/VinAIResearch/QC-StyleGAN.
PerceptionGAN: Real-world Image Construction from Provided Text through Perceptual Understanding
Generating an image from a provided descriptive text is quite a challenging task because of the difficulty in incorporating perceptual information (object shapes, colors, and their interactions) along with providing high relevancy related to the provided text. Current methods first generate an initial low-resolution image, which typically has irregular object shapes, colors, and interaction between objects. This initial image is then improved by conditioning on the text. However, these methods mainly address the problem of using text representation efficiently in the refinement of the initially generated image, while the success of this refinement process depends heavily on the quality of the initially generated image, as pointed out in the DM-GAN paper. Hence, we propose a method to provide good initialized images by incorporating perceptual understanding in the discriminator module. We improve the perceptual information at the first stage itself, which results in significant improvement in the final generated image. In this paper, we have applied our approach to the novel StackGAN architecture. We then show that the perceptual information included in the initial image is improved while modeling image distribution at multiple stages. Finally, we generated realistic multi-colored images conditioned by text. These images have good quality along with containing improved basic perceptual information. More importantly, the proposed method can be integrated into the pipeline of other state-of-the-art text-based-image-generation models to generate initial low-resolution images. We also worked on improving the refinement process in StackGAN by augmenting the third stage of the generator-discriminator pair in the StackGAN architecture. Our experimental analysis and comparison with the state-of-the-art on a large but sparse dataset MS COCO further validate the usefulness of our proposed approach.
MAT: Mask-Aware Transformer for Large Hole Image Inpainting
Recent studies have shown the importance of modeling long-range interactions in the inpainting problem. To achieve this goal, existing approaches exploit either standalone attention techniques or transformers, but usually under a low resolution in consideration of computational cost. In this paper, we present a novel transformer-based model for large hole inpainting, which unifies the merits of transformers and convolutions to efficiently process high-resolution images. We carefully design each component of our framework to guarantee the high fidelity and diversity of recovered images. Specifically, we customize an inpainting-oriented transformer block, where the attention module aggregates non-local information only from partial valid tokens, indicated by a dynamic mask. Extensive experiments demonstrate the state-of-the-art performance of the new model on multiple benchmark datasets. Code is released at https://github.com/fenglinglwb/MAT.
Image Colorization with Generative Adversarial Networks
Over the last decade, the process of automatic image colorization has been of significant interest for several application areas including restoration of aged or degraded images. This problem is highly ill-posed due to the large degrees of freedom during the assignment of color information. Many of the recent developments in automatic colorization involve images that contain a common theme or require highly processed data such as semantic maps as input. In our approach, we attempt to fully generalize the colorization procedure using a conditional Deep Convolutional Generative Adversarial Network (DCGAN), extend current methods to high-resolution images and suggest training strategies that speed up the process and greatly stabilize it. The network is trained over datasets that are publicly available such as CIFAR-10 and Places365. The results of the generative model and traditional deep neural networks are compared.
PATMAT: Person Aware Tuning of Mask-Aware Transformer for Face Inpainting
Generative models such as StyleGAN2 and Stable Diffusion have achieved state-of-the-art performance in computer vision tasks such as image synthesis, inpainting, and de-noising. However, current generative models for face inpainting often fail to preserve fine facial details and the identity of the person, despite creating aesthetically convincing image structures and textures. In this work, we propose Person Aware Tuning (PAT) of Mask-Aware Transformer (MAT) for face inpainting, which addresses this issue. Our proposed method, PATMAT, effectively preserves identity by incorporating reference images of a subject and fine-tuning a MAT architecture trained on faces. By using ~40 reference images, PATMAT creates anchor points in MAT's style module, and tunes the model using the fixed anchors to adapt the model to a new face identity. Moreover, PATMAT's use of multiple images per anchor during training allows the model to use fewer reference images than competing methods. We demonstrate that PATMAT outperforms state-of-the-art models in terms of image quality, the preservation of person-specific details, and the identity of the subject. Our results suggest that PATMAT can be a promising approach for improving the quality of personalized face inpainting.
Image Deblurring using GAN
In recent years, deep generative models, such as Generative Adversarial Network (GAN), has grabbed significant attention in the field of computer vision. This project focuses on the application of GAN in image deblurring with the aim of generating clearer images from blurry inputs caused by factors such as motion blur. However, traditional image restoration techniques have limitations in handling complex blurring patterns. Hence, a GAN-based framework is proposed as a solution to generate high-quality deblurred images. The project defines a GAN model in Tensorflow and trains it with GoPRO dataset. The Generator will intake blur images directly to create fake images to convince the Discriminator which will receive clear images at the same time and distinguish between the real image and the fake image. After obtaining the trained parameters, the model was used to deblur motion-blur images taken in daily life as well as testing set for validation. The result shows that the pretrained network of GAN can obtain sharper pixels in image, achieving an average of 29.3 Peak Signal-to-Noise Ratio (PSNR) and 0.72 Structural Similarity Assessment (SSIM). This help to effectively address the challenges posed by image blurring, leading to the generation of visually pleasing and sharp images. By exploiting the adversarial learning framework, the proposed approach enhances the potential for real-world applications in image restoration.
LLMGA: Multimodal Large Language Model based Generation Assistant
In this paper, we introduce a Multimodal Large Language Model-based Generation Assistant (LLMGA), leveraging the vast reservoir of knowledge and proficiency in reasoning, comprehension, and response inherent in Large Language Models (LLMs) to assist users in image generation and editing. Diverging from existing approaches where Multimodal Large Language Models (MLLMs) generate fixed-size embeddings to control Stable Diffusion (SD), our LLMGA provides a detailed language generation prompt for precise control over SD. This not only augments LLM context understanding but also reduces noise in generation prompts, yields images with more intricate and precise content, and elevates the interpretability of the network. To this end, we curate a comprehensive dataset comprising prompt refinement, similar image generation, inpainting \& outpainting, and instruction-based editing. Moreover, we propose a two-stage training scheme. In the first stage, we train the MLLM to grasp the properties of image generation and editing, enabling it to generate detailed prompts. In the second stage, we optimize SD to align with the MLLM's generation prompts. Additionally, we propose a reference-based restoration network to alleviate texture, brightness, and contrast disparities between generated and preserved regions during inpainting and outpainting. Extensive results show that LLMGA has promising generation and editing capabilities and can enable more flexible and expansive applications in an interactive manner.
Large Scale GAN Training for High Fidelity Natural Image Synthesis
Despite recent progress in generative image modeling, successfully generating high-resolution, diverse samples from complex datasets such as ImageNet remains an elusive goal. To this end, we train Generative Adversarial Networks at the largest scale yet attempted, and study the instabilities specific to such scale. We find that applying orthogonal regularization to the generator renders it amenable to a simple "truncation trick," allowing fine control over the trade-off between sample fidelity and variety by reducing the variance of the Generator's input. Our modifications lead to models which set the new state of the art in class-conditional image synthesis. When trained on ImageNet at 128x128 resolution, our models (BigGANs) achieve an Inception Score (IS) of 166.5 and Frechet Inception Distance (FID) of 7.4, improving over the previous best IS of 52.52 and FID of 18.6.
Efficient Geometry-aware 3D Generative Adversarial Networks
Unsupervised generation of high-quality multi-view-consistent images and 3D shapes using only collections of single-view 2D photographs has been a long-standing challenge. Existing 3D GANs are either compute-intensive or make approximations that are not 3D-consistent; the former limits quality and resolution of the generated images and the latter adversely affects multi-view consistency and shape quality. In this work, we improve the computational efficiency and image quality of 3D GANs without overly relying on these approximations. We introduce an expressive hybrid explicit-implicit network architecture that, together with other design choices, synthesizes not only high-resolution multi-view-consistent images in real time but also produces high-quality 3D geometry. By decoupling feature generation and neural rendering, our framework is able to leverage state-of-the-art 2D CNN generators, such as StyleGAN2, and inherit their efficiency and expressiveness. We demonstrate state-of-the-art 3D-aware synthesis with FFHQ and AFHQ Cats, among other experiments.
Coherent and Multi-modality Image Inpainting via Latent Space Optimization
With the advancements in denoising diffusion probabilistic models (DDPMs), image inpainting has significantly evolved from merely filling information based on nearby regions to generating content conditioned on various prompts such as text, exemplar images, and sketches. However, existing methods, such as model fine-tuning and simple concatenation of latent vectors, often result in generation failures due to overfitting and inconsistency between the inpainted region and the background. In this paper, we argue that the current large diffusion models are sufficiently powerful to generate realistic images without further tuning. Hence, we introduce PILOT (inPainting vIa Latent OpTimization), an optimization approach grounded on a novel semantic centralization and background preservation loss. Our method searches latent spaces capable of generating inpainted regions that exhibit high fidelity to user-provided prompts while maintaining coherence with the background. Furthermore, we propose a strategy to balance optimization expense and image quality, significantly enhancing generation efficiency. Our method seamlessly integrates with any pre-trained model, including ControlNet and DreamBooth, making it suitable for deployment in multi-modal editing tools. Our qualitative and quantitative evaluations demonstrate that PILOT outperforms existing approaches by generating more coherent, diverse, and faithful inpainted regions in response to provided prompts.
StyleGAN2 Distillation for Feed-forward Image Manipulation
StyleGAN2 is a state-of-the-art network in generating realistic images. Besides, it was explicitly trained to have disentangled directions in latent space, which allows efficient image manipulation by varying latent factors. Editing existing images requires embedding a given image into the latent space of StyleGAN2. Latent code optimization via backpropagation is commonly used for qualitative embedding of real world images, although it is prohibitively slow for many applications. We propose a way to distill a particular image manipulation of StyleGAN2 into image-to-image network trained in paired way. The resulting pipeline is an alternative to existing GANs, trained on unpaired data. We provide results of human faces' transformation: gender swap, aging/rejuvenation, style transfer and image morphing. We show that the quality of generation using our method is comparable to StyleGAN2 backpropagation and current state-of-the-art methods in these particular tasks.
3D Object Reconstruction from a Single Depth View with Adversarial Learning
In this paper, we propose a novel 3D-RecGAN approach, which reconstructs the complete 3D structure of a given object from a single arbitrary depth view using generative adversarial networks. Unlike the existing work which typically requires multiple views of the same object or class labels to recover the full 3D geometry, the proposed 3D-RecGAN only takes the voxel grid representation of a depth view of the object as input, and is able to generate the complete 3D occupancy grid by filling in the occluded/missing regions. The key idea is to combine the generative capabilities of autoencoders and the conditional Generative Adversarial Networks (GAN) framework, to infer accurate and fine-grained 3D structures of objects in high-dimensional voxel space. Extensive experiments on large synthetic datasets show that the proposed 3D-RecGAN significantly outperforms the state of the art in single view 3D object reconstruction, and is able to reconstruct unseen types of objects. Our code and data are available at: https://github.com/Yang7879/3D-RecGAN.
Foreground-aware Image Inpainting
Existing image inpainting methods typically fill holes by borrowing information from surrounding pixels. They often produce unsatisfactory results when the holes overlap with or touch foreground objects due to lack of information about the actual extent of foreground and background regions within the holes. These scenarios, however, are very important in practice, especially for applications such as the removal of distracting objects. To address the problem, we propose a foreground-aware image inpainting system that explicitly disentangles structure inference and content completion. Specifically, our model learns to predict the foreground contour first, and then inpaints the missing region using the predicted contour as guidance. We show that by such disentanglement, the contour completion model predicts reasonable contours of objects, and further substantially improves the performance of image inpainting. Experiments show that our method significantly outperforms existing methods and achieves superior inpainting results on challenging cases with complex compositions.
DifAugGAN: A Practical Diffusion-style Data Augmentation for GAN-based Single Image Super-resolution
It is well known the adversarial optimization of GAN-based image super-resolution (SR) methods makes the preceding SR model generate unpleasant and undesirable artifacts, leading to large distortion. We attribute the cause of such distortions to the poor calibration of the discriminator, which hampers its ability to provide meaningful feedback to the generator for learning high-quality images. To address this problem, we propose a simple but non-travel diffusion-style data augmentation scheme for current GAN-based SR methods, known as DifAugGAN. It involves adapting the diffusion process in generative diffusion models for improving the calibration of the discriminator during training motivated by the successes of data augmentation schemes in the field to achieve good calibration. Our DifAugGAN can be a Plug-and-Play strategy for current GAN-based SISR methods to improve the calibration of the discriminator and thus improve SR performance. Extensive experimental evaluations demonstrate the superiority of DifAugGAN over state-of-the-art GAN-based SISR methods across both synthetic and real-world datasets, showcasing notable advancements in both qualitative and quantitative results.
I Dream My Painting: Connecting MLLMs and Diffusion Models via Prompt Generation for Text-Guided Multi-Mask Inpainting
Inpainting focuses on filling missing or corrupted regions of an image to blend seamlessly with its surrounding content and style. While conditional diffusion models have proven effective for text-guided inpainting, we introduce the novel task of multi-mask inpainting, where multiple regions are simultaneously inpainted using distinct prompts. Furthermore, we design a fine-tuning procedure for multimodal LLMs, such as LLaVA, to generate multi-mask prompts automatically using corrupted images as inputs. These models can generate helpful and detailed prompt suggestions for filling the masked regions. The generated prompts are then fed to Stable Diffusion, which is fine-tuned for the multi-mask inpainting problem using rectified cross-attention, enforcing prompts onto their designated regions for filling. Experiments on digitized paintings from WikiArt and the Densely Captioned Images dataset demonstrate that our pipeline delivers creative and accurate inpainting results. Our code, data, and trained models are available at https://cilabuniba.github.io/i-dream-my-painting.
LinkGAN: Linking GAN Latents to Pixels for Controllable Image Synthesis
This work presents an easy-to-use regularizer for GAN training, which helps explicitly link some axes of the latent space to an image region or a semantic category (e.g., sky) in the synthesis. Establishing such a connection facilitates a more convenient local control of GAN generation, where users can alter image content only within a spatial area simply by partially resampling the latent codes. Experimental results confirm four appealing properties of our regularizer, which we call LinkGAN. (1) Any image region can be linked to the latent space, even if the region is pre-selected before training and fixed for all instances. (2) Two or multiple regions can be independently linked to different latent axes, surprisingly allowing tokenized control of synthesized images. (3) Our regularizer can improve the spatial controllability of both 2D and 3D GAN models, barely sacrificing the synthesis performance. (4) The models trained with our regularizer are compatible with GAN inversion techniques and maintain editability on real images
Align-and-Attend Network for Globally and Locally Coherent Video Inpainting
We propose a novel feed-forward network for video inpainting. We use a set of sampled video frames as the reference to take visible contents to fill the hole of a target frame. Our video inpainting network consists of two stages. The first stage is an alignment module that uses computed homographies between the reference frames and the target frame. The visible patches are then aggregated based on the frame similarity to fill in the target holes roughly. The second stage is a non-local attention module that matches the generated patches with known reference patches (in space and time) to refine the previous global alignment stage. Both stages consist of large spatial-temporal window size for the reference and thus enable modeling long-range correlations between distant information and the hole regions. Therefore, even challenging scenes with large or slowly moving holes can be handled, which have been hardly modeled by existing flow-based approach. Our network is also designed with a recurrent propagation stream to encourage temporal consistency in video results. Experiments on video object removal demonstrate that our method inpaints the holes with globally and locally coherent contents.
Explaining image classifiers by removing input features using generative models
Perturbation-based explanation methods often measure the contribution of an input feature to an image classifier's outputs by heuristically removing it via e.g. blurring, adding noise, or graying out, which often produce unrealistic, out-of-samples. Instead, we propose to integrate a generative inpainter into three representative attribution methods to remove an input feature. Our proposed change improved all three methods in (1) generating more plausible counterfactual samples under the true data distribution; (2) being more accurate according to three metrics: object localization, deletion, and saliency metrics; and (3) being more robust to hyperparameter changes. Our findings were consistent across both ImageNet and Places365 datasets and two different pairs of classifiers and inpainters.
Towards Language-Driven Video Inpainting via Multimodal Large Language Models
We introduce a new task -- language-driven video inpainting, which uses natural language instructions to guide the inpainting process. This approach overcomes the limitations of traditional video inpainting methods that depend on manually labeled binary masks, a process often tedious and labor-intensive. We present the Remove Objects from Videos by Instructions (ROVI) dataset, containing 5,650 videos and 9,091 inpainting results, to support training and evaluation for this task. We also propose a novel diffusion-based language-driven video inpainting framework, the first end-to-end baseline for this task, integrating Multimodal Large Language Models to understand and execute complex language-based inpainting requests effectively. Our comprehensive results showcase the dataset's versatility and the model's effectiveness in various language-instructed inpainting scenarios. We will make datasets, code, and models publicly available.
What You See is What You GAN: Rendering Every Pixel for High-Fidelity Geometry in 3D GANs
3D-aware Generative Adversarial Networks (GANs) have shown remarkable progress in learning to generate multi-view-consistent images and 3D geometries of scenes from collections of 2D images via neural volume rendering. Yet, the significant memory and computational costs of dense sampling in volume rendering have forced 3D GANs to adopt patch-based training or employ low-resolution rendering with post-processing 2D super resolution, which sacrifices multiview consistency and the quality of resolved geometry. Consequently, 3D GANs have not yet been able to fully resolve the rich 3D geometry present in 2D images. In this work, we propose techniques to scale neural volume rendering to the much higher resolution of native 2D images, thereby resolving fine-grained 3D geometry with unprecedented detail. Our approach employs learning-based samplers for accelerating neural rendering for 3D GAN training using up to 5 times fewer depth samples. This enables us to explicitly "render every pixel" of the full-resolution image during training and inference without post-processing superresolution in 2D. Together with our strategy to learn high-quality surface geometry, our method synthesizes high-resolution 3D geometry and strictly view-consistent images while maintaining image quality on par with baselines relying on post-processing super resolution. We demonstrate state-of-the-art 3D gemetric quality on FFHQ and AFHQ, setting a new standard for unsupervised learning of 3D shapes in 3D GANs.
Improved Image Generation via Sparse Modeling
The interest of the deep learning community in image synthesis has grown massively in recent years. Nowadays, deep generative methods, and especially Generative Adversarial Networks (GANs), are leading to state-of-the-art performance, capable of synthesizing images that appear realistic. While the efforts for improving the quality of the generated images are extensive, most attempts still consider the generator part as an uncorroborated "black-box". In this paper, we aim to provide a better understanding and design of the image generation process. We interpret existing generators as implicitly relying on sparsity-inspired models. More specifically, we show that generators can be viewed as manifestations of the Convolutional Sparse Coding (CSC) and its Multi-Layered version (ML-CSC) synthesis processes. We leverage this observation by explicitly enforcing a sparsifying regularization on appropriately chosen activation layers in the generator, and demonstrate that this leads to improved image synthesis. Furthermore, we show that the same rationale and benefits apply to generators serving inverse problems, demonstrated on the Deep Image Prior (DIP) method.
StyleDomain: Efficient and Lightweight Parameterizations of StyleGAN for One-shot and Few-shot Domain Adaptation
Domain adaptation of GANs is a problem of fine-tuning the state-of-the-art GAN models (e.g. StyleGAN) pretrained on a large dataset to a specific domain with few samples (e.g. painting faces, sketches, etc.). While there are a great number of methods that tackle this problem in different ways, there are still many important questions that remain unanswered. In this paper, we provide a systematic and in-depth analysis of the domain adaptation problem of GANs, focusing on the StyleGAN model. First, we perform a detailed exploration of the most important parts of StyleGAN that are responsible for adapting the generator to a new domain depending on the similarity between the source and target domains. As a result of this in-depth study, we propose new efficient and lightweight parameterizations of StyleGAN for domain adaptation. Particularly, we show there exist directions in StyleSpace (StyleDomain directions) that are sufficient for adapting to similar domains and they can be reduced further. For dissimilar domains, we propose Affine+ and AffineLight+ parameterizations that allows us to outperform existing baselines in few-shot adaptation with low data regime. Finally, we examine StyleDomain directions and discover their many surprising properties that we apply for domain mixing and cross-domain image morphing.
HairFastGAN: Realistic and Robust Hair Transfer with a Fast Encoder-Based Approach
Our paper addresses the complex task of transferring a hairstyle from a reference image to an input photo for virtual hair try-on. This task is challenging due to the need to adapt to various photo poses, the sensitivity of hairstyles, and the lack of objective metrics. The current state of the art hairstyle transfer methods use an optimization process for different parts of the approach, making them inexcusably slow. At the same time, faster encoder-based models are of very low quality because they either operate in StyleGAN's W+ space or use other low-dimensional image generators. Additionally, both approaches have a problem with hairstyle transfer when the source pose is very different from the target pose, because they either don't consider the pose at all or deal with it inefficiently. In our paper, we present the HairFast model, which uniquely solves these problems and achieves high resolution, near real-time performance, and superior reconstruction compared to optimization problem-based methods. Our solution includes a new architecture operating in the FS latent space of StyleGAN, an enhanced inpainting approach, and improved encoders for better alignment, color transfer, and a new encoder for post-processing. The effectiveness of our approach is demonstrated on realism metrics after random hairstyle transfer and reconstruction when the original hairstyle is transferred. In the most difficult scenario of transferring both shape and color of a hairstyle from different images, our method performs in less than a second on the Nvidia V100. Our code is available at https://github.com/AIRI-Institute/HairFastGAN.
HyperGAN-CLIP: A Unified Framework for Domain Adaptation, Image Synthesis and Manipulation
Generative Adversarial Networks (GANs), particularly StyleGAN and its variants, have demonstrated remarkable capabilities in generating highly realistic images. Despite their success, adapting these models to diverse tasks such as domain adaptation, reference-guided synthesis, and text-guided manipulation with limited training data remains challenging. Towards this end, in this study, we present a novel framework that significantly extends the capabilities of a pre-trained StyleGAN by integrating CLIP space via hypernetworks. This integration allows dynamic adaptation of StyleGAN to new domains defined by reference images or textual descriptions. Additionally, we introduce a CLIP-guided discriminator that enhances the alignment between generated images and target domains, ensuring superior image quality. Our approach demonstrates unprecedented flexibility, enabling text-guided image manipulation without the need for text-specific training data and facilitating seamless style transfer. Comprehensive qualitative and quantitative evaluations confirm the robustness and superior performance of our framework compared to existing methods.
Personalized Face Inpainting with Diffusion Models by Parallel Visual Attention
Face inpainting is important in various applications, such as photo restoration, image editing, and virtual reality. Despite the significant advances in face generative models, ensuring that a person's unique facial identity is maintained during the inpainting process is still an elusive goal. Current state-of-the-art techniques, exemplified by MyStyle, necessitate resource-intensive fine-tuning and a substantial number of images for each new identity. Furthermore, existing methods often fall short in accommodating user-specified semantic attributes, such as beard or expression. To improve inpainting results, and reduce the computational complexity during inference, this paper proposes the use of Parallel Visual Attention (PVA) in conjunction with diffusion models. Specifically, we insert parallel attention matrices to each cross-attention module in the denoising network, which attends to features extracted from reference images by an identity encoder. We train the added attention modules and identity encoder on CelebAHQ-IDI, a dataset proposed for identity-preserving face inpainting. Experiments demonstrate that PVA attains unparalleled identity resemblance in both face inpainting and face inpainting with language guidance tasks, in comparison to various benchmarks, including MyStyle, Paint by Example, and Custom Diffusion. Our findings reveal that PVA ensures good identity preservation while offering effective language-controllability. Additionally, in contrast to Custom Diffusion, PVA requires just 40 fine-tuning steps for each new identity, which translates to a significant speed increase of over 20 times.
Towards Discovery and Attribution of Open-world GAN Generated Images
With the recent progress in Generative Adversarial Networks (GANs), it is imperative for media and visual forensics to develop detectors which can identify and attribute images to the model generating them. Existing works have shown to attribute images to their corresponding GAN sources with high accuracy. However, these works are limited to a closed set scenario, failing to generalize to GANs unseen during train time and are therefore, not scalable with a steady influx of new GANs. We present an iterative algorithm for discovering images generated from previously unseen GANs by exploiting the fact that all GANs leave distinct fingerprints on their generated images. Our algorithm consists of multiple components including network training, out-of-distribution detection, clustering, merge and refine steps. Through extensive experiments, we show that our algorithm discovers unseen GANs with high accuracy and also generalizes to GANs trained on unseen real datasets. We additionally apply our algorithm to attribution and discovery of GANs in an online fashion as well as to the more standard task of real/fake detection. Our experiments demonstrate the effectiveness of our approach to discover new GANs and can be used in an open-world setup.
Self-Attention Generative Adversarial Networks
In this paper, we propose the Self-Attention Generative Adversarial Network (SAGAN) which allows attention-driven, long-range dependency modeling for image generation tasks. Traditional convolutional GANs generate high-resolution details as a function of only spatially local points in lower-resolution feature maps. In SAGAN, details can be generated using cues from all feature locations. Moreover, the discriminator can check that highly detailed features in distant portions of the image are consistent with each other. Furthermore, recent work has shown that generator conditioning affects GAN performance. Leveraging this insight, we apply spectral normalization to the GAN generator and find that this improves training dynamics. The proposed SAGAN achieves the state-of-the-art results, boosting the best published Inception score from 36.8 to 52.52 and reducing Frechet Inception distance from 27.62 to 18.65 on the challenging ImageNet dataset. Visualization of the attention layers shows that the generator leverages neighborhoods that correspond to object shapes rather than local regions of fixed shape.
GRAF: Generative Radiance Fields for 3D-Aware Image Synthesis
While 2D generative adversarial networks have enabled high-resolution image synthesis, they largely lack an understanding of the 3D world and the image formation process. Thus, they do not provide precise control over camera viewpoint or object pose. To address this problem, several recent approaches leverage intermediate voxel-based representations in combination with differentiable rendering. However, existing methods either produce low image resolution or fall short in disentangling camera and scene properties, e.g., the object identity may vary with the viewpoint. In this paper, we propose a generative model for radiance fields which have recently proven successful for novel view synthesis of a single scene. In contrast to voxel-based representations, radiance fields are not confined to a coarse discretization of the 3D space, yet allow for disentangling camera and scene properties while degrading gracefully in the presence of reconstruction ambiguity. By introducing a multi-scale patch-based discriminator, we demonstrate synthesis of high-resolution images while training our model from unposed 2D images alone. We systematically analyze our approach on several challenging synthetic and real-world datasets. Our experiments reveal that radiance fields are a powerful representation for generative image synthesis, leading to 3D consistent models that render with high fidelity.
Optimizing the Latent Space of Generative Networks
Generative Adversarial Networks (GANs) have achieved remarkable results in the task of generating realistic natural images. In most successful applications, GAN models share two common aspects: solving a challenging saddle point optimization problem, interpreted as an adversarial game between a generator and a discriminator functions; and parameterizing the generator and the discriminator as deep convolutional neural networks. The goal of this paper is to disentangle the contribution of these two factors to the success of GANs. In particular, we introduce Generative Latent Optimization (GLO), a framework to train deep convolutional generators using simple reconstruction losses. Throughout a variety of experiments, we show that GLO enjoys many of the desirable properties of GANs: synthesizing visually-appealing samples, interpolating meaningfully between samples, and performing linear arithmetic with noise vectors; all of this without the adversarial optimization scheme.
DreamMix: Decoupling Object Attributes for Enhanced Editability in Customized Image Inpainting
Subject-driven image inpainting has emerged as a popular task in image editing alongside recent advancements in diffusion models. Previous methods primarily focus on identity preservation but struggle to maintain the editability of inserted objects. In response, this paper introduces DreamMix, a diffusion-based generative model adept at inserting target objects into given scenes at user-specified locations while concurrently enabling arbitrary text-driven modifications to their attributes. In particular, we leverage advanced foundational inpainting models and introduce a disentangled local-global inpainting framework to balance precise local object insertion with effective global visual coherence. Additionally, we propose an Attribute Decoupling Mechanism (ADM) and a Textual Attribute Substitution (TAS) module to improve the diversity and discriminative capability of the text-based attribute guidance, respectively. Extensive experiments demonstrate that DreamMix effectively balances identity preservation and attribute editability across various application scenarios, including object insertion, attribute editing, and small object inpainting. Our code is publicly available at https://github.com/mycfhs/DreamMix.
Art Creation with Multi-Conditional StyleGANs
Creating meaningful art is often viewed as a uniquely human endeavor. A human artist needs a combination of unique skills, understanding, and genuine intention to create artworks that evoke deep feelings and emotions. In this paper, we introduce a multi-conditional Generative Adversarial Network (GAN) approach trained on large amounts of human paintings to synthesize realistic-looking paintings that emulate human art. Our approach is based on the StyleGAN neural network architecture, but incorporates a custom multi-conditional control mechanism that provides fine-granular control over characteristics of the generated paintings, e.g., with regard to the perceived emotion evoked in a spectator. For better control, we introduce the conditional truncation trick, which adapts the standard truncation trick for the conditional setting and diverse datasets. Finally, we develop a diverse set of evaluation techniques tailored to multi-conditional generation.
DreamCom: Finetuning Text-guided Inpainting Model for Image Composition
The goal of image composition is merging a foreground object into a background image to obtain a realistic composite image. Recently, generative composition methods are built on large pretrained diffusion models, due to their unprecedented image generation ability. They train a model on abundant pairs of foregrounds and backgrounds, so that it can be directly applied to a new pair of foreground and background at test time. However, the generated results often lose the foreground details and exhibit noticeable artifacts. In this work, we propose an embarrassingly simple approach named DreamCom inspired by DreamBooth. Specifically, given a few reference images for a subject, we finetune text-guided inpainting diffusion model to associate this subject with a special token and inpaint this subject in the specified bounding box. We also construct a new dataset named MureCom well-tailored for this task.
The GAN is dead; long live the GAN! A Modern GAN Baseline
There is a widely-spread claim that GANs are difficult to train, and GAN architectures in the literature are littered with empirical tricks. We provide evidence against this claim and build a modern GAN baseline in a more principled manner. First, we derive a well-behaved regularized relativistic GAN loss that addresses issues of mode dropping and non-convergence that were previously tackled via a bag of ad-hoc tricks. We analyze our loss mathematically and prove that it admits local convergence guarantees, unlike most existing relativistic losses. Second, our new loss allows us to discard all ad-hoc tricks and replace outdated backbones used in common GANs with modern architectures. Using StyleGAN2 as an example, we present a roadmap of simplification and modernization that results in a new minimalist baseline -- R3GAN. Despite being simple, our approach surpasses StyleGAN2 on FFHQ, ImageNet, CIFAR, and Stacked MNIST datasets, and compares favorably against state-of-the-art GANs and diffusion models.
CLIP-Guided StyleGAN Inversion for Text-Driven Real Image Editing
Researchers have recently begun exploring the use of StyleGAN-based models for real image editing. One particularly interesting application is using natural language descriptions to guide the editing process. Existing approaches for editing images using language either resort to instance-level latent code optimization or map predefined text prompts to some editing directions in the latent space. However, these approaches have inherent limitations. The former is not very efficient, while the latter often struggles to effectively handle multi-attribute changes. To address these weaknesses, we present CLIPInverter, a new text-driven image editing approach that is able to efficiently and reliably perform multi-attribute changes. The core of our method is the use of novel, lightweight text-conditioned adapter layers integrated into pretrained GAN-inversion networks. We demonstrate that by conditioning the initial inversion step on the CLIP embedding of the target description, we are able to obtain more successful edit directions. Additionally, we use a CLIP-guided refinement step to make corrections in the resulting residual latent codes, which further improves the alignment with the text prompt. Our method outperforms competing approaches in terms of manipulation accuracy and photo-realism on various domains including human faces, cats, and birds, as shown by our qualitative and quantitative results.
Generative Object Insertion in Gaussian Splatting with a Multi-View Diffusion Model
Generating and inserting new objects into 3D content is a compelling approach for achieving versatile scene recreation. Existing methods, which rely on SDS optimization or single-view inpainting, often struggle to produce high-quality results. To address this, we propose a novel method for object insertion in 3D content represented by Gaussian Splatting. Our approach introduces a multi-view diffusion model, dubbed MVInpainter, which is built upon a pre-trained stable video diffusion model to facilitate view-consistent object inpainting. Within MVInpainter, we incorporate a ControlNet-based conditional injection module to enable controlled and more predictable multi-view generation. After generating the multi-view inpainted results, we further propose a mask-aware 3D reconstruction technique to refine Gaussian Splatting reconstruction from these sparse inpainted views. By leveraging these fabricate techniques, our approach yields diverse results, ensures view-consistent and harmonious insertions, and produces better object quality. Extensive experiments demonstrate that our approach outperforms existing methods.
Large Scale Adversarial Representation Learning
Adversarially trained generative models (GANs) have recently achieved compelling image synthesis results. But despite early successes in using GANs for unsupervised representation learning, they have since been superseded by approaches based on self-supervision. In this work we show that progress in image generation quality translates to substantially improved representation learning performance. Our approach, BigBiGAN, builds upon the state-of-the-art BigGAN model, extending it to representation learning by adding an encoder and modifying the discriminator. We extensively evaluate the representation learning and generation capabilities of these BigBiGAN models, demonstrating that these generation-based models achieve the state of the art in unsupervised representation learning on ImageNet, as well as in unconditional image generation. Pretrained BigBiGAN models -- including image generators and encoders -- are available on TensorFlow Hub (https://tfhub.dev/s?publisher=deepmind&q=bigbigan).
Shift-Net: Image Inpainting via Deep Feature Rearrangement
Deep convolutional networks (CNNs) have exhibited their potential in image inpainting for producing plausible results. However, in most existing methods, e.g., context encoder, the missing parts are predicted by propagating the surrounding convolutional features through a fully connected layer, which intends to produce semantically plausible but blurry result. In this paper, we introduce a special shift-connection layer to the U-Net architecture, namely Shift-Net, for filling in missing regions of any shape with sharp structures and fine-detailed textures. To this end, the encoder feature of the known region is shifted to serve as an estimation of the missing parts. A guidance loss is introduced on decoder feature to minimize the distance between the decoder feature after fully connected layer and the ground-truth encoder feature of the missing parts. With such constraint, the decoder feature in missing region can be used to guide the shift of encoder feature in known region. An end-to-end learning algorithm is further developed to train the Shift-Net. Experiments on the Paris StreetView and Places datasets demonstrate the efficiency and effectiveness of our Shift-Net in producing sharper, fine-detailed, and visually plausible results. The codes and pre-trained models are available at https://github.com/Zhaoyi-Yan/Shift-Net.
A cost-effective method for improving and re-purposing large, pre-trained GANs by fine-tuning their class-embeddings
Large, pre-trained generative models have been increasingly popular and useful to both the research and wider communities. Specifically, BigGANs a class-conditional Generative Adversarial Networks trained on ImageNet---achieved excellent, state-of-the-art capability in generating realistic photos. However, fine-tuning or training BigGANs from scratch is practically impossible for most researchers and engineers because (1) GAN training is often unstable and suffering from mode-collapse; and (2) the training requires a significant amount of computation, 256 Google TPUs for 2 days or 8xV100 GPUs for 15 days. Importantly, many pre-trained generative models both in NLP and image domains were found to contain biases that are harmful to society. Thus, we need computationally-feasible methods for modifying and re-purposing these huge, pre-trained models for downstream tasks. In this paper, we propose a cost-effective optimization method for improving and re-purposing BigGANs by fine-tuning only the class-embedding layer. We show the effectiveness of our model-editing approach in three tasks: (1) significantly improving the realism and diversity of samples of complete mode-collapse classes; (2) re-purposing ImageNet BigGANs for generating images for Places365; and (3) de-biasing or improving the sample diversity for selected ImageNet classes.
Instance-Conditioned GAN
Generative Adversarial Networks (GANs) can generate near photo realistic images in narrow domains such as human faces. Yet, modeling complex distributions of datasets such as ImageNet and COCO-Stuff remains challenging in unconditional settings. In this paper, we take inspiration from kernel density estimation techniques and introduce a non-parametric approach to modeling distributions of complex datasets. We partition the data manifold into a mixture of overlapping neighborhoods described by a datapoint and its nearest neighbors, and introduce a model, called instance-conditioned GAN (IC-GAN), which learns the distribution around each datapoint. Experimental results on ImageNet and COCO-Stuff show that IC-GAN significantly improves over unconditional models and unsupervised data partitioning baselines. Moreover, we show that IC-GAN can effortlessly transfer to datasets not seen during training by simply changing the conditioning instances, and still generate realistic images. Finally, we extend IC-GAN to the class-conditional case and show semantically controllable generation and competitive quantitative results on ImageNet; while improving over BigGAN on ImageNet-LT. Code and trained models to reproduce the reported results are available at https://github.com/facebookresearch/ic_gan.
Progressive Growing of GANs for Improved Quality, Stability, and Variation
We describe a new training methodology for generative adversarial networks. The key idea is to grow both the generator and discriminator progressively: starting from a low resolution, we add new layers that model increasingly fine details as training progresses. This both speeds the training up and greatly stabilizes it, allowing us to produce images of unprecedented quality, e.g., CelebA images at 1024^2. We also propose a simple way to increase the variation in generated images, and achieve a record inception score of 8.80 in unsupervised CIFAR10. Additionally, we describe several implementation details that are important for discouraging unhealthy competition between the generator and discriminator. Finally, we suggest a new metric for evaluating GAN results, both in terms of image quality and variation. As an additional contribution, we construct a higher-quality version of the CelebA dataset.
Thinking Outside the BBox: Unconstrained Generative Object Compositing
Compositing an object into an image involves multiple non-trivial sub-tasks such as object placement and scaling, color/lighting harmonization, viewpoint/geometry adjustment, and shadow/reflection generation. Recent generative image compositing methods leverage diffusion models to handle multiple sub-tasks at once. However, existing models face limitations due to their reliance on masking the original object during training, which constrains their generation to the input mask. Furthermore, obtaining an accurate input mask specifying the location and scale of the object in a new image can be highly challenging. To overcome such limitations, we define a novel problem of unconstrained generative object compositing, i.e., the generation is not bounded by the mask, and train a diffusion-based model on a synthesized paired dataset. Our first-of-its-kind model is able to generate object effects such as shadows and reflections that go beyond the mask, enhancing image realism. Additionally, if an empty mask is provided, our model automatically places the object in diverse natural locations and scales, accelerating the compositing workflow. Our model outperforms existing object placement and compositing models in various quality metrics and user studies.
Leveraging Inpainting for Single-Image Shadow Removal
Fully-supervised shadow removal methods achieve the best restoration qualities on public datasets but still generate some shadow remnants. One of the reasons is the lack of large-scale shadow & shadow-free image pairs. Unsupervised methods can alleviate the issue but their restoration qualities are much lower than those of fully-supervised methods. In this work, we find that pretraining shadow removal networks on the image inpainting dataset can reduce the shadow remnants significantly: a naive encoder-decoder network gets competitive restoration quality w.r.t. the state-of-the-art methods via only 10% shadow & shadow-free image pairs. After analyzing networks with/without inpainting pre-training via the information stored in the weight (IIW), we find that inpainting pretraining improves restoration quality in non-shadow regions and enhances the generalization ability of networks significantly. Additionally, shadow removal fine-tuning enables networks to fill in the details of shadow regions. Inspired by these observations we formulate shadow removal as an adaptive fusion task that takes advantage of both shadow removal and image inpainting. Specifically, we develop an adaptive fusion network consisting of two encoders, an adaptive fusion block, and a decoder. The two encoders are responsible for extracting the feature from the shadow image and the shadow-masked image respectively. The adaptive fusion block is responsible for combining these features in an adaptive manner. Finally, the decoder converts the adaptive fused features to the desired shadow-free result. The extensive experiments show that our method empowered with inpainting outperforms all state-of-the-art methods.
Generating Diverse Structure for Image Inpainting With Hierarchical VQ-VAE
Given an incomplete image without additional constraint, image inpainting natively allows for multiple solutions as long as they appear plausible. Recently, multiplesolution inpainting methods have been proposed and shown the potential of generating diverse results. However, these methods have difficulty in ensuring the quality of each solution, e.g. they produce distorted structure and/or blurry texture. We propose a two-stage model for diverse inpainting, where the first stage generates multiple coarse results each of which has a different structure, and the second stage refines each coarse result separately by augmenting texture. The proposed model is inspired by the hierarchical vector quantized variational auto-encoder (VQ-VAE), whose hierarchical architecture isentangles structural and textural information. In addition, the vector quantization in VQVAE enables autoregressive modeling of the discrete distribution over the structural information. Sampling from the distribution can easily generate diverse and high-quality structures, making up the first stage of our model. In the second stage, we propose a structural attention module inside the texture generation network, where the module utilizes the structural information to capture distant correlations. We further reuse the VQ-VAE to calculate two feature losses, which help improve structure coherence and texture realism, respectively. Experimental results on CelebA-HQ, Places2, and ImageNet datasets show that our method not only enhances the diversity of the inpainting solutions but also improves the visual quality of the generated multiple images. Code and models are available at: https://github.com/USTC-JialunPeng/Diverse-Structure-Inpainting.
VTON-IT: Virtual Try-On using Image Translation
Virtual Try-On (trying clothes virtually) is a promising application of the Generative Adversarial Network (GAN). However, it is an arduous task to transfer the desired clothing item onto the corresponding regions of a human body because of varying body size, pose, and occlusions like hair and overlapped clothes. In this paper, we try to produce photo-realistic translated images through semantic segmentation and a generative adversarial architecture-based image translation network. We present a novel image-based Virtual Try-On application VTON-IT that takes an RGB image, segments desired body part, and overlays target cloth over the segmented body region. Most state-of-the-art GAN-based Virtual Try-On applications produce unaligned pixelated synthesis images on real-life test images. However, our approach generates high-resolution natural images with detailed textures on such variant images.
A Style-Based Generator Architecture for Generative Adversarial Networks
We propose an alternative generator architecture for generative adversarial networks, borrowing from style transfer literature. The new architecture leads to an automatically learned, unsupervised separation of high-level attributes (e.g., pose and identity when trained on human faces) and stochastic variation in the generated images (e.g., freckles, hair), and it enables intuitive, scale-specific control of the synthesis. The new generator improves the state-of-the-art in terms of traditional distribution quality metrics, leads to demonstrably better interpolation properties, and also better disentangles the latent factors of variation. To quantify interpolation quality and disentanglement, we propose two new, automated methods that are applicable to any generator architecture. Finally, we introduce a new, highly varied and high-quality dataset of human faces.
DiffusionAct: Controllable Diffusion Autoencoder for One-shot Face Reenactment
Video-driven neural face reenactment aims to synthesize realistic facial images that successfully preserve the identity and appearance of a source face, while transferring the target head pose and facial expressions. Existing GAN-based methods suffer from either distortions and visual artifacts or poor reconstruction quality, i.e., the background and several important appearance details, such as hair style/color, glasses and accessories, are not faithfully reconstructed. Recent advances in Diffusion Probabilistic Models (DPMs) enable the generation of high-quality realistic images. To this end, in this paper we present DiffusionAct, a novel method that leverages the photo-realistic image generation of diffusion models to perform neural face reenactment. Specifically, we propose to control the semantic space of a Diffusion Autoencoder (DiffAE), in order to edit the facial pose of the input images, defined as the head pose orientation and the facial expressions. Our method allows one-shot, self, and cross-subject reenactment, without requiring subject-specific fine-tuning. We compare against state-of-the-art GAN-, StyleGAN2-, and diffusion-based methods, showing better or on-par reenactment performance.
Alias-Free Generative Adversarial Networks
We observe that despite their hierarchical convolutional nature, the synthesis process of typical generative adversarial networks depends on absolute pixel coordinates in an unhealthy manner. This manifests itself as, e.g., detail appearing to be glued to image coordinates instead of the surfaces of depicted objects. We trace the root cause to careless signal processing that causes aliasing in the generator network. Interpreting all signals in the network as continuous, we derive generally applicable, small architectural changes that guarantee that unwanted information cannot leak into the hierarchical synthesis process. The resulting networks match the FID of StyleGAN2 but differ dramatically in their internal representations, and they are fully equivariant to translation and rotation even at subpixel scales. Our results pave the way for generative models better suited for video and animation.
Continuous-Multiple Image Outpainting in One-Step via Positional Query and A Diffusion-based Approach
Image outpainting aims to generate the content of an input sub-image beyond its original boundaries. It is an important task in content generation yet remains an open problem for generative models. This paper pushes the technical frontier of image outpainting in two directions that have not been resolved in literature: 1) outpainting with arbitrary and continuous multiples (without restriction), and 2) outpainting in a single step (even for large expansion multiples). Moreover, we develop a method that does not depend on a pre-trained backbone network, which is in contrast commonly required by the previous SOTA outpainting methods. The arbitrary multiple outpainting is achieved by utilizing randomly cropped views from the same image during training to capture arbitrary relative positional information. Specifically, by feeding one view and positional embeddings as queries, we can reconstruct another view. At inference, we generate images with arbitrary expansion multiples by inputting an anchor image and its corresponding positional embeddings. The one-step outpainting ability here is particularly noteworthy in contrast to previous methods that need to be performed for N times to obtain a final multiple which is N times of its basic and fixed multiple. We evaluate the proposed approach (called PQDiff as we adopt a diffusion-based generator as our embodiment, under our proposed Positional Query scheme) on public benchmarks, demonstrating its superior performance over state-of-the-art approaches. Specifically, PQDiff achieves state-of-the-art FID scores on the Scenery (21.512), Building Facades (25.310), and WikiArts (36.212) datasets. Furthermore, under the 2.25x, 5x and 11.7x outpainting settings, PQDiff only takes 40.6\%, 20.3\% and 10.2\% of the time of the benchmark state-of-the-art (SOTA) method.
GANeRF: Leveraging Discriminators to Optimize Neural Radiance Fields
Neural Radiance Fields (NeRF) have shown impressive novel view synthesis results; nonetheless, even thorough recordings yield imperfections in reconstructions, for instance due to poorly observed areas or minor lighting changes. Our goal is to mitigate these imperfections from various sources with a joint solution: we take advantage of the ability of generative adversarial networks (GANs) to produce realistic images and use them to enhance realism in 3D scene reconstruction with NeRFs. To this end, we learn the patch distribution of a scene using an adversarial discriminator, which provides feedback to the radiance field reconstruction, thus improving realism in a 3D-consistent fashion. Thereby, rendering artifacts are repaired directly in the underlying 3D representation by imposing multi-view path rendering constraints. In addition, we condition a generator with multi-resolution NeRF renderings which is adversarially trained to further improve rendering quality. We demonstrate that our approach significantly improves rendering quality, e.g., nearly halving LPIPS scores compared to Nerfacto while at the same time improving PSNR by 1.4dB on the advanced indoor scenes of Tanks and Temples.
Free-form Video Inpainting with 3D Gated Convolution and Temporal PatchGAN
Free-form video inpainting is a very challenging task that could be widely used for video editing such as text removal. Existing patch-based methods could not handle non-repetitive structures such as faces, while directly applying image-based inpainting models to videos will result in temporal inconsistency (see http://bit.ly/2Fu1n6b ). In this paper, we introduce a deep learn-ing based free-form video inpainting model, with proposed 3D gated convolutions to tackle the uncertainty of free-form masks and a novel Temporal PatchGAN loss to enhance temporal consistency. In addition, we collect videos and design a free-form mask generation algorithm to build the free-form video inpainting (FVI) dataset for training and evaluation of video inpainting models. We demonstrate the benefits of these components and experiments on both the FaceForensics and our FVI dataset suggest that our method is superior to existing ones. Related source code, full-resolution result videos and the FVI dataset could be found on Github https://github.com/amjltc295/Free-Form-Video-Inpainting .
Incremental Transformer Structure Enhanced Image Inpainting with Masking Positional Encoding
Image inpainting has made significant advances in recent years. However, it is still challenging to recover corrupted images with both vivid textures and reasonable structures. Some specific methods only tackle regular textures while losing holistic structures due to the limited receptive fields of convolutional neural networks (CNNs). On the other hand, attention-based models can learn better long-range dependency for the structure recovery, but they are limited by the heavy computation for inference with large image sizes. To address these issues, we propose to leverage an additional structure restorer to facilitate the image inpainting incrementally. The proposed model restores holistic image structures with a powerful attention-based transformer model in a fixed low-resolution sketch space. Such a grayscale space is easy to be upsampled to larger scales to convey correct structural information. Our structure restorer can be integrated with other pretrained inpainting models efficiently with the zero-initialized residual addition. Furthermore, a masking positional encoding strategy is utilized to improve the performance with large irregular masks. Extensive experiments on various datasets validate the efficacy of our model compared with other competitors. Our codes are released in https://github.com/DQiaole/ZITS_inpainting.
Tackling the Generative Learning Trilemma with Denoising Diffusion GANs
A wide variety of deep generative models has been developed in the past decade. Yet, these models often struggle with simultaneously addressing three key requirements including: high sample quality, mode coverage, and fast sampling. We call the challenge imposed by these requirements the generative learning trilemma, as the existing models often trade some of them for others. Particularly, denoising diffusion models have shown impressive sample quality and diversity, but their expensive sampling does not yet allow them to be applied in many real-world applications. In this paper, we argue that slow sampling in these models is fundamentally attributed to the Gaussian assumption in the denoising step which is justified only for small step sizes. To enable denoising with large steps, and hence, to reduce the total number of denoising steps, we propose to model the denoising distribution using a complex multimodal distribution. We introduce denoising diffusion generative adversarial networks (denoising diffusion GANs) that model each denoising step using a multimodal conditional GAN. Through extensive evaluations, we show that denoising diffusion GANs obtain sample quality and diversity competitive with original diffusion models while being 2000times faster on the CIFAR-10 dataset. Compared to traditional GANs, our model exhibits better mode coverage and sample diversity. To the best of our knowledge, denoising diffusion GAN is the first model that reduces sampling cost in diffusion models to an extent that allows them to be applied to real-world applications inexpensively. Project page and code can be found at https://nvlabs.github.io/denoising-diffusion-gan
StyleAvatar3D: Leveraging Image-Text Diffusion Models for High-Fidelity 3D Avatar Generation
The recent advancements in image-text diffusion models have stimulated research interest in large-scale 3D generative models. Nevertheless, the limited availability of diverse 3D resources presents significant challenges to learning. In this paper, we present a novel method for generating high-quality, stylized 3D avatars that utilizes pre-trained image-text diffusion models for data generation and a Generative Adversarial Network (GAN)-based 3D generation network for training. Our method leverages the comprehensive priors of appearance and geometry offered by image-text diffusion models to generate multi-view images of avatars in various styles. During data generation, we employ poses extracted from existing 3D models to guide the generation of multi-view images. To address the misalignment between poses and images in data, we investigate view-specific prompts and develop a coarse-to-fine discriminator for GAN training. We also delve into attribute-related prompts to increase the diversity of the generated avatars. Additionally, we develop a latent diffusion model within the style space of StyleGAN to enable the generation of avatars based on image inputs. Our approach demonstrates superior performance over current state-of-the-art methods in terms of visual quality and diversity of the produced avatars.
Video Inpainting by Jointly Learning Temporal Structure and Spatial Details
We present a new data-driven video inpainting method for recovering missing regions of video frames. A novel deep learning architecture is proposed which contains two sub-networks: a temporal structure inference network and a spatial detail recovering network. The temporal structure inference network is built upon a 3D fully convolutional architecture: it only learns to complete a low-resolution video volume given the expensive computational cost of 3D convolution. The low resolution result provides temporal guidance to the spatial detail recovering network, which performs image-based inpainting with a 2D fully convolutional network to produce recovered video frames in their original resolution. Such two-step network design ensures both the spatial quality of each frame and the temporal coherence across frames. Our method jointly trains both sub-networks in an end-to-end manner. We provide qualitative and quantitative evaluation on three datasets, demonstrating that our method outperforms previous learning-based video inpainting methods.
MFAGAN: A Compression Framework for Memory-Efficient On-Device Super-Resolution GAN
Generative adversarial networks (GANs) have promoted remarkable advances in single-image super-resolution (SR) by recovering photo-realistic images. However, high memory consumption of GAN-based SR (usually generators) causes performance degradation and more energy consumption, hindering the deployment of GAN-based SR into resource-constricted mobile devices. In this paper, we propose a novel compression framework Multi-scale Feature Aggregation Net based GAN (MFAGAN) for reducing the memory access cost of the generator. First, to overcome the memory explosion of dense connections, we utilize a memory-efficient multi-scale feature aggregation net as the generator. Second, for faster and more stable training, our method introduces the PatchGAN discriminator. Third, to balance the student discriminator and the compressed generator, we distill both the generator and the discriminator. Finally, we perform a hardware-aware neural architecture search (NAS) to find a specialized SubGenerator for the target mobile phone. Benefiting from these improvements, the proposed MFAGAN achieves up to 8.3times memory saving and 42.9times computation reduction, with only minor visual quality degradation, compared with ESRGAN. Empirical studies also show sim70 milliseconds latency on Qualcomm Snapdragon 865 chipset.
RI3D: Few-Shot Gaussian Splatting With Repair and Inpainting Diffusion Priors
In this paper, we propose RI3D, a novel 3DGS-based approach that harnesses the power of diffusion models to reconstruct high-quality novel views given a sparse set of input images. Our key contribution is separating the view synthesis process into two tasks of reconstructing visible regions and hallucinating missing regions, and introducing two personalized diffusion models, each tailored to one of these tasks. Specifically, one model ('repair') takes a rendered image as input and predicts the corresponding high-quality image, which in turn is used as a pseudo ground truth image to constrain the optimization. The other model ('inpainting') primarily focuses on hallucinating details in unobserved areas. To integrate these models effectively, we introduce a two-stage optimization strategy: the first stage reconstructs visible areas using the repair model, and the second stage reconstructs missing regions with the inpainting model while ensuring coherence through further optimization. Moreover, we augment the optimization with a novel Gaussian initialization method that obtains per-image depth by combining 3D-consistent and smooth depth with highly detailed relative depth. We demonstrate that by separating the process into two tasks and addressing them with the repair and inpainting models, we produce results with detailed textures in both visible and missing regions that outperform state-of-the-art approaches on a diverse set of scenes with extremely sparse inputs.
Elevating Flow-Guided Video Inpainting with Reference Generation
Video inpainting (VI) is a challenging task that requires effective propagation of observable content across frames while simultaneously generating new content not present in the original video. In this study, we propose a robust and practical VI framework that leverages a large generative model for reference generation in combination with an advanced pixel propagation algorithm. Powered by a strong generative model, our method not only significantly enhances frame-level quality for object removal but also synthesizes new content in the missing areas based on user-provided text prompts. For pixel propagation, we introduce a one-shot pixel pulling method that effectively avoids error accumulation from repeated sampling while maintaining sub-pixel precision. To evaluate various VI methods in realistic scenarios, we also propose a high-quality VI benchmark, HQVI, comprising carefully generated videos using alpha matte composition. On public benchmarks and the HQVI dataset, our method demonstrates significantly higher visual quality and metric scores compared to existing solutions. Furthermore, it can process high-resolution videos exceeding 2K resolution with ease, underscoring its superiority for real-world applications.
Dense 3D Object Reconstruction from a Single Depth View
In this paper, we propose a novel approach, 3D-RecGAN++, which reconstructs the complete 3D structure of a given object from a single arbitrary depth view using generative adversarial networks. Unlike existing work which typically requires multiple views of the same object or class labels to recover the full 3D geometry, the proposed 3D-RecGAN++ only takes the voxel grid representation of a depth view of the object as input, and is able to generate the complete 3D occupancy grid with a high resolution of 256^3 by recovering the occluded/missing regions. The key idea is to combine the generative capabilities of autoencoders and the conditional Generative Adversarial Networks (GAN) framework, to infer accurate and fine-grained 3D structures of objects in high-dimensional voxel space. Extensive experiments on large synthetic datasets and real-world Kinect datasets show that the proposed 3D-RecGAN++ significantly outperforms the state of the art in single view 3D object reconstruction, and is able to reconstruct unseen types of objects.
Face Aging With Conditional Generative Adversarial Networks
It has been recently shown that Generative Adversarial Networks (GANs) can produce synthetic images of exceptional visual fidelity. In this work, we propose the GAN-based method for automatic face aging. Contrary to previous works employing GANs for altering of facial attributes, we make a particular emphasize on preserving the original person's identity in the aged version of his/her face. To this end, we introduce a novel approach for "Identity-Preserving" optimization of GAN's latent vectors. The objective evaluation of the resulting aged and rejuvenated face images by the state-of-the-art face recognition and age estimation solutions demonstrate the high potential of the proposed method.
On Conditioning GANs to Hierarchical Ontologies
The recent success of Generative Adversarial Networks (GAN) is a result of their ability to generate high quality images from a latent vector space. An important application is the generation of images from a text description, where the text description is encoded and further used in the conditioning of the generated image. Thus the generative network has to additionally learn a mapping from the text latent vector space to a highly complex and multi-modal image data distribution, which makes the training of such models challenging. To handle the complexities of fashion image and meta data, we propose Ontology Generative Adversarial Networks (O-GANs) for fashion image synthesis that is conditioned on an hierarchical fashion ontology in order to improve the image generation fidelity. We show that the incorporation of the ontology leads to better image quality as measured by Fr\'{e}chet Inception Distance and Inception Score. Additionally, we show that the O-GAN achieves better conditioning results evaluated by implicit similarity between the text and the generated image.
Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network
Despite the breakthroughs in accuracy and speed of single image super-resolution using faster and deeper convolutional neural networks, one central problem remains largely unsolved: how do we recover the finer texture details when we super-resolve at large upscaling factors? The behavior of optimization-based super-resolution methods is principally driven by the choice of the objective function. Recent work has largely focused on minimizing the mean squared reconstruction error. The resulting estimates have high peak signal-to-noise ratios, but they are often lacking high-frequency details and are perceptually unsatisfying in the sense that they fail to match the fidelity expected at the higher resolution. In this paper, we present SRGAN, a generative adversarial network (GAN) for image super-resolution (SR). To our knowledge, it is the first framework capable of inferring photo-realistic natural images for 4x upscaling factors. To achieve this, we propose a perceptual loss function which consists of an adversarial loss and a content loss. The adversarial loss pushes our solution to the natural image manifold using a discriminator network that is trained to differentiate between the super-resolved images and original photo-realistic images. In addition, we use a content loss motivated by perceptual similarity instead of similarity in pixel space. Our deep residual network is able to recover photo-realistic textures from heavily downsampled images on public benchmarks. An extensive mean-opinion-score (MOS) test shows hugely significant gains in perceptual quality using SRGAN. The MOS scores obtained with SRGAN are closer to those of the original high-resolution images than to those obtained with any state-of-the-art method.
One-Step Image Translation with Text-to-Image Models
In this work, we address two limitations of existing conditional diffusion models: their slow inference speed due to the iterative denoising process and their reliance on paired data for model fine-tuning. To tackle these issues, we introduce a general method for adapting a single-step diffusion model to new tasks and domains through adversarial learning objectives. Specifically, we consolidate various modules of the vanilla latent diffusion model into a single end-to-end generator network with small trainable weights, enhancing its ability to preserve the input image structure while reducing overfitting. We demonstrate that, for unpaired settings, our model CycleGAN-Turbo outperforms existing GAN-based and diffusion-based methods for various scene translation tasks, such as day-to-night conversion and adding/removing weather effects like fog, snow, and rain. We extend our method to paired settings, where our model pix2pix-Turbo is on par with recent works like Control-Net for Sketch2Photo and Edge2Image, but with a single-step inference. This work suggests that single-step diffusion models can serve as strong backbones for a range of GAN learning objectives. Our code and models are available at https://github.com/GaParmar/img2img-turbo.
Image Inpainting Models are Effective Tools for Instruction-guided Image Editing
This is the technique report for the winning solution of the CVPR2024 GenAI Media Generation Challenge Workshop's Instruction-guided Image Editing track. Instruction-guided image editing has been largely studied in recent years. The most advanced methods, such as SmartEdit and MGIE, usually combine large language models with diffusion models through joint training, where the former provides text understanding ability, and the latter provides image generation ability. However, in our experiments, we find that simply connecting large language models and image generation models through intermediary guidance such as masks instead of joint fine-tuning leads to a better editing performance and success rate. We use a 4-step process IIIE (Inpainting-based Instruction-guided Image Editing): editing category classification, main editing object identification, editing mask acquisition, and image inpainting. Results show that through proper combinations of language models and image inpainting models, our pipeline can reach a high success rate with satisfying visual quality.